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The recently developed fiber-optic distributed acoustic sensing (DAS)

technology has attracted widespread attention in engineering applications,

oil exploration, and seismological research. Compared with the conventional

geophones, DAS can acquire high-resolution data due to a dense sampling and

can be deployed conveniently in the complex acquisition environment. These

advantages of DAS make it promising for near-surface characterization in the

urban city. In this study, a DAS line was utilized to record traffic noise seismic

data in the urban city and to investigate the near-surface characterization.

Seismic surface waves were reconstructed from the acquired traffic noises

using seismic interferometry. Thereafter, we obtain the near-surface shear

wave velocity profile below the DAS line by surface wave dispersion curve

inversion using a Bayesian Markov Chain Monte Carlo method. The results

demonstrate the effectiveness of DAS-based urban traffic noise in near-surface

characterization.
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Introduction

The urban underground space is increasingly being developed and utilized with the

advancement of urbanization. Various underground facilities have been built and put into

use in many countries, such as subways, underground parking spaces, underground

shopping malls, and so on (Bobylev and Sterling, 2016). However, there are uncertainties

in the construction and operation of underground engineering due to the complexity and

instability of near-surface structures. Therefore, accurate near-surface characterization is

important for understanding the underground condition better and reducing the

potential safety risks (Von der Tann et al., 2020).

Compared with the near-surface surveys in resource exploration, near-surface

characterization in the urban city presents additional challenges, which require high

spatial and temporal resolution, efficient data acquisition, low cost, and minimal
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disruption to urban life. Different from the destructive active

sources in the conventional near-surface surveys, the urban

traffic noise provides a readily available and clean source to

obtain the near-surface structure (Zhang et al., 2019; Ma and

Qian, 2020). The newly developed fiber-optic distributed acoustic

sensing (DAS) has emerged as a promising seismic data

acquisition technology. Different from the particle

displacement or velocity measurements of conventional

geophones, DAS measures the strain rate or strain caused by

vibrations using a fiber-optic cable (Zhan, 2020; Song et al.,

2021a). Compared with the geophone, DAS can acquire high-

resolution data with sampling frequencies from kHz to MHz and

spatial sampling of several meters (Parker et al., 2014; Paitz et al.,

2021). In addition, DAS can be deployed conveniently in the

complex acquisition environment and enable long-term

monitoring. The potential and advantages of DAS have been

validated recently in seismic exploration (Daley et al., 2016; Lei

et al., 2021; Wang et al., 2021), regional and teleseismic

earthquake observations (Williams, et al., 2019; Shinohara

et al., 2022), and microseismic monitoring (Walter et al.,

2020). In terms of near-surface structure characterization,

Fang et al. (2020) used blast signals from quarry sites to

obtain the near-surface velocity changes. They picked travel

times from virtual source gathers on each day and estimated

the velocities by least-squares linear regression. Song et al.

(2021b) analyzed the traffic noise distribution using the

ambient noise from an urban city. The data were recorded by

urban telecommunication fiber-optic cables. The fundamental-

mode dispersion curves were extracted from the reconstructed

Rayleigh surface waves in the virtual source gathers and then

were inverted for the near-surface velocity structure using the

ambient noise tomography with a neighborhood algorithm.

In this study, we acquired traffic noise using a DAS line

deployed along a busy road in an urban city. We analyzed the

recorded seismic wavefield and reconstructed seismic surface

wave from 1 hour of continuous data. Then dispersion curves

were extracted and inverted for the near-surface velocity below

the DAS line. The inverted velocity agrees well with the prior

geological knowledge. The results confirm the reliability of near-

surface characterization using urban traffic noise recorded by a

DAS line.

Data and preprocessing

The study site is located in an urban city (Beijing) in

Northeast China, as shown in Figure 1A. The near-surface

stratigraphy in this area mainly consists of horizontal layers.

Data in this study were continuously acquired using a fiber-optic

distributed acoustic sensing (DAS) line with a length of 402.5 m.

The DAS line was installed along the road (Figure 1B) to ensure

that the recorded data contained rich traffic noise. The gauge

length is 5.0 m. The trace interval of acquired data is 0.5 m and

the sampling frequency is 4,000 Hz.

We first analyzed the acquired urban traffic seismic noise

collected by the DAS line. Figures 2A,B shows examples of

10 min recording when there are many vehicles and when no

vehicles pass across the entire DAS line. As shown by the black

arrows in Figure 2A, there are clear vehicle-related seismic data

when vehicles pass through the DAS line. These vehicle-related

seismic signals show linear events with different slopes,

indicated by the green dashed lines in Figure 2A. They are

excited by vehicles with different running speeds and

directions. A zoomed-in view of a vehicle-related seismic

event indicated by a rectangle labeled A in Figure 2A is

shown in Figure 2C. The blue lines in Figure 2C indicate

linear events with positive and negative slopes excited by a

vehicle passing through the DAS line. The slopes of these blue

FIGURE 1
(A) Location of the data acquisition area in Beijing, China. (B) A
zoomed-in view of the field acquisition layout. The dashed gray
line indicates the DAS line along the road.
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lines represent the propagation velocity of the wavefield excited

by the vehicle. Figures 2E,F shows the zoomed-in views of

background noise indicated by the rectangle labeled B in

Figure 2A and labeled C in Figure 2B. The two background

noises are extracted from the records with and without vehicles

to compare the effect of urban traffic. The waveforms and

amplitude spectra of data indicated by the arrows in Figures

2C,D,E are shown in Figure 3. The vehicle-related seismic data

in Figure 3A presents strong amplitude vibrations compared

with the background noise in Figures 3B,C. The amplitude

spectrum is distributed in a frequency range of 0–30 Hz,

indicated by the blue line in Figure 3D. The red line in

Figure 3D represents the amplitude spectrum of background

noise extracted from a period in the vicinity of the vehicle-

FIGURE 2
(A) Seismic data recorded by DAS line during 10 min of heavy road traffic. The black arrows indicate the vehicle-related seismic event and the
green dashed lines indicate their slopes. (B) Seismic data recorded by DAS line during 10 min without road traffic. (C–E) The zoomed-in view of data
indicated by the rectangles labeled A-B in (A) and labeled C in (B). The color arrows indicate the locations of seismic waveforms and amplitude
spectra in Panel 3. The blue lines in (C) represent the propagation velocity of wavefield excited by the vehicle.
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related seismic data. It shows a similar frequency band

(0–30 Hz) to the vehicle-related seismic data (the blue line)

but with weaker energy. In comparison, the amplitude

spectrum of background noise extracted from a quiet period

without vehicles has a lower frequency range of 0–10 Hz and

the smallest energy. Therefore, the noise sources of urban traffic

can provide a broadband frequency data than the common

ambient noise. The F-K analyses of data in Figures 2C,D,E are

shown in Figure 4. The energy bands in all the three F-K spectra

distribute in an almost similar slope range defined by the red

lines in Figure 4, indicating the similar apparent velocities of

these waves.

Based on the analysis, surface waves are reconstructed by

seismic interferometry using 1 h of continuous records, during

which busy vehicles were moving along the road. The raw noise

data are first preprocessed by a series of methods summarized in

Bensen et al. (2007). They are then cut into segments with a

length of 1 minute. Then, all the 1-min segments are removed

mean and linear trend and are bandpass filtered to 5–25 Hz,

followed by the one-bit normalization and spectral whitening

Figure 5.

FIGURE 3
(A–C) Normalized waveforms of the traces at the locations
indicated by the color arrows in Panel 2C-E. (D) Amplitude spectra
of the traces in (A–C).

FIGURE 4
(A–C) F-K analyses of the DAS data in Panel 2C-E.
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Methods

Surface waves reconstruction using
seismic interferometry

Seismic interferometry is used to reconstruct surface waves

from continuous records, which has attracted wide attention in

active and passive seismic data processing and imaging (Wang

et al., 2009, 2010; Halliday et al., 2015; Shao et al., 2021; Zeng

et al., 2022). Based on the reciprocity theorem of correlation type,

the basic equation for seismic interferometry in the time domain

is given as follows (Wapenaar, 2004):

G(B,A, t) + G(A,B,−t) ≈ ∫
S0

G(B, x, t) ⊗ G(A, x, t)d2x (1)

where ⊗ represents the cross-correlation operation. The Green’s

functions G(A, x, t) and G(B, x, t) are excited by a source at x ,

and received by sensors at A and B , respectively. The far-field

approximation is considered in Eq. 1. According to Eq. 1, traces

recorded at two different locations, e.g.,G(A, x, t) andG(B, x, t) ,
are cross-correlated. The overlapping paths with the same ray

parameters will be canceled, as shown in a ray diagram in

Figure 6. Then all the cross-correlated responses over all

source locations are summed to reconstruct a virtual trace

received at B with a virtual source at A (Schuster, 2009;

Wapenaar et al., 2010).

Shear wave velocity inversion using
surface waves

After surface waves are reconstructed by seismic

interferometry, dispersion analysis is implemented by the

phase shift method due to its advantages in robustness and

computational efficiency (Dal Moro et al., 2003). Then

dispersion curves are extracted. Finally, the shear wave

velocity is calculated by dispersion curves inversion using a

Bayesian Markov Chain Monte Carlo (MCMC) method

(Malinverno, 2002). The inversion problem is recast as a

problem of statistical inference in the MCMC method. The

Bayesian posterior probability density of the shear velocity

model p(m|d) is proportional to the product of a

prior probability density p(m) with a likelihood function

p(d|m) with:
p(m|d)∝p(m)p(d|m) (2)

where m denotes the shear velocity model and d denotes the

extracted dispersion curves characterized by surface wave phase

velocities at different frequencies.

The construction of the likelihood function and the prior

probability density are the main components of the Bayesian

inversion. The former measures how well the forward data fits

the observed data, and the latter expresses the current prior

FIGURE 5
Ray diagram sketch of surface waves reconstruction by seismic interferometry.

FIGURE 6
Workflow of shear wave velocity inversion using traffic noise.
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knowledge about the model. The likelihood function p(d|m) in
this study is defined by the L2 misfit between the observed

and forward surface wave phase velocities, and is given as follows:

p(d|m)∝ exp[ − (dobs − c(m))2] (3)

where dobs is the observed phase velocity and c(m) is the forward
phase velocity using the propagator-matrix method (Wathelet,

2005).

Assumed that the shear wave velocity model is uniformly

distributed in a fixed range, the prior probability density is given

as follows:

p(m)∝
⎧⎪⎨⎪⎩∏M

i�1
(m+

i −m−
i )−1 m+

i ≤mi ≤m−
i , i � 1, . . . ,M

0 otherwise
(4)

where m+
i and m−

i are the upper and lower boundary of ith

velocity mi.

Finally, the posterior probability density is obtained by

combining Eqs 3, 4 in Eq.2. The task of Bayesian inversion

then is to evaluate the complete posterior probability density

p(m|d). The MCMC algorithm is used, which is an iterative

method for generating samples from a probability density. The

initial model is selected randomly from the prior. Then a series of

models are generated in a chain according to the posterior

probability density. Each model is a perturbation of the last

one. The generated models are examined with an acceptance

ratio which is defined as:

α � min⎡⎣1, p(m′)p(d∣∣∣∣m′)q(m∣∣∣∣m′)
p(m)p(d|m)q(m′

∣∣∣∣m) ⎤⎦ (5)

FIGURE 7
The virtual shot gather with a virtual source at (A) 2.5 m, (B) 77.5 m, (C) 152.5 m, (D) 227.5 m, (E) 302.5 m, and (F) 377.5 m.
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where m′ represents the generated new model from the existing

model m, q represents the probability density of moving from m

to m′. If the acceptance ratio α is larger than a random number

u ~ U[0, 1], the generated new model is accepted and added to

the chain. The current model is then updated. Otherwise, the

generated new model is rejected and the existing model is

retained as the current model.

Results

The processing workflow of shear wave velocity inversion

using traffic noise is summarized in Figure 6. The reconstructed

wavefields by seismic interferometry show surface waves with

clear dispersive effects, as shown in the virtual shot gathers at

different locations in Figure 7. Because the virtual traces at the far

offset have a low signal-to-noise ratio (SNR), a window function

is applied to the virtual shot gathers to extract the high SNR data

at the near offset. Thereafter, dispersion spectra are calculated

from the windowed data, and the multi-mode dispersion curves

can be picked, as shown in Figure 8. However, the picked first-

order mode dispersion curves in some virtual shot gathers are not

reliable, as shown in Figures 7A,E,F. In addition, the picked

surface wave dispersion curves from the virtual shot gathers at

different positions show similar shapes, especially for the

fundamental mode. This verifies the correct identification of

multi-mode surface waves.

Different from a commonly used 2D array in the passive

survey, a linear array was implemented in this study considering

the limited space in the urban city. This regular 1D acquisition

geometry may cause artifacts in the phase velocity maps inverted

by a surface wave tomography method because of the

FIGURE 8
(A–F) Dispersion spectrum and the extracted dispersion curve from data in Figures 7A–F. The picked fundamental and first-order mode
dispersion curves are respectively indicated by circles and rectangles.
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nonuniform ray coverage related to the acquisition layout

(Barone et al., 2021). In addition, the subsurface structure in

the study area mainly consists of horizontal layers. Therefore, we

invert the 2D velocity profile using a 1D inversion scheme of

multichannel analysis of surface wave (Park et al., 2007; Morton

et al., 2021). This method inverts a 1D velocity from the

dispersion curve picked from a virtual shot gather. Then 1D

velocities inverted from all the virtual shot gathers are assembled

to build a 2D velocity. We consider only the fundamental mode

for the dispersion curve inversion due to the unreliability of first-

order mode. Figure 9 shows the dispersion curve inversion results

of the fundamental mode in Figure 8. The forward dispersion

curves shown by the blue lines in Figure 10 are calculated using

the best inverted velocities in Figure 9, which fits well with the

picked dispersion curves (shown by the solid circles in Figure 10).

The final 2D velocity profile along the DAS line is shown in

Figure 11. We compared the final velocity profile with the prior

geological information in the study site to validate the result. The

previous study shows that the quaternary deposits in the study

area include the Holocene and Pleistocene sequences (Zhao et al.,

2019). Boundaries of the Holocene-Upper Pleistocene, the

Upper-Middle Pleistocene, and the Middle-Lower Pleistocene

are respectively located at depths of 17.35, 57.20 and 75.60 m.

These stratigraphic boundaries are approximately consistent

with those in the inverted velocity, as shown in the color bar

in Figure 11.

Discussion

We have demonstrated the feasibility of near-surface

characterization using urban traffic noise recorded by DAS.

FIGURE 9
(A–F) The inverted 1D shear wave velocities using the fundamental mode dispersion curves in Figures 8A–F.
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FIGURE 10
(A–F) The fit of the forward fundamental-mode dispersion curve using the inverted velocity in Figures 9A–F to the picked one in Figures 8A–F.

FIGURE 11
The 2D shear wave velocity profile along the DAS line. The color bar indicates the depths of key horizons according to the prior geological
information in the study area.
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Compared with the conventional geophones, DAS has obvious

advantages in high-density sampling, which can provide a high-

resolution subsurface structure. In addition, the convenient

deployment of DAS makes it stand out in the near-surface

characterization of urban cities and other harsh environment.

However, different from the particle displacement or velocity

measurement of geophones, DAS measures the strain or strain

rate. This leads to the difference between the interferometric

wavefield obtained from the geophone and DAS data according

to the representation theorem defined by different physical

quantities (velocity and strain) (Paitz, et al., 2019). Therefore, the

dynamic information (waveform) of velocity and strain wavefield

are obviously different. This difference should be considered for

near-surface characterization using a full waveform inversion

method for velocity wavefield. On the other hand, the kinematic

information of the velocity and strain wavefield are similar.

Therefore, the dispersion curves extracted from the two

wavefields may reveal similar near-surface velocity (Martin, et al.,

2015; Song, et al., 2021b). The dispersion curve inversionmethod for

geophone data is applicable to DAS data.

Conclusion

We present the near-surface characterization in this study

using traffic noise seismic data acquired by a DAS line deployed

along the road in the urban city. Seismic surface waves are

extracted from the traffic noise data using seismic

interferometry. Compared with the common natural sources,

the traffic noise source exhibits strong energy and can provide a

wider frequency range. Finally, the near-surface shear wave

velocity structure along the DAS line is obtained by surface

wave dispersion curves inversion using a Bayesian Markov Chain

Monte Carlo method. The inverted velocity agrees well with the

geological structure in the study area. The results demonstrate

that traffic noise can be regarded as a powerful and effective tool

for high-resolution near-surface characterization in the urban

city, especially when combining the DAS technique with the

unused telecommunication networks in the city.
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