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Understanding building metabolism is critical for guiding urban resource

management and addressing challenges in urban sustainable development.

Key attributes of buildings, including geolocation, footprint, height, and vintage,

are crucial to characterizing spatiotemporal patterns of building metabolism.

However, these attributes are usually challenging to obtain broadly and

automatically, which obscures a comprehensive understanding and accurate

assessment of urban metabolism. Moreover, the lack of a finer spatial pattern of

these attributes shadows a spatially explicit characterization of material stock

and flow in cities. In this study, we took Shenzhen—whose urbanization over the

past three decades has been unprecedented in China and even around the

world— has been taken as an example to develop a city-level building dataset

based on a random-forest model and quantify the spatiotemporal patterns of

material metabolism at relatively high spatial resolution (in 500m× 500mgrids)

by combing material flow analysis (MFA) with geographic information system

(GIS). The results show that Shenzhen grew from a small town with 281.02 ×

106 m3 of buildings in the 1990s to amega-city with 3585.5 × 106 m3 of buildings

in 2018 and expanded both outward and upward from downtown to suburban

areas. The urban “weight” (material stock) increased from 92.69 Mt in the 1990s

to 1667.8 Mt in 2018 and tended to be saturated, with an average growth rate of

9.5% per year. Spatially, the south-central areas were the largest container of

material stocks and generated the most demolition waste. The spatially explicit

maps of building three-dimensional (3-D) form and vintage provide detailed

information for architectural conservation and could support the decision-

making for urban renewal planning. The spatiotemporal patterns of in-use

material stocks and potential generation of construction and demolition waste

(CDW) provide a benchmark of environmental risk assessment and potential

secondary resources to reduce “original” material consumption, which could
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help alter urban renewal to an environmental-friendly and sustainable

trajectory.

KEYWORDS

material flow analysis, geographic information systems, spatiotemporal analysis,
random forest, building vintage, industrial ecology, high-resolution urban grids

1 Introduction

Urbanization usually leads to a three-dimensional growth of

the buildings both horizontal and vertical directions,

accompanied by large amounts of construction material

consumption and demolition. Globally, the consumption of

construction materials has increased 34-fold from 1900 to

2005 (Krausmann et al., 2009). What amount of material has

been consumed for cities? What scales of materials were stored in

cities? What amount of material is to demolish and emit into the

environment? All these issues would undoubtedly affect urban

sustainability (Müller, 2006; Cui et al., 2019; Liu et al., 2020b).

Characterizing urban 3-D growth and related material

metabolism is critical to understanding above questions. In

past years, many previous studies endeavored to answer these

questions from national (Huo et al., 2019) to urban scales (Fu

et al., 2019). These studies usually used in-use building stocks

(stock-driven model) or newly built volume (flow-driven model)

in statistics to estimate temporal changes of building metabolism

for a long period based on material flow analysis (Augiseau and

Barles., 2017), and even could generate scenarios of metabolism

in the future based on lifestyle changes (Müller, 2006). In recent

years, remote sensing images and geographic data are beginning

to be applied in urban metabolism research. These studies can

further analyze the spatial patterns of building metabolism with a

spatially explicit method (Peled and Fishman., 2021; Huang et al.,

2017). For example, Gontia et al. (2020) used GIS to quantify the

spatial and temporal characteristics of various residential areas

and help estimate material stock and flow. Marcellus-Zamora

et al. (2016) developed a spatial material flow analysis (MFA)

based on detailed land-use types, which could help describe the

inventory of construction materials and improve the accuracy of

material metabolism quantification. These spatial analyses

require detailed and finer attributes on buildings, which are

usually difficult to obtain easily and quickly and obscure

related assessments on a broader scale (e.g., regional or

continental levels).

Key attributes of buildings usually include geolocation,

footprint, height, and year of construction or vintage, which

are essential for helping understand urban 3-D growth and

related material metabolism (Tanikawa and Hashimoto,

2009; Tanikawa et al., 2015; Mao et al., 2020).

Traditionally, these attributes could be gathered through

housing surveys and cadastral data. Still, this approach is

challenging to scale up across a wide region because it is time-

consuming and labor-intensive (Haberl et al., 2021).

Therefore, finding a method that can collect and estimate

these attributes quickly and accurately is important. A

popular pathway in recent years leverages big data height

analytics in retrieving geolocation (Yousefiyan et al., 2019),

building footprint (Firozjaei et al., 2019; Li et al., 2021), and

height data (Cai et al., 2020; Sun et al., 2020) by decoding the

spectral information from remote sensing images or open-

source dataset (e.g., Open street map). For vintage estimation

within a city or even larger region, a few studies have used the

machine learning method to estimate it within a city or even

larger region (Aksoezen, 2015; Zirak et al., 2020). For

example, the vintage of residential buildings in Vancouver,

Canada, was estimated by the random forest (RF) model. The

results showed that the uncertainty was ~15.8 year (Tooke

et al., 2014). When Rosser et al. (2019) used the same model

applied for Nottingham, the UK, the accuracy rate further

increased to 77% (Rosser et al., 2019). The relatively high

accuracy of these studies proved that building morphology

contributed a lot to estimating the vintage but could be even

further refined, for example, by considering neighborhood-

level features (Aksoezen et al., 2015; Rosser et al., 2019; Tooke

et al., 2014).

In summary, the difficulty in obtaining key building

information broadly and automatically has resulted in a

lack of spatially detailed data on buildings. The spatially

explicit analysis on characterizing spatiotemporal patterns

of urban buildings and material stocks and flows remains

rare. In this paper, we will address the above issues by 1)

developing a city-level building dataset, especially estimating

building vintage based on an RF model by using both

individual and neighborhood-level morphological and

geospatial features; and 2) characterizing material

metabolism based on a GIS-based MFA model and

mapping spatiotemporal patterns of material stocks and

flows in 500m × 500 m grids.

2 Materials and methods

2.1 Study area

Shenzhen is one of the fastest-growing cities and the

youngest mega-city in China (Figure 1). It was a small valley

in the 1980s, but it had more than 900 km2 of built-up area

within its 2,020 km2 administrative region, inhabited by nearly

20 million people until 2018 (SSB 2019). During this period, its
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population increased 37-fold, the built-up area expanded 243-

fold, and GDP grew 935-fold (SSB 2019). However, its rapid

growth has brought various resources and environmental

problems and toward an unsustainable trajectory of

development. Specifically, the rapid urbanization of

Shenzhen has led to severe overconsumption of land and

resulted in severe contradiction with a booming population,

limited available and natural space, scant resources, and a

deteriorating environment, which limits its further

development. The limited open space in Shenzhen asks for

urban renewal and renovation, which would cause large-scale

construction activities and vast amounts of associated material

FIGURE 1
The location of Shenzhen in China (A) and its county subdivision (B).

FIGURE 2
A framework for building data collection and estimation, material stock and flow quantification, and mapping in Shenzhen, China. Panel (A)
shows the dataset of this study. Panel (B) shows the process of material flow analysis for the time changes. Panel (C) shows the combination of MFA
and GIS for the spatial pattern.
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consumption and demolition. Thus, it is necessary to

understand the spatiotemporal patterns of urban buildings

and their material metabolism to support related urban

renewal planning and policy-making in Shenzhen.

2.2 Methods

We proposed an updated framework by combining the RF

model and GIS-based MFA to develop a city-level building

dataset and quantify spatiotemporal dynamics of urban

building and related material metabolism in Shenzhen

(Figure 2). We first obtained the geolocation, footprint, and

height of buildings as the “geo-foundation”, then estimated

the vintage based on the RF model and added it to the

building dataset (Figure 2A). Next, we quantified material

stocks and flows based on the GIS-based MFA model (Liu

et al., 2022a) (Figure 2B). Finally, we mapped spatiotemporal

patterns of buildings and materials from 1990 to 2018 at the

500*500 m of spatial resolution (Figure 2C).

2.3 Building data collection and vintage
estimation

The collection process of the geolocation, footprint, and

height of buildings was in Shenzhen based on the digital maps

generated by Beijing CityDNA Technology Company. An RF

model was applied to estimate the vintage. The RF model is a

statistical learning method that uses the bootstrap resampling

method to draw multiple samples from the original sample, then

creates the model decision trees for each bootstrap sample, and

finally combines the predictions of multiple decision trees to

arrive at the final decision prediction by voting (Breiman., 2001).

Detailed processes for creating an RF were shown as follows:

1) Samples were randomly drawn from the original training

samples by boot-strap, assuming that there were N samples

in the initial training sample set, and each sample hadM features.

N samples were drawn from them each time with a return. This

part of the sample was called out of bag (OOB) data and can be

used to estimate the error called out of bag (OOB) error.

2) N samples were trained to obtain a decision tree, randomly

selected m (m<M) features at each node of the decision tree,

and Mean Decrease Accuracy importance were used to

choose features for node splitting.

3) Steps (1) and (2) were repeated to obtain k decision trees by k

times of sample extraction and sample training.

4) Finally, the integrated learning theory was used to linearly

combine the k decision trees, where each decision tree

accounted for equal weights. When a sample is classified

as input, the result of each decision tree decides the

classification result by majority voting.

Fourteen variables were selected (referred to Liu et al., 2020a)

to estimate building vintage based on the RF model, including 1)

longitude, 2) latitude, 3) footprint area, 4) height, 5) volume, 6)

footprint perimeter, 7) number of neighboring buildings within a

50 m buffer, 8) fractal dimension (Angel et al., 2010), 9)

compactness index, 10) Tyson polygon area, 11) average

building height within a 50 m buffer, 12) maximum building

height within a 50 m buffer, 13) minimum building height within

a 50 m buffer, 14) the aerial distance to the nearest building as the

crow flies (Table 1).

We collected 26,435 in-situ values of building vintage for

training (80% of data) and validation (20% of data) for the

RF model, representing 6.3% of the total building stock in

Shenzhen. The vintage histogram of training samples was

shown in Figure 3A zoom-in map of the Longcheng

Community (located in the Longgang district of

Shenzhen) as an example of the building dataset was

shown in Figure 3B. The area under the curve (AUC) and

the 1:1 line between the predicted and in-situ data were used

to evaluate the model performance and accuracy (Hanley

and McNeil., 1982).

2.4 Material stocks and flows
quantification

2.4.1 Material stocks quantification
Total material stocks are estimated by multiplying the total

floor area of the building by material intensity:

MStm � ∑Qt
i,s,n × MIts,m,n (1)

where MS represents the total stock of material m at year t, Q is

the total floor area (footprint × level) of building iwith structure s

and vintage n, while MI, refers to the intensity of materialm with

structure s and vintage n (Table 2).

2.4.2 Material flows quantification
The difference between material stocks in two time periods is

equal to the difference between total input and output (netflow):

MSt+1m −MStm � NetFlow � MIFt+1
m −MOFt+1

m (2)

where MIF refers to the total input of material m from year t to

t+1;MOF represents the total output of materialm from year t to

t+1. Material inputs and outputs are generated by

complementary construction activities, including construction,

demolition, renewal, and renovation. Thus, the total material

input (or output) equals the sum of these sub-inputs (or sub-

outputs):

MIFt+1
m � MIFt+1

i,m,s1 +MIFt+1
i,m,s2 (3)

MOFt+1
m � MOFt+1

i,m,s1 +MOFt+1
i,m,s2 (4)

where s1 and s2 represent construction activities, respectively.
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2.4.2.1 Building construction and demolition

Building construction requires material input and generates

output, thus:

NetFlowt+1
m,s1 � ∑

i

MIFt+1
i,m,s1 −∑

i

MOFt+1
i,m,s1 (5)

whereMIFs1 refers to material input t for the construction of new

buildings i, which are converted to material stocks (MS) in the

next period t+1. Meantime, new building construction activity

would generate construction waste (MOFs1) and its value is

~50 kg/m2 (Hu et al., 2010; Chen et al., 2006; Wang et al.,

2014). The demolition of in-use buildings (e.g., in order to

increase green space or open space within a city) only

generates output flow (MOFs1), which equals the material

stock (MS) in the demolished building i.

2.4.2.2 Building renewal and renovation

The renewal and renovation of buildings generate both

material input and output. Here, we estimate the magnitude

of material output by a demolition rate (Tanikawa and

Hashimoto, 2009; Reyna and Chester, 2014). We assume that

buildings would use new types of components instead of broken

ones, thus replacing materials at the end of life with new ones.

Therefore:

MOFt+1
m,s2 � ∑

i

Qi,m × (Dt+1
i −Dt

i) × MIni,m (6)

MIFt+1
m,s2 � ∑

i

Qi,m × (Dt+1
i −Dt

i) × MIt+1i,m (7)

Dt
i �

1

(t − n)SDi

���
2π

√ × e{ − [ln(t − n) −Meani]2
2SD2

i

} (8)

where MSn represents the material stock of building i at the

year of construction n, and Di,t is the demolition rate of

TABLE 1 Potential variables to estimate building vintage based on the RF model.

Attributes Description

Longitude The Longitude of each building

Latitude The Latitude of each building

Height (m) The height of each building (floor × 3)

Perimeter (m) The perimeter of the building footprint

Volume (m3) The volumetric space of each building

Area (m2) The area of building footprints

The number of neighboring buildings The number of neighboring buildings in a 50 m buffer around that building

Nearest distance m The distance to the nearest building as the crow flies

NPI Normalized Perimeter Index

Fractal dimension The shape complexity of the building footprints

Average building height (m) Average building height within a 50 m buffer

Maximum building height (m) Maximum building height within a 50 m buffer

Minimum building height (m) Minimum building height within a 50 m buffer

Voronoi area (m2) Area of the Voronoi parcel estimated around the building’s centroid

FIGURE 3
Samples and data distribution. (A) shows a vintage histogram
for training samples in Shenzhen. (B) shows a few building
footprints and vintage in the Longcheng community in Shenzhen
as an example.
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building i at the year t. The values are related to the average

lifespan (Mean) and standard deviation (SD) of building i. The

average lifespan of building i is given by surveys (Yang and

Kohler, 2008; Han and Xiang, 2013; Hu et al., 2010; Huang

et al., 2017).

3 Results

3.1 The urban expansion in Shenzhen

3.1.1 Building vintage estimation
The AUC value of the vintage estimation reached 0.93

(Supplementary Figure S1), and the OOB error was stable at

about 9.5% (Supplementary Figure S2B). Figure 4A shows the

spatial pattern of the building vintage estimated by the model

the comparison between the predicted and in-situ values of

vintage in Figure 4B indicated that our model performed well.

The average error of vintage for each building was ~1.7 years

and the uncertainty assessment showed that the error was

smaller than 5 years for ~92% of buildings (Supplementary

Figure S2B).

3.1.2 Urban 2-D expansion in Shenzhen from
1990 to 2018

Based on the vintage information of buildings, we could

retrieve the urban expansion in Shenzhen (Figure 5). From

1990 to 2018, the total (footprint) area of buildings in

Shenzhen increased from 15.82 to 199.83 km2 with an average

TABLE 2 Material intensity (MI) for building in Shenzhen, China.

Material Time Structure

Brick-concrete (kg/m2) Reinforced-concrete (kg/m2)

(Usually ≤7 floors) (Usually >7 floors)

Steel 1980–2000 18 65

2000-present 20 70

Cement 1980–2000 175 200

2000-present 180 220

Lime 1980–2000 32 28

2000-present 33 32

Sand & Gravel 1980–2000 800 820

2000-present 740 780

Glass 1980–2000 2 2.1

2000-present 2.1 2.2

Wood 1980–2000 16 16

2000-present 12 12

Brick 1980–2000 350 15

2000-present 320 10

FIGURE 4
Comparison of predicted and in-situ values of vintage
estimation. (A) shows the spatial pattern of building vintage in
Shenzhen. (B) shows estimated and in-situ values of building
vintage.
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rate of 6.57 km2/a (Table 3). Specifically even before 1990, a few

buildings (~16 km2) were located in the southern region

(Table 3), which was the origin of the Shenzhen Special

Economic Zone (Figure 5). From 1990 to 2000, the total

building area increased to ~66 km2, which was four-fold

increment of the value from 1990 (Table 3). Most of these

new buildings were built in the Luohu District and Futian

District, which led to the mergeing of building clusters and

formed the downtown area of Shenzhen today (Figure 5).

Meanwhile, many buildings expanded northward, which was

shown as the “outlying” pattern (Figure 5). During 2000–2010,

Shenzhen further doubled its total building area (Table 3) with

both “spontaneous” and infilling expansions in the middle and

eastern regions (Figure 5). Until 2018, the total building area

reached ~200 km2 (Table 3). In space, the “spontaneous” growth

only occurred in the western districts (e.g., Baoan district), while

other areas showed the infilling growth (Figure 5).

3.1.3 Urban 3-D growth in Shenzhen from
1990 to 2018

From 1990 to 2018, the building volume in Shenzhen

increased ten-fold, i.e., increased from 0.28 × 109 to 3.58 ×

109 m3 (Table 3). In 1990, the downtown area of Shenzhen,

including the Futian District and Luohu District, was

dominated by low-rise buildings of 3–15 m in height

(Figure 6). By 2000, many medium-height (~40 m) buildings

occurred in Shenzhen (Figure 6) leading to the average growth

rate of building volume reaching 16.04% during 1990–2000

(Table 3). From 2000 to 2010, the building volume in

Shenzhen continued to grow, but the growth rate decreased to

~9.46% (Table 3). After 2010, the average building height in

Shenzhen kept growing especially in the downtown area,

including the Nanshan District, Futian District, and Luohu

District (Figure 6). Meanwhile, urban renewal occurred in these

areas and resulted in medium- and high-rise buildings instead of

FIGURE 5
Building 2-D expansion in Shenzhen from 1990 to 2018.

TABLE 3 Growth speed and morphological characteristics of Shenzhen during 1990–2018. AI, Annual increase; AGR, normalized annual growth
rate (%).

Before 1990 1990–2000 2000–2010 2010–2018

Footprint area (km2) 15.82 66.07 138.55 199.83

AI (km2/a) - 9.16 7.25 7.66

AGR (%) - 15.37 7.69 4.68

Buiding volume (m3) 281.02 × 106 1243.63 × 106 2522.03 × 106 3585.49 × 106

AI (m3/a) - 96.26 × 106 127.84 × 106 132.93 × 106

AGR (%) - 16.04 7.33 4.5
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lower ones (Figure 6). In contrast, new buildings built in the

Bao’an and Guangming districts were still mainly low-rise

(Figure 6).

3.2 Spatio-temporal patterns of material
stocks and flows in Shenzhen from
1990 to 2018

The total in-use stock of construction materials in Shenzhen

exhibited a logistic growth and increased from 92.69 Mt in

1990 to 1667.9 Mt in 2018, with a steady growth rate of 9.5%

per year (Figure 7A). During this period, material stocks

experienced steady increment in the 1990s and reached

~200 Mt at the beginning of the new century. After 2000, the

in-use stock of construction materials increased rapidly and

finally peaked at ~1667 Mt during 2017–2018 (Figure 7A).

Among them, there were ~950 Mt of sand and gravel (~57%

of the total), bricks and cement were next with 392.77 Mt and

233.48 Mt, respectively 24 and 14%, whereas lime, steel, wood,

and glass accounted for 5% of the total (Figure 7A). The per

capita in-use stock of construction materials has shown a slow-

growth trend and reached 128 t in 2018 from 55 t in 1990

(Figure 7B). The material input for building construction in

Shenzhen showed a general growth tendency but with fluctuation

(Figure 7C). Prior to before 2000, Shenzhen needed ~370 Mt

materials every year and this increased to ~570 Mt after the

beginning of century (Figure 7C). The material demands

generated from new construction activities dominated input

flows for most of the years, but the demands from renewal

and renovation activities have increased rapidly since 2016

(Figure 7E). Material outputs kept growing since the 1990s

and hit ~170 Mt until 2018 (Figure 7D). Before 2000, most of

the construction and demolition waste (CDW) was generated

from the by-products of new construction activities (Figure 7F).

After the beginning of century, urban renewal and building

renovation generated more CDW and exceeded ~50% of

output flows, even hitting ~98% in 2018 (Figure 7F).

In space, material stocks kept increasing in both extent and

density in Shenzhen (Figure 8). The spatial hotpots of material

inputs occurred in the downtown area (Futian district) in the

1990s, moved northward during 1990–2010 due to the rapid

urbanization and industrialization, and returned back to the

downtown area due to the urban renewal and renovation

during 2010–2018 (Figure 8). The spatial hotspot of CDW

generation (material output) occurred in the downtown area

first and then expanded outward following the pace of

urbanization (Figure 8).

4 Discussion

4.1 Estimating building vintage to help in
the quantification of urban material
metabolism

Many theoretical and empirical studies have demonstrated

that the RF model has high prediction accuracy, good

tolerance to outliers and noise, and is not prone to

overfitting (Gromping, 2009). These advantages make

random forests have been widely used in various

classification, prediction, feature selection, and outlier

detection problems (Heldt et al., 2021; Ostmann and

Martinez Arbizu., 2018). In this study, we used the RF

model to retrieve building vintage, which is a key factor in

indicating the year of building construction and service time,

by combining it with other key attributes of buildings,

including geolocation, footprint, and height. Therefore, it is

FIGURE 6
The average building height in Shenzhen from 1990 to 2018 (in 500 m × 500 m grids).
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possible to characterize spatiotemporal patterns of urban

building growth and related material metabolism. In our

study, the geolocation of buildings played a key role

andcontributed with ~45% to the vintage estimation, which

indicated that urban expansion in Shenzhen is characterized

by significant directionality (Supplementary Figure S3).

Figure 5 proved that the northward expansion of buildings

occurred during 1990–2000, infilling expansions in the middle

and eastern regions during 2000–2010 and “spontaneous”

growth in the western regions during 2010–2018. Besides,

the three-dimensional (3-D) form of buildings—the height/

volume and shape information—is also important in

estimating building vintage (Supplementary Figure S3).

Before the new century, most of the buildings in Shenzhen

were built with a brick-concrete structures and with less than

7 floors. After 2000, more reinforced-concrete-based and

high-rise architectures were built with the development of

construction technology (Ali and Moon., 2007), which led to

an increase in the skyline (Figure 6) and “weight” of Shenzhen

(Figure 7). Meanwhile, limited space in Shenzhen caused

demands for land renewal and renovation, which has led to

an increase in material input contribution from building

renewal and renovation since 2005 (Figure 7).

Compared with past studies, this study innovatively added

geometric and neighborhood characteristics of buildings in

order to significantly improve the performance of the RF

model on vintage estimation. In addition, it indicated that

the importance of geographic characteristics, including

topography, hydrology, and socio-economic conditions, to

contribute and help form urban and building’s morphology.

For example, coastal cities tend to develop first in coastal areas

(as evidenced by Shenzhen in this study) and the inland cities

crossed by rivers usually develop along their shorelines (e.g.,

Lanzhou, China), both of which indicate that geography and

topology affect the directionality of urban expansion. Other

important features are also important in predicting building

FIGURE 7
Material metabolism of buildings in Shenzhen, China (1990–2018). (A) shows the total material stock in Shenzhen from 1990 to 2018; (B) shows
the material stock per capita in Shenzhen from 1990 to 2018; (C,D) show the material inflow and outflow in Shenzhen from 1990 to 2018,
respectively; (E,F) offer the proportion of inflow and outflow generated from urban construction and renewal activities during 1990–2018,
respectively.
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vintage, as shown in many previous studies. For example, in

Rotterdam and the Dutch Kadaster, the duration of

construction activities played an important role in

retrieving building vintage (Biljecki and Sindram., 2017). In

Nottingham, United Kingdom, the average height of the roof

had the highest contribution (Rosser et al., 2019). Various

main urban construction and development drivers may cause

these differences, indicating the importance of model

parameterization, training, and validation locally. Besides,

this study has shown an acceptable accuracy (test accuracy

of 88%) on vintage prediction, which makes this data-driven

approach an important complement to traditional data

sources, like statistics and surveys.

4.2 Implications of spatio-temporal
dynamics of material metabolism on
urban renewal and renovation in
Shenzhen

The spatiotemporal dynamics of urban material

metabolism were characterized in this study based on a

GIS-based MFA method, which would help capture the

dynamics of urban development and renewal and promote

a refined strategy for urban renewal in Shenzhen. Shenzhen,

China’s youngest megacity, is facing a conflict between rapid

urbanization and limited available space (Qian et al., 2015).

The government has proposed a series of policies to support

urban refurbishment and renewal, especially for in-use

buildings and spaces. The high-resolution building stocks

and flows maps can support associated renewal planning and

risk assessment. On the one hand, these maps can provide

detailed information on in-use materials, which indicates the

potential magnitude and spatial hotspots of CDW generation

(Guo et al., 2019; Kleemann et al., 2017; Mastrucci et al.,

2017). On the other hand, the building demolition in the

urban renewal results in a shorter service time of buildings

(~25–30 years) compared to those in developed countries

(Zhou et al., 2019). This makes CDW generation earlier

(Gao et al., 2020; Reyna and Chestar., 2014) and amplifies

associated environmental risks locally due to the low

recycling rate of construction waste (~5%) and illegal

dumping or landfilling (NDRC 2014). From 2010 to 2017,

~50 million tons of CDW were directly generated from urban

FIGURE 8
Spatial patterns of material metabolism in buildings of Shenzhen, China (1990–2018).
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renewal in Shenzhen (Yu et al., 2020). Dealing with these

wastes with an environmental-friendly trajectory becomes a

new challenge, and material reuse and recycling could be one

of the alternatives. The high-resolution maps of in-use

material stocks could provide a benchmark of potential

amounts of reusing or recycling materials. Meanwhile, the

spatial hotspots of CDW generation indicate key areas for

planning local recycling facilities or logistic centers according

to the trade-off between the cost of transportation and

subsidy of treatment (Tong et al., 2018; Chen and Liu,

2021; Liu et al., 2022b). Therefore, both the spatial

features of material stock and potential CDW generation

could further help to design regional transportation and

treatment facilities and optimize the waste management

system for Shenzhen.

4.3 Uncertainties and outlook

Uncertainties of the results in this study could also come

from the geo-data. First, the training data of vintage

estimation were collected based on the stratified sampling

according to the year of buildings. Therefore, the spatial

distribution of sampling could affect the performance of

the RF model. Second, the footprint of buildings is often

the outer surface of the roof retrieved based on remote

sensing images rather than the exterior of the walls in

reality (Augiseau and Barles., 2017), which leads to an

overestimation of the building volume and related material

stocks and flows. Meanwhile, the function and utility of

buildings are not recognized in this study due to the data

unavailability, although they could significantly help to better

estimate vintage (different service-time of residential and

commercial buildings) and material stocks and flows

(distinct structure of residential and commercial buildings

would change material intensity) (Haberl et al., 2021).

Forecasting the total amount of building volume and

quantifying related material stocks and flows could be

incorporated into this model in the next step. Previous

studies have illustrated the relationship between the living

space per capita and personal income (or GDP per capita)

(Olaya et al., 2017), which would be of great help to forecast

building volume in the future. Combining with the scenarios

of land use/cover changes, especially for the built-up area,

above predictions of building volume could be allocated in

space and used to predict the birth and decay of buildings in a

city (Chen and Liu, 2021). Characterization of the these

dynamics of buildings and materials can provide insightful

information that may better support and design effective

policies for CDW management.

5 Conclusion

Quantifying spatiotemporal dynamics of buildings and

related material metabolism is important to understand the

environmental and socioeconomic consequences of

urbanization. In this study, we retrieved building vintage

and coupled it with a spatially explicit dataset of buildings

in Shenzhen, China. The successful performance of the model

allows us to further use this dataset to characterize urban

material metabolism over time and across space. Detailed

building form and vintage information could support the

decision-making for urban renewal planning. The

spatiotemporal patterns of in-use material stocks and

potential CDW generation provide a benchmark of

environmental risk assessment and potential secondary

resources to reduce “original” material consumption, which

could help alter urban renewal to an environmental-friendly

and sustainable trajectory.
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