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Meteorological satellites have become an indispensable meteorological tool for earth
observation, as aiding in areas such as cloud detection, which has important guiding
significance for maritime activities. However, it is time-consuming and labor-intensive to
obtain fine-grained annotations provided by artificial experience or mature satellite cloud
products for multi-spectral maritime cloud imageries, especially when new satellites are
launched. Moreover, due to the data discrepancy caused by different detection bands,
existing models have inadequate generalization performance compared to new satellites,
and some cannot be directly migrated. In this paper, to reduce the data distribution’s
discrepancy, an approach is presented based on unsupervised domain adaption method
for marine cloud detection task based on Himawari-8 satellite data as a source domain and
Fengyun-4 satellite data as a target domain. The goal of the proposed method is to
leverage the representation power of adversarial learning to extract domain-invariant
features, consisting of a segmentation model, a feature extract model for target
domain, and a domain discriminator. In addition, aiming to remedy the discrepancy of
detection bands, a band mapping module is designed to implement consistency between
different bands. The result of the experiments demonstrated the effectiveness of the
proposed method with a 7% improvement compared with the comparative experiment.
We also designed a series of statistical experiments on different satellite data to further
study cloudy perception representation, including data visualization experiment and cloud
type statistics.

Keywords: marine cloud classification, unsupervised domain adaptation, deep learning, transfer learning, semantic
segmentation

INTRODUCTION

Multiple cloud recognition is an indispensable piece of technology in marine meteorological
science. The precise classification of marine cloud types has guiding significance in
meteorological disaster monitoring and prevention, weather forecasting, development of the
marine industry, and ecological environment monitoring (Astafurov and Skorokhodov., 2022).
For example, sea fog, which is a severe marine phenomenon that causes atmospheric visibility to
be less than 1 km, is composed of strato-cumulus and stratus clouds. There are more than
80 days of sea fog in China’s offshore waters every year, and 80% of the collision accidents
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between ships at sea each year are caused by sea fog. Therefore,
accurate cloud classification at sea is crucial.

In recent years, there have been many research methods for
cloud recognition based on meteorological satellites, such as the
Split-Window Algorithm (SWA) (Purbantoro et al., 2018), which
uses the 13-channel and 15-channel of the Himawari-8(H-8)
satellite to construct a two-dimensional scattergram of brightness
temperature and brightness temperature difference to
segment the visual image into regions representing
different cloud types. There is also a cloud classification
method based on multispectral bin classification (Anthis
and Cracknelll., 1999), which uses the remote sensing data
Advanced Very High-Resolution Radiometer (AVHRR) of
the third-generation practical meteorological observation
satellite National Oceanic and Atmospheric Administration
(NOAA) in the United States and the data of the European
Geostationary Meteorological Satellite to predict cloud types.
However, just as with the traditional cloud classification
methods, they require professional knowledge and complexity,
which significantly consumes the manpower of professional
meteorologists. In addition, despite the support of experts, it
still faces various problems such as inaccurate manual annotation
and poor performance in complex situations.

With the development of artificial intelligence, deep learning,
transfer learning, and other methods, these new techniques are
being widely used in a variety of image processing fields, such as
through convolutional networks extracting deep features from
data images, realizing cloud type identification after calculation,
and replacing manual classification. CloudFCN Net (Francis
et al., 2019), proposed in 2019, uses high-resolution satellite
data input into the segmentation network to extract multi-
scale features and detect whether clouds cover a two-class
segmentation method, but according to the cloud international
ten-category system, the UATnet (Wang et al., 2021a) proposed
in 2021 is more reasonable. This is based on the U-Net
segmentation network, wherein the meteorological satellite
cloud image pixel-level classification is realized, and channel
cross-entropy is introduced to guide multi-scale fusion, and it
has achieved good results. A cloud detection method (Liu et al.,
2021) based on deep learning proposed in 2021 has also achieved
good results. It uses the deep learning network architecture to
distinguish cloudy and non-cloudy areas with an accuracy rate of
95%, which is of great significance in applying deep learning in
cloud classification. However, when a new type of satellite is first
launched, the detailed pixel-level labels collected by the satellite
are tiny, and do not allow us to perform supervised segmentation
model training. In addition, different satellite types have great
differences in wavelength and observation bands (Zhang et al.,
2016), which makes it difficult for us to use existing models to
perform cloud classification prediction on the data monitored by
new satellites.

Unsupervised domain adaptation (UDA) acquires knowledge
from the annotated source domain and transfers it to the
unannotated target domain (Huang, 2021). In this way, it is
hoped that the classifier derived from the source can be adapted to
the target domain data (Long et al., 2019). This method is widely
used in medical images, road extraction, and other fields. For

marine cloud classification and identification, we can also use
UDA for transfer learning in the face of new satellite data. In
2021, the UDA method was proposed to use in sea fog detection
(Xu et al., 2022) by migrating land fog to sea fog data, and
achieved good results. However, when faced with different
satellites, there are often problems, such as different channels,
and there are differences in time and space between satellite data,
so it is hard to share the data knowledge, and so we cannot
directly use UDA for transfer learning between different satellites
(Tzeng et al., 2017).

We propose an unsupervised domain adaptation network
architecture for pixel-level maritime cloud species labeling on
satellites without human-annotated cloud classification labels
(Goodfellow et al., 2014). In this paper, the Himawari-8
satellite data are used with annotations defined as the source
domain and the Fengyun-4 satellite data without annotations
defined as the target domain. Through the same semantic
space shared by the two satellites, an adversarial learning
network consisting of a segmentation model, a target
domain feature extraction model, and a domain
discriminator is built. It solves the problems of the
difference in the number of channels between the two
satellites and the difference in the data distribution. On the
basis of learning the data distributions of the two domains,
domain-invariant features are extracted and then passed
through the discriminator to reduce the domain gap,
applying the semantic segmentation model of the source
domain to the target domain data. The final accuracy of our
paper experiment reaches 55.8%, realizing the identification of
marine cloud species on the target domain.

DATA

Himawari-8 is a geostationary meteorological satellite operated
by the Japan Meteorological Agency (JM) (Kotaro et al., 2016),
which was launched in 2014 and contains 16 detection bands:
3 visible channels, 3 near-infrared channels, 10 thermal-infrared
channels. The different detection bands have different
resolutions, and detection is performed every 10 min (Yi et al.,
2019). Due to its high-quality data and sophisticated cloud
classification (Suzue et al., 2016), the product is often used to
study the identification task of cloud classification at sea. Their
cloud classification is high resolution, has mature visual interface,
and cloud category classification in line with international cloud
classification methods. And the Fengyun-4 satellite is a
quantitative remote sensing meteorological satellite in
geostationary (Dong, 2016) orbit launched by China in recent
years. It contains 14 detection bands: 2 visible channels, 4 near-
infrared channels, 6 thermal-infrared channels, and 2 water vapor
channels. Detection is performed every 15 min (Lu et al., 2017),
and their cloud classification is low resolution, has relatively
simple products, and special classification of cloud categories,
shown in Table 1. We can classify clouds into ten types through
satellite data: clear, cirrus, cirro-stratus and etc. In our study,
since the Himawari-8 satellite contains pixel-level labels are
manually labelled, it is used as the source domain, and the
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Fengyun satellite does not have pixel-level labels, so it is used as
the target domain data.

We mainly focus on parts of the Yellow Sea and the Bohai Sea
(Cao et al., 2012), which are rich in cloud types and have various
types of maritime weather, which are quite representative. The
longitude is in the range of 116°E to 141.6°E, and the latitude is in
the range of 19.4°N-45°N. The time is focused on 23:00–9:30 UTC
(local time 7:00–17:30) on selected dates from January to June in
2020. Because the visible channel data of the satellite is not
available at night, we only consider the marine cloud
classification in the daytime in this experiment. For example,
Figure 1A shows a satellite image collected on 6 February 2020 at
05:00 UTC (08:00 Beijing Standard Time), and a color image is
synthesized using the visible light channels. Since the
discrimination of cloud types is closely related to the visible
light channel, near-infrared channel, thermal-infrared channel,
and other data, our experimental data use range is the total
channels, that is, the 16 channels of the Himawari-8 satellite and
the 14 channels of the Fengyun satellite. For example, Figure 1B

shows grayscale images of 16 channels of Himawari-8, and
Figure 1C shows grayscale images of 14 channels of Fengyun-4.

At the beginning of the experiment, we first obtained the
collected satellite images’ data. Because the collection area of
satellite images is not uniform, we first cropped the satellite data
in NumPy format, aligned it to some areas of the Yellow Sea and
the Bo Sea, and uniformly scaled it to 512 × 512 resolution. In
addition to this, we temporally aligned the satellite data, collecting
data half an hour apart. The training set and the validation set of
the data are randomly classified according to the ratio of 4:1 to
ensure the randomness and reliability of the data samples. For the
specific data, please refer to Table 2.

MATERIALS AND METHODS

In order to complete the unsupervised domain adaptation
between the target domain and the source domain, we design
the following network to consist of three modules: the source

TABLE 1 | Satellite data comparison.

Himawari-8 Fengyun-4A

Channels 16 channels 14 channels
3 Visible; 3 Near-infrared 2 Visible; 4 Near-infrared
10 Thermal infrared 6 Thermal infrared; 2 Water vapor

Resolution Visible light channel 0.5–1 km Visible/Near infrared channels 0.5–1 km
Near infrared channel 1–2 km Infrared channel 2–4 km
Infrared channel 2 km

Observation Frequency 10 min 15 min

FIGURE 1 | (A)Red-Green-Blue image generated from Himawari-8 satellite data, GT images, and the types of cloud on 6 February 2020 at 05:00 UTC (08:
00 Beijing Standard Time) (B) Gray-scale images of Himawari-8 formed by one channel of remote sensing data, in range of H01 to H16 (C) Gray-scale images of
Fengyun-4 formed by one channel of remote sensing data, in range of F01 to F14.
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domain segmentation model, the target domain feature extractor,
and the domain discriminator. The feature extractor aims to
extract domain-invariant features, and the discriminator aims to
correctly distinguish the source of the input segmentation mask.
We utilize the adversarial relationship between the feature
extractor and the domain discriminator to optimize the two
modules until the extractor can output an eligible
segmentation mask. In addition, we design an encoder when
the model is input to solve the problem of satellite data channel
difference. The entire network is constructed of multiple
convolutional layers, aiming to extract the deep features of
satellite data, and obtain the optimal weight of each layer of
the network through loss gradient descent. The adversarial
update of the segmentation model/feature extraction model
between the discriminator will continuously reduce the
domain gap between the target domain and the source
domain, and realize that multiple marine cloud type can be
autonomously identified through our network. The
architecture of network model is shown in Figure 2.

In the early stage of training, we input the source domain data
above the model and the target domain data below the model.
After entering their respective encoders, they are calculated in the
shared weight segmentation/feature extraction network and
constrained by the segmentation loss. Then, the output
predicted images are fed into the discriminator one by one,
and the adversarial loss is passed back. Finally, by the
constraint on the loss, we will get the predicted images.

Source Domain Segmentation Model/
Target Domain Feature Extractor
The segmentation model of the source domain and the feature
extraction model of the target domain are based on the idea of
VecNet (Wang et al., 2021b): multiple 1 × 1 convolutional layers
are used to extract deep spectral features cross-bands. In addition,
the pooling layer is used to continuously down-sample, and
among them, each Basic Block contains a convolutional layer,
a Batch Normalization layer (BN), and an activation layer. Also,
we used the Squeeze-and-Excitation (SE) layer to assign
appropriate weights to different channels. After the down-
sampling, data will pass to the semantic pyramid module
(SPM) and be up-sampled to revert to the original resolution
size, as shown in Figure 3. Among them, we use skip connections
(Ronneberger et al., 2015) to facilitate the fusion of features of
different depths. The loss Lseg of our model is defined using the
sum of the bootstrap cross-entropy loss LossBootStrappedCE and
LossDice.

The SPM module adopts four different branches, aiming to
complete the integration of multi-scale features and achieve the
fusion of semantics and details. The down-sampled in-depth
features are taken as input and composed of dilated
convolutions (Wang et al., 2018) with different dilation rates.
Finally, the local features are re-weighted (He et al., 2015) by
cloud type prediction to minimize the loss for each cloud type.

The source domain segmentation model shares the weights
obtained by training with the feature extractionmodel, and inputs

TABLE 2 | Details of experimental data.

Data Latitude and
longitude

Resolution Channels Time allocation Data quantity
for training

Data quantity
for validating

Himawari-8 116–141.6E 512×512 16 Time interval 1728 430
19.4–45N 30 min

Fengyun-4 116–141.6E 512×512 14 Time interval 1524 None
19.4–45N 30 min

Mask Latitude and
longitude

Resolution Channels Time interval 30 min Data quantity
for training

Data quantity
for validating

Himawari-8 116–141.6E 512×512 1 Time interval 1728 430
19.4–45N 30 min

FIGURE 2 | Architecture of network model.
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the segmentation masks to the domain discriminator for
judgment. In addition, due to the difference in the number of
channels between the source and target domains, we designed an
encoder to unify the dimensions.

Discriminator
In order to reduce the domain gap between the source domain
and the target domain, the discriminator we designed is
continuously trained with the segmentation masks output by
the segmentation model/feature extraction model, in order to
distinguish the correct source of the segmentation mask. In the
traditional discriminator, the discriminator maps the input to an
actual number, that is, the probability that the sample is true, and
the only output is the evaluation value of the whole image. Due to

the high resolution of our samples, the evaluation value of the
whole image cannot be used as the loss indicator, so in the design
of our model, we use PatchGAN (Isola et al., 2016) to complete
the design of the discriminator.

Our discriminator network consists of multiple convolutional
layers and activation functions, and outputs a 16 × 16 matrix;
each point in the matrix is the evaluation value of a small area in
the input image, that is, part of the receptive field in the image.
Finally, the average of the entire Patch is the final output of the
discriminator. This is shown in Figure 4. In this way, we can take
into account the influence of different parts in the input image,
making the output more convincing. Final discriminator network
is continuously updated iteratively and is constrained by the
adversarial loss Ladv (Yi et al., 2017).

FIGURE 3 | (A)Architecture of Segmentation Model/Feature Extractor (B)Architecture of semantic pyramid module (SPM) (C)Architecture of Point-wise Guided
Attention Module (PAM).

FIGURE 4 | Architecture of discriminator.
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Design of Loss
During the training process, we use the segmentation loss LossSeg
to constrain the effect of segmentation training (Shrivastava et al.,
2016), which is designed as follows:

LossSeg � LossDice + LossCE

Among them, LossDice is a function that relies on the dice
coefficient, and the dice coefficient is a set similarity measurement
function used to calculate the similarity of two sample points. If
the dice coefficient is larger, the set is more similar and the loss is
smaller. Where yin is the ground truth in c class, ŷin is the
predicted mask output by segmentation network, and C is the
quantity of the all cloud class.

LossDice � 1 − ∑
C

c�1

2∑I
i�1yinŷin

C(∑I
i�1yin +∑I

i�1ŷin)
Among them, LossCE is the cross-entropy loss, which mainly

measures the similarity of the two distributions. The more similar
the distributions, the smaller the cross-entropy loss.

LossCE � − 1
C
∑
C

c�1
∑
I

i�1
yin logŷin

In addition, to mitigate the effect of domain migration and
reduce the domain gap, it should be necessary to maximize
domain confusion. We also use the adversarial loss Ladv to
constrain the domain adaptation, where D(X) means the
discriminator’s output, Ms(ŷs

i ) means the collection of source

domain segmentation model outputs, and Mt(ŷt
i ) means the

collection of target domain feature extractor model outputs,
designed as
follows:
Ladv � − 1

ns
∑ns
s�1

(lnD(Ms(ŷs
i ))) − 1

nt
∑nt
t�1
(1 − lnD(Mt(ŷt

i )))

EXPERIMENT RESULTS

In our experiment, we used mean intersection-over-union ratio (miou)
and all accuracy (allAcc) as metrics. For our multi-classification
problem, it is not objective to use mean accuracy, because in a
certain area, the distribution of various cloud categories is not
balanced, and the overall accuracy design is as follows, where pii is
the predicted probability of a certain cloud class, num is the quantity of
the cloud class, and C is the quantity of the overall cloud class.

Accall � ∑
C

c�1

pii × numc

C

In addition, we introduced mean intersection-over-union
ratio (miou) as a secondary evaluation metric, where i is true
value, j is predicted value, and pij means predict i as j. Through
that, we can calculate the miou, designed as follows:

mIOU � 1
C
∑
C

i�0

pii

∑C
j�0pij + ∑C

j�0pji − pii

Also, we use stochastic gradient descent (SGD) as the
optimizer; it is used to optimize a differentiable objective

FIGURE 5 | Satellite data distribution maps-3D (Left: Source domain and target domain original data; Right: Source and target domain data after passing through
the unsupervised model).

TABLE 3 | Results of experiment.

Class 0 1 2 3 4 5 6 7 8 9 m-Acc All-Acc

Fengyun-4 Fully Supervised Segmentation 89.3 49.1 70.1 73.8 33.4 53.0 63.8 42.0 62.1 54.2 66.5 72.9
Fengyun-4 UDA By Med-CMDA 32.1 31.7 48.2 15.1 25.6 47.3 32.4 10.2 24.9 40.4 30.8 48.7
Fengyun-4 UDA By Ours 67.7 34.1 50.9 38.2 14.7 28.9 31.7 15.7 38.7 28.2 48.3 55.8
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function. The method iteratively updates the weights and bias
terms by computing the gradient of the loss function over mini-
batches of data. Our optimizer’s weight decay is 1e-4, momentum
and power set as 0.9, and lrbase set as 1e-2.

lr � lrbase × (1 − iter

total iter
)
power

In our experiments, we use t-SNE (t-distributed Stochastic
Neighbor Embedding) (Laurens and Hinton, 2016) to complete a
set of visualization experiments. This model can realize the
mapping of data from high-dimensional space to low-

dimensional space without changing the local characteristics
of the data. Our Himawari-8 satellite data has 16 channels and
Fengyun satellite data has 14 channels; by comparing the
original satellite data and the output of the adversarial
domain adaptation model, we can observe that under the
action of the UDA model, the domain gap between the two
satellites has been significantly reduced, as shown in Figure 5.
This experiment demonstrates the necessity of our UDA model
to address domain adaptation.

After 80 epochs of training, we can obtain the accuracy of each
cloud type through adversarial training and full supervision

FIGURE 6 | Results of visualization.
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training by Fengyun-4 Satellite. It can be observed that,
through domain adaptation methods, the accuracy is close
to the Fengyun-4 labelled segmentation training, showing
promising results. And the experimental results are
significantly improved compared to the Med-CMDA
method (Dou et al., 2018). The All-Acc of the UDA
training of Fengyun Satellite can reach 55.8%. Among
them, the prediction accuracy rate is higher in the cloud-
free environment, and for cloud types such as alto-cumulus
and cumulus, due to the lack of training data, the training
results are poor. But, overall, it met expectations for
unsupervised training. Refer to Table 3.

We showed the comparison results in the figure, where the cloud
classification is shown in the graph on the right.We can see thatmarine
cloud recognition can achieve good results under the supervised
segmentation networks. Under unsupervised training without mask,
although the complex edge and independent pixel-point distinction
cannot be as accurate as supervised training, it can basically complete
the cloud classification task on the target domain. For example, with
deep convection at 2020–0502 08:00, the training results are not as good
as fully supervised training due to the complex details and features,
solving the problem of no mask in the target domain.

In addition, we carried out comparative experiments with
reference to the Med-CMDAmodel architecture, which is mainly
an unsupervised domain adaptation model for medical images.
Referring to the visualization results in the third column of the
figure, we can clearly find that, due to the large receptive field and
strong aggregation of this model, the satellite cloud classification
prediction cannot show better results in pixel-level classification.

The figure below shows that the first column on the left is a
pseudo-color image synthesized by channels 1, 2, and 3 of the
Satellite. Because of the complexity of the image, it is difficult to
judge the classification of cloud types directly. The second
column is an image manually marked by meteorologists. The
black part is the coastline and land. The fourth column is the
supervised training result using Fengyun satellite data and label,
and the fifth column is the training result using Himawari-8
satellite and Fengyun satellite data when there is no label. For
details, please refer to Figure 6.

We can see that in the first row of test results, the cloud types
marked in the yellow box have obvious stratus cloud types in the
GT image, which do not perform well in the training of fully
supervised segmentation models, but their cloud category can be
accurately predicted in our UDA method, for specific details, see
Details-1. But in the test results in the fourth row, the cloud species
marked in the green box, the scattered stratus, and alto-stratus in
the GT image, our UDA method is not as accurate as the fully
supervised segmentation model, for specific details, see details-2.

CONCLUSION

In our paper, we proposed an algorithm for classification of
marine cloud types based on unsupervised domain adaptation
methods. At present, multi-cloud recognition based on
satellites has been a common technical means, has been

used frequently in various applications, and has had an
important guiding significance for various human activities
on the sea. Our research aimed to discover how to transfer and
apply the experience and knowledge acquired from a more
mature satellite to another satellite through unsupervised
learning, to solve the problem of data differences due to
different detection bands and the number of detection channels
when facing new satellites, new fields, and new data. Our network
model consists of a segmentation model, a target domain feature
extraction model, and a domain discriminator. Based on learning
the data distribution of the two domains and extracting domain-
invariant features, the domain differences are reduced in the high-
level semantic feature space, thereby realizing unsupervised multi-
cloud recognition on unlabeled satellites. In addition, we first
propose to use two encoders to solve the problem of channel
difference between satellites. After iterative training, All-Acc can
reach 55.8% without cloud classification labels. The results show
that our network model reduces the time and manpower required
by professional meteorologists to complete the labeling and is very
effective for marine cloud classification prediction without masks.
In the future, we will work on optimizing the model architecture,
tuning the parameters to optimize the accuracy, and hope to
perform diverse tests with other satellite data.
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