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The frequent occurrence of drought events in recent years has caused

significant changes in plant biodiversity. Understanding vegetation dynamics

and their responses to climate change is of great significance to reveal the

behaviourmechanismof terrestrial ecosystems. In this study, NDVI and SIF were

used to evaluate the dynamic changes of vegetation in the Pearl River Basin

(PRB). The relationship between vegetation and meteorological drought in the

PRB was evaluated from both linear and nonlinear perspectives, and the

difference of vegetation response to meteorological drought in different

land types was revealed. Cross wavelet analysis was used to explore the

teleconnection factors (e.g., large-scale climate patterns and solar activity)

that may affect the relationship between meteorological drought and

vegetation dynamics. The results show that 1) from 2001 to 2019, the

vegetation cover and photosynthetic capacity of the PRB both showed

increasing trends, with changing rates of 0.055/10a and 0.036/10a,

respectively; 2) compared with NDVI, the relationship between SIF and

meteorological drought was closer; 3) the vegetation response time (VRT)

obtained based on NDVI was mainly 4–5 months, which was slightly longer

than that based on SIF (mainly 3–4months); 4) the VRT of woody vegetation

(mainly 3–4months) was longer than that of herbaceous vegetation (mainly

4–5 months); and 5) vegetation had significant positive correlations with the El

Niño Southern Oscillation (ENSO) and sunspots but a significant negative

correlation with the Pacific Decadal Oscillation (PDO). Compared with

sunspots, the ENSO and the PDO were more closely related to the response

relationship betweenmeteorological drought and vegetation. The outcomes of

this study can help reveal the relationship between vegetation dynamics and

climate change under the background of global warming and provide a new

perspective for studying the relationship between drought and vegetation.

OPEN ACCESS

EDITED BY

Qiang Liu,
Beijing Normal University, China

REVIEWED BY

Pengnian Huang,
Nanjing University of Information
Science and Technology, China
Baoqing Zhang,
Lanzhou University, China

*CORRESPONDENCE

Haiyun Shi,
shihy@sustech.edu.cn

SPECIALTY SECTION

This article was submitted to
Hydrosphere,
a section of the journal
Frontiers in Earth Science

RECEIVED 26 May 2022
ACCEPTED 11 July 2022
PUBLISHED 11 August 2022

CITATION

Zhou Z, Ding Y, Fu Q, Wang C, Wang Y,
Cai H, Liu S and Shi H (2022),
Comprehensive evaluation of
vegetation responses to meteorological
drought from both linear and
nonlinear perspectives.
Front. Earth Sci. 10:953805.
doi: 10.3389/feart.2022.953805

COPYRIGHT

© 2022 Zhou, Ding, Fu, Wang, Wang,
Cai, Liu and Shi. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 11 August 2022
DOI 10.3389/feart.2022.953805

https://www.frontiersin.org/articles/10.3389/feart.2022.953805/full
https://www.frontiersin.org/articles/10.3389/feart.2022.953805/full
https://www.frontiersin.org/articles/10.3389/feart.2022.953805/full
https://www.frontiersin.org/articles/10.3389/feart.2022.953805/full
https://www.frontiersin.org/articles/10.3389/feart.2022.953805/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.953805&domain=pdf&date_stamp=2022-08-11
mailto:shihy@sustech.edu.cn
https://doi.org/10.3389/feart.2022.953805
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.953805


KEYWORDS

meteorological drought, normalized difference vegetation index, solar-induced
chlorophyll fluorescence, vegetation response time, linear, nonlinear

1 Introduction

In the context of global warming, the frequency and intensity

of droughts will increase (Wang et al., 2021). In many parts of an

increasingly globalized world, drought can have devastating

agricultural, environmental, and socio-economic impacts (Shi

H.Y. et al., 2018; Zhou et al., 2020a; Xu et al., 2020). Therefore,

monitoring the impacts of drought on vegetation health will be

increasingly important for agricultural production, ecological

restoration and water resource planning and management.

Drought is very difficult to observe, and the definition of

drought is inconsistent due to different application needs. In

general, drought can be divided into four types,

i.e., meteorological drought, hydrological drought, agricultural

drought, and socio-economic drought (Zhou et al., 2021a).

Meteorological drought is usually defined as a long-term

shortage of precipitation in an area. Since it is difficult to

monitor the onset and termination of drought, many scholars

have developed drought indices to evaluate drought

characteristics. For example, Shahabfar and Eitzinger (2013)

evaluated the temporal and spatial changes in meteorological

drought in Iran by using six meteorological drought indices.

Rahmat et al. (2015) evaluated meteorological drought

characteristics in Australia by using the standardized

precipitation index (SPI) and the reconnaissance drought

index (RDI). Fu et al. (2018) evaluated the spatiotemporal

variation characteristics of meteorological drought in

Northeast China by using the SPI. Zhou et al. (2020a) used

the standardized precipitation evapotranspiration index (SPEI)

to evaluate the relationship between meteorological drought

characteristics and maize yield in Northeast China.

Understanding how vegetation responds to drought is a

challenge because the effects of drought on vegetation growth

are not immediate and linear. Normally, the time required for

vegetation to respond to drought is called the vegetation response

time (VRT). Previous studies have shown that there is a lag in the

response between vegetation and drought (Jiao et al., 2019; Zhao

et al., 2020; Zhong et al., 2021). In addition, many studies have

demonstrated that there is a nonlinear relationship between

drought and vegetation. For instance, Hu et al. (2021) studied

the nonlinear changes in climate change, vegetation growth and

the coupling between vegetation growth and precipitation during

1982–2015 and showed that the nonlinear response between

vegetation and drought became more obvious with the

aggravation of drought. Xu et al. (2021) found that differences

in vegetation types and their adaptation and vulnerability to

drought led to nonlinear responses of vegetation to drought. Ji

et al. (2021) found that there was an obvious nonlinear response

between the vegetation growing season and drought. Although

previous studies on drought have shown the effectiveness of

satellite data, they still have inherent limitations in drought

monitoring and assessment. Reflectance-based vegetation

indices, e.g., the normalized difference vegetation index

(NDVI) and the enhanced vegetation index (EVI), have been

widely used in dynamic vegetation monitoring (Zhao et al., 2020;

Zhou et al., 2020b; De Souza et al., 2022; Li et al., 2022; Yang et al.,

2022). When water stress occurs, the spectral characteristics of

the vegetation canopy do not change immediately, so the

response of vegetation to drought is obviously delayed

(Dobrowski et al., 2005). Solar-induced chlorophyll

fluorescence (SIF) is different from the traditional vegetation

reflectance index and provides an alternative method for global

vegetation spatial monitoring. SIF is directly related to

photosynthesis of vegetation and may reflect the rapid change

in canopy water stress. Recent studies have successfully extracted

high-precision global time series of SIF from satellite

observations (Li and Xiao, 2019).

The Pearl River Basin (PRB), which is of great significance for

socio-economic development of China, has become the major

source of carbon dioxide emissions in China (Zhang et al., 2015).

As the PRB is located in a humid area, it has a complex vegetation

ecosystem, which is of great significance for local biological

carbon sequestration to partially offset fossil fuel emissions

(Zhou and Zhou, 2021). However, Deng et al. (2018) showed

that both drought frequency and severity increased in the PRB,

which might weaken the absorption of carbon by vegetation.

Therefore, this study evaluated the vegetation changes in the PRB

based on NDVI and SIF and assessed the responses of vegetation

to meteorological drought from both linear and nonlinear

perspectives. The differences in the two indices (NDVI and

SIF) in evaluating the relationship between drought and

vegetation were compared. Moreover, this study analysed the

teleconnection factors that might influence the response

relationship between meteorological drought and vegetation.

The objectives of this study are to 1) evaluate the dynamic

changes in vegetation in the PRB, 2) evaluate the VRT of

different vegetation types from both linear and nonlinear

perspectives, 3) explore the differences between SIF and

NDVI responses to meteorological drought and 4) explore the

factors that may influence the relationship between vegetation

and drought. The outcomes of this study can help reveal the

relationship between vegetation dynamics and climate change

under the background of global warming and provide a new

perspective for studying the relationship between drought and

vegetation. In addition, studying the responses of vegetation to

drought at different time scales can aid in identifying ecosystems

that are vulnerable to meteorological drought, which can provide

a basis for drought mitigation and land planning.
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2 Study area and data sources

2.1 Study area

The PRB is located in the tropical and subtropical climate

zone of South China (Figure 1). The PRB is the third largest river

basin in terms of drainage area and the second largest river in

terms of streamflow in China. Water resources in the PRB are

relatively abundant. However, precipitation is unevenly

distributed in both space and time, which is mainly

distributed in the wet season (i.e., from April to September)

and accounts for about 80% of the annual total. Therefore,

drought and flood events occur frequently in the PRB. The

land cover types in the PRB mainly include evergreen

broadleaf forest (EBF), mixed forest (MF), cropland (CP) and

woody savannas (WS) (see Figure 1).

2.2 Data sources

The precipitation data (2001–2019) used to calculate the SPI

are derived from the ERA-5 Land Reanalysis Dataset provided by

the European Center for Medium Range Weather Forecasts

(ECMWF), with a spatial resolution of 0.1° and a temporal

resolution of 1°month. Several studies have evaluated the

applicability of ERA-5 Land Reanalysis precipitation data in

China. Jiang et al. (2021) compared the ERA-5 reanalysis

precipitation data and the precipitation data of satellites and

observation stations in mainland China. They found that the

spatial patterns of annual precipitation were consistent with the

gauge observations, and ERA-5 reanalysis precipitation data

performs better than other satellites products (e.g., Tropical

Rainfall Measurement Mission and Climate Prediction Center

Morphing technique bias-corrected product). Xu et al. (2022)

showed that the spatial patterns of annual precipitation of ERA-

5-Land and ERA-5 in mainland China were similar, but their

statistical indicators (e.g., correlation coefficient, root mean

square error, probability of detection, and false alarm ratio) of

ERA-5-Land reanalysis precipitation data were superior to ERA-

5. Xin et al. (2021) explored the applicability of ERA-5-Land

reanalysis data in the Greater Bay Area based on precipitation,

and the results showed that ERA-5-Land reanalysis precipitation

data could better describe the spatial distribution and temporal

variation trend of monthly precipitation. Zhang et al. (2021)

showed that although ERA-5 reanalysis precipitation data

overestimated precipitation, it had high simulation accuracy in

the monitoring of drought and heat wave events in South China.

Zhou et al. (2021a) showed that the meteorological drought

events based on ERA-5-Land reanalysis precipitation data

were basically consistent with the historical observed drought

events, and could well represent the drought events in the PRB.

Therefore, ERA-5-Land reanalysis precipitation data was selected

in this study.

Both the NDVI and land use data were derived from the

Model Resolution Imaging Spectroradiometer (MODIS). The

NDVI product (MOD13C2) has a spatial resolution of 0.05°

and a temporal resolution of 1 month, while the land cover type

product (MCD12C1) has a spatial resolution of 0.05°. In this

study, the MCD12C1 product in 2019 was selected to classify

different land use types without considering the land cover

change during the study period. Combining the Orbiting

Carbon Observatory (OCO-2) SIF with machine learning and

other higher resolution data, Li and Xiao (2019) constructed the

global OCO-2 SIF (GOSIF) dataset. For this dataset, the spatial

resolution is 0.05°, and the time resolution is 1 month. To match

data with different spatial resolutions, this study resampled both

the NDVI and SIF to 0.1°. The 0.1° land cover data were derived

from the 0.05° land cover map based on the main land cover types

in the 0.05° pixels in each 0.1° grid cell (Zhou et al., 2022).

Moreover, this study analysed the effects of large-scale

circulation patterns and solar activity on vegetation in the

PRB. The monthly El Niño Southern Oscillation (ENSO) and

the Pacific Decadal Oscillation (PDO) data are provided by the

National Oceanic and Atmospheric Administration. The

monthly sunspot data are provided by the International

Council of Scientific Unions (ICSU) world data system (WDS).

3 Methodology

3.1 Drought indices

In recent decades, an increasing number of drought

indicators have been developed to meet different application

needs. This study chose the SPI to represent meteorological

drought. The SPI is a widely used drought index

FIGURE 1
The land cover types of the Pearl River Basin (PRB) in China.
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recommended by the World Meteorological Organization. It is

widely used in drought monitoring and impact assessment (Fu

et al., 2018; Fang et al., 2020; Shi et al., 2022). The main

advantages of SPI include low data requirements, simple

calculation, time and space comparability and multi scalar

characteristics, which can study the impacts of drought at

different time scales (Patel et al., 2007; Fang et al., 2019, 2020;

Zhou et al., 2021a). The main purpose of this study is to explore

the relationship between meteorological drought and vegetation.

Drought indices at multiple time scales are useful for evaluating

vegetation responses to short-, medium-, and long-term drought.

Therefore, the SPI was chosen to represent meteorological

drought in this study. The SPI series over cumulation periods

varying from 1 to 12°months were calculated to access the

vegetation responses to meteorological drought. For the

specific calculation process, please refer to McKee et al. (1993)

and Fu et al. (2018).

3.2 Trend analysis method

In this study, Mann-Kendall trend analysis method and

Sen’s slope method were used to analyze the changes of

vegetation. These two methods are usually used together to

evaluate the variation characteristics of hydrometeorological

time series (Fu et al., 2018; Zhou et al., 2020a; Zhou et al.,

2021a). Mann-Kendall trend analysis method can be used to

evaluate the change trend and significance of time series, and

Sen’s slope method is usually used to evaluate the change

magnitude of time series. The specific calculation process of

SPI can be found in the studies of Fu et al. (2018).

3.3 Pearson correlation coefficient(PCC)

The PCC has been widely used to test the linear correlation

between two random variables. The use of the PCC requires the

basic assumption that the random variables under investigation

are linearly dependent. In this study, the PCC was used to

calculate the correlation coefficients between meteorological

drought (SPI1-SPI12) and vegetation (NDVI and SIF). The

specific calculation process is shown as follows:

RN,i � corr(NDVI, SPIi), i� 1, 2, . . . , 12 (1)
RS,i � corr(SIF, SPIi), i� 1, 2, . . . , 12 (2)

where RN,i and RS,i represent the PCC between NDVI/SIF and

SPI, i is the accumulated time from one-month to twelve-month

SPI (SPI1-SPI12). The time scale of meteorological drought (e.g.,

i) corresponding to the maximum PCC (MPCC) was considered

as the VRT.

MPCCN � max {RN,i}, i� 1, 2, . . . , 12 (3)
MPCCS � max {RS,i}, i� 1, 2, . . . , 12 (4)

3.4 Directed information transfer index

The assumption of linear correlation is often challenged in

hydrological systems. Due to the effects of climate change and

human activities, there is not only a linear relationship but also a

nonlinear relationship between vegetation and meteorological

drought (Papagiannopoulou et al., 2017; Hu et al., 2021).

Ignoring the nonlinear relationship between meteorological

drought and vegetation may not obtain the accurate VRT.

The limitations of linear correlation analysis have driven the

development of another dependency measure. Mutual

information is an important method in information theory

and is commonly used to test the nonlinear relationship

between two sequences (Shi B. et al., 2018; Fang et al., 2020).

The DITI is used to represent the directional information transfer

quantity of a specific information source by information entropy

based on mutual information and is used to characterize the

relationship between the information source and information

function points (Zhou et al., 2021b). In this study, meteorological

drought and vegetation change were taken as the information

source and the information function point, respectively. The

accumulation period of the SPI corresponding to the maximum

value of the DITI is taken as the VRT from a nonlinear

perspective.

For two time series X and Y, their domain of definition is S.

The information entropy of X and Y can be defined as follows:

H(X) � −∑
n

i�1
fX(x)logfX(x) (5)

H(Y) � −∑
n

i�1
fY(y)logfY(y) (6)

where fX(x) and fY(y) are the marginal distributions of X and Y,

respectively.

Mutual information (MI) can be defined as follows:

I(X;Y) � ∫∫
S
fX,Y(x, y)log fX,Y(x, y)

fX(x)fY(y)dxdy (7)

where fX,Y (x, y) is the joint distribution of X and Y.

Therefore, the DITI from information source X to

information function point Y can be defined as follows:

DITI(X;Y) � I(X;Y)
H(Y) (8)

3.5 Cross wavelet transform

XWT is an effective tool to study the correlation between two

correlation time series. It combines wavelet transform and cross

spectrum analysis, which can show the correlation between two

time series in the time domain (Han et al., 2019; Zhou et al.,

2021a). In this study, XWT is used to analyse the relationship

Frontiers in Earth Science frontiersin.org04

Zhou et al. 10.3389/feart.2022.953805

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.953805


FIGURE 2
The changing characteristics of meteorological drought (SPI1-SPI12) in the PRB.

FIGURE 3
Spatial distributions of annual mean (A) NDVI and (B) SIF and trend in (C) NDVI and (D) SIF in the PRB from 2001 to 2019.
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between vegetation and drought. Moreover, XWT is also used to

explore the relationship between large-scale climatic patterns

(ENSO and PDO) and solar activity (sunspot) and vegetation.

For two time series x(t) and y(t), the cross wavelet power

spectrum can be defined as follows:

WXY(a, τ) � CX(a, τ)Cp
Y(a, τ) (9)

where CX(a, τ) is the wavelet transform coefficient of x(t) and

Cp
Y(a, τ) is the complex conjugate of the wavelet transform

coefficient of y(t). The codes are available at https://noc.ac.uk/

using-science/crosswaveletwavelet-coherence.

4 Results

4.1 Spatiotemporal variations in
meteorological drought and vegetation

Figure 2 shows the variation characteristics of meteorological

drought at different time scales. Known from Figure 2, severe

drought events occurred in 2004, 2007, 2009, and 2011. Drought

statistics of the Pearl River Water Resources Commission

(https://www.pearlwater.gov.cn/xxcx/szygg) showed that, in

2003, 2004, 2007, 2009, and 2010, severe drought events

occurred in the PRB, and our research results are basically

consistent with them.

Figures 3A,B shows the spatial distributions of the annual

mean NDVI and SIF in the PRB from 2001 to 2019. The spatial

distribution characteristics of vegetation cover and

photosynthetic capacity in the PRB were similar, with low

spatial characteristics in the west and high spatial

characteristics in the east. The western PRB has a higher

elevation and is dominated by karst topography. Compared

with the central and eastern plain regions, the vegetation

coverage and photosynthetic capacity were lower. In

particular, compared with the vegetation coverage and

photosynthetic capacity in the western PRB, the vegetation

coverage and photosynthetic capacity in the Guangdong-Hong

Kong-Macao Greater Bay Area were lower, which may be due to

the rapid economic development, rapid urbanization and human

activities affecting the change in vegetation. Figures 3C,D shows

the spatial distributions of the trend of NDVI and SIF in the PRB

from 2001 to 2019 after performing a 95% significance test.

Known from Figure 3A that the change trend of NDVI in the

middle of the PRB was relatively large, and only 4.6% of the

regions do not exceed the significance test. In the regions

exceeding the significance test, the NDVI of 99.87% of the

PRB showed an increasing trend, and that of 0.13% of the

PRB showed a decreasing trend. The maximum and

minimum trends were 15.9*10–3/yr and −4.8*10–3/yr,

respectively. For the trend of SIF, only 2.2% of the regions do

not exceed the significance test. In the regions exceeding the

significance test, the SIF of 99.85% of the PRB showed an

increasing trend, and that of 0.15% of the PRB showed a

decreasing trend. The maximum and minimum trends were

8.6*10–3/yr and −2.7*10–3/yr, respectively.

Figure 4 shows the trends of annual vegetation cover and

photosynthetic capacity in the PRB from 2001 to 2019. As shown

in Figure 4, the NDVI showed a slow increasing trend from

2001 to 2019, with a change rate of 0.055/10a. The maximum

NDVI value (0.69) appeared in 2017, the minimum NDVI value

(0.60) appeared in 2004, and the annual average value of NDVI

was 0.64. The SIF also showed a slow increasing trend from

2001 to 2019, with a change rate of 0.036/10a. The maximum SIF

value (0.26) appeared in 2017, the minimum SIF value (0.19)

appeared in 2004, and the annual average value of SIF was 0.22.

In general, the vegetation cover and photosynthetic capacity of

the PRB showed an increasing trend from 2001 to 2019.

It is worth noting that both NDVI and SIF have shown

increasing trends since 2011. Due to the severe drought events in

2009 and 2011, the annual precipitation was less than 1,200 mm,

so the continuous recovery of precipitation since 2011 led to the

rapid growth of vegetation. However, the increase of NDVI was

much larger than that of SIF, which might be caused by the

seasonal characteristics of NDVI and SIF. Solar radiation has

obvious seasonal characteristics, increasing in spring and

summer and decreasing in autumn and winter. SIF represents

the photosynthetic capacity of vegetation, and thus, is closely

related to solar radiation (Ma et al., 2020) and also has similar

seasonal characteristics (Liu et al., 2019; Wu et al., 2021). The

study of Jeong et al. (2017) showed that the phenological time

determined based on NDVI was longer than that based on SIF,

and the change of vegetation greenness may be decoupled from

seasonality. Xie et al. (2016) showed that the air temperature in

the PRB showed an increasing trend. The increase of temperature

in winter and spring will lead to an earlier onset of greenness,

while the increase of temperature in autumn will delay the

decrease of greenness (Jeong et al., 2011). This may result in a

FIGURE 4
Trends in annual vegetation cover and photosynthetic
capacity in the PRB from 2001 to 2019.
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high level of vegetation greenness variation in the inter-annual

variation. Therefore, the increase of NDVI was greater than that

of SIF.

4.2 Spatial distribution of the
meteorological drought-vegetation
correlation

To explore the response of vegetation dynamic changes to

meteorological drought, the PCC and the DITI were used to

determine the response relationship and VRT from linear and

nonlinear perspectives, respectively. The values of the PCC and

the DITI between the NDVI or SIF and the SPI at different scales

were calculated. The time scale corresponding to the maximum

SPI-NDVI and SPI-SIF relationship characteristics was defined

as the VRT. Figure 5 shows the spatial distribution of the MPCC

and DITI and the corresponding VRT based on the NDVI.

As shown in Figure 5A, there was a close relationship

between meteorological drought and the NDVI in the PRB,

with the MPCC ranging from 0.41 to 0.94 and passing the

significance test at 95%. The MPCC was larger in the western

PRB. The spatial distribution characteristics of VRT were similar

from the linear perspective (Figure 5C). The VRT was larger in

the middle of the PRB and decreased from the middle of the PRB

to other directions. The VRT based on the NDVI from linear

perspectives ranged from 2 to 8 months, and the VRT in most

(93.2%) areas ranged from 4 to 6 months, accounting for 36.5%

(4 months), 40.4% (5 months) and 16.3% (6 months),

respectively. As shown in Figure 5B, there was also a close

nonlinear relationship between meteorological drought and

the NDVI in the PRB, with the DITI ranging from 0.83–0.90.

Figure 5D shows that the VRT determined from nonlinear

perspectives was relatively discrete, among which the VRT at

1 month accounted for the largest proportion (17.17%).

Figure 6 shows the spatial distribution of the MPCC and the

DITI and the corresponding VRT based on SIF. Compared with

the NDVI, there was a closer relationship betweenmeteorological

drought and SIF, with the MPCC ranging from 0.41 to 0.94 and

passing the significance test at 95%. TheMPCC was also larger in

the western PRB (Figure 6A). The VRT based on SIF from linear

perspectives (ranging from 2 to 6 months) was shorter than that

FIGURE 5
Spatial distributions of the MPCC (A) and the DITI (B) and corresponding VRT (C,D) are based on the NDVI.
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based on the NDVI, and the VRT in most areas (89.4%) ranged

from 2 to 4 months (Figure 6C), accounting for 15.3%

(2 months), 42% (3 months) and 32.1% (4 months),

respectively. As shown in Figure 6B, there was also a close

nonlinear relationship between meteorological drought and

SIF in the PRB, with the DITI ranging from 0.82–0.90.

Figure 6D shows that the VRT determined from nonlinear

perspectives was also relatively discrete, among which the

VRT at 1 month accounted for the largest proportion (16.57%).

4.3 Spatial distribution of the final
vegetation response time

The SPI-SRI correlation quantified above represents the

dependence of runoff anomalies on precipitation anomalies.

Two candidate VRT can be obtained from linear and

nonlinear perspectives. To determine the VRT more

reasonably, the water deficit of meteorological drought

corresponding to the linear and nonlinear VRT of each grid

was calculated. In general, a precipitation deficit is an important

factor that causes vegetation dynamic changes (Khosravi et al.,

2017; Fang et al., 2019; Wu et al., 2019). Therefore, this study

takes the accumulation period corresponding to meteorological

drought with a greater deficit as the VRT of this grid. Figure 7

shows the spatial distributions of the final VRT based on the

NDVI and SIF. As shown in Figure 7, the VRT based on the

NDVI in most areas ranged from 4 to 5 months, accounting for

36.41% (4 months) and 39.95% (5 months), respectively. The

VRT based on SIF in most areas ranged from 3 to 4 months,

accounting for 36.58% (3 months) and 30.75% (4 months),

respectively.

To reveal the link between vegetation and meteorological

drought, XWT was used to analyse the relationship between

meteorological drought and vegetation. According to the results

of subsection 4.2, the VRT with the largest proportion of grids

(5 months for the NDVI and 3 months for SIF) was selected to

analyse the relationship between meteorological drought and

vegetation (Figure 8). The darker and lighter colours indicate

higher and lower energy densities, respectively. The solid black

line represents the wavelet influence cone, and the area within the

cone line represents more than 95% in the significance test. The

FIGURE 6
Spatial distributions of the MPCC (A) and the DITI (B) and corresponding VRT (C,D) are based on SIF.

Frontiers in Earth Science frontiersin.org08

Zhou et al. 10.3389/feart.2022.953805

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.953805


direction of the arrow represents the phase change in the two

variables. The arrow to the right indicates that the two variables

show a positive correlation, and the arrow to the left indicates

that the two variables show a negative correlation. The arrow

pointing up indicates that the change in variable 1 lags variable 2,

and the arrow pointing down indicates that the change in

variable 1 leads variable 2 (Chang et al., 2017). Figure 8A

shows that the SPI5 and the NDVI had an obvious positive

phase relationship in the 8–16 months resonance period from

2001 to 2019. Similarly, Figure 8B shows that SPI3 and SIF had an

obvious positive phase relationship during 8–16 months of the

resonance period from 2001 to 2019. In general, there was a

stable relationship between meteorological drought and

vegetation in the PRB. In addition, the phase angle is almost

0°, the arrow direction points horizontally to the right, the two

variables are in the same phase, and there is no lag phenomenon;

thus, the VRT determined in this study is reasonable.

To further study the response of vegetation dynamic changes

to meteorological drought, the VRT corresponding to different

vegetation types was counted. For the VRT-NDVI, the VRT of

different vegetation types decreased from MF (5.25 ±

1.21 months), EBF (5.11 ± 0.76 months), WS (4.51 ±

FIGURE 7
Spatial distributions of the final VRT based on (A) the NDVI and (B) SIF.

FIGURE 8
The cross wavelet transforms between meteorological and vegetation factors in the PRB: (A) NDVI and SPI5; (B) SIF and SPI3.
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0.75 months), and CP (4.47 ± 0.95 months). For VRT-SIF, the

VRT of different vegetation types decreased from MF (4.13 ±

1.42 months), EBF (4.05 ± 1.07 months), WS (3.44 ±

1.13 months), and CP (3.58 ± 1.18 months). Xu et al. (2020)

showed that herbaceous plants had a shorter response time to

drought than woody plants, and our results were consistent with

those results. In general, SIF was more responsive to

meteorological drought than the NDVI. In practical

applications, according to the different responses of SIF and

the NDVI to meteorological drought, SIF is more suitable for

early drought monitoring and vegetation management, while the

NDVI is more suitable for regional long-term disaster prevention

and vegetation management.

4.4 The influences of teleconnection
factors on the response relationship

The XWT was used to investigate the impacts of large-scale

climate patterns and solar activity on vegetation. Figures 8A–C

shows the influences of the ENSO, PDO and sunspots on the NDVI,

and Figures 8D–F shows the influences of the ENSO, PDO and

sunspots on SIF. As shown in Figure 9A, there was a significant

positive correlation between the NDVI and ENSO in the period of

8–16months during the whole study period. During 2001–2007 and

2008–2017, there was a significant negative correlation between the

NDVI and PDO in the period of 8–16 months (Figure 9B). There

was a significant positive correlation between the NDVI and

sunspots in the period of 8–16 months during 2001–2005 and

2010–2014 (Figure 9C). The influences of the ENSO, PDO and

sunspots on SIF were similar to those of the NDVI. SIF had a

significant positive correlation with the ENSO and sunspots and a

significant negative correlation with the PDO.

According to the VRT determined by the NDVI and SIF in

subsection 4.3, the VRT with the largest proportion of grids

(5 months for the NDVI and 3 months for SIF) was selected.

Figure 10 shows the XWT between the monthly SPI5 (a-c)/

SPI3 series (d-f) and large-scale climate patterns and solar activity

in the PRB. As shown in Figure 10, meteorological drought had a

significant positive correlation with the ENSO and sunspots and a

significant negative correlation with the PDO. Therefore, large-scale

climate patterns and solar activity can affect vegetation growth in the

PRB by influencing meteorological drought. In addition, the ENSO

and PDO were more closely related to meteorological drought and

vegetation growth in the PRB.

5 Discussion

5.1 Possible reason for the difference in
the response relationship

From subsections 4.2, it is found that the linear relationship

was larger in the western part of the PRB and smaller in the eastern

FIGURE 9
The XWT between monthly NDVI series (A–C)/SIF series (D–F) and large-scale climate patterns and solar activity in the PRB.
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part of the PRB; on the contrary, the nonlinear relationship was

smaller in the western part of the PRB and larger in the eastern part

of the PRB. Some studies have proved that the spatial distribution

characteristics of linear relationship between meteorological

drought and vegetation are mainly related to land cover types.

Zhou et al. (2022) showed that the response relationship between

meteorological drought and vegetation was larger on WS and CP

than on EBF and MF. Xu et al. (2020) showed that herbaceous

plants responded faster to drought than woody plants. Known

from Figure 1, WS and CP are the main land use types in the

western part of the PRB, so the MPCC was relatively larger in the

western part of the PRB. The EBF and MF have complex vertical

structures (mainly in the eastern part of the PRB), and EBF andMF

have deeper roots and stronger water storage capacity (Wang et al.,

2014; Tania and Irma, 2020; Kilic, 2021), so the nonlinear

relationship was relatively larger in the eastern part of the PRB.

In addition, some studies have proved that climate change (such as

changes in precipitation and temperature) and human activities

(such as irrigation) are also important factors affecting the

relationship between meteorological drought and vegetation

response (Fang et al., 2005; Hennekam et al., 2016;

Papagiannopoulou et al., 2017; Ding et al., 2021), which can be

further explored in future studies.

From subsections 4.2, and 4.3, the VRTs that were determined

based on the NDVI and SIF were different, and the VRT

determined based on SIF was shorter than that based on the

NDVI, which might be caused by the different monitoring

principles of the NDVI and SIF. The NDVI and SIF monitor

vegetation based on the reflectance of vegetation leaves to radiation

and the intensity of vegetation photosynthesis, respectively.

Drought can affect vegetation photosynthesis and leaf area (Xie

et al., 2020).When a short-term drought occurs, the NDVI can still

maintain a high level, while SIF is directly related to vegetation

photosynthesis and can reflect the rapid change in canopy water

stress (Wang et al., 2016). When a long-term drought occurs, the

water deficit makes the stomata of vegetation leaves close, leading

to water loss and contraction of vegetation leaves. The

photosynthetic capacity of leaves is also weakened, which leads

to the contraction of leaves due to water shortage. Leaf atrophy of

vegetation will lead to a decrease in the vertical projection area of

vegetation, so the NDVI will also decrease (Gitelson et al., 2021).

Therefore, different VRTs may reflect the physiological

performance of leaves during a drought event, and the change

in photosynthetic capacity occurs earlier than the change in leaf

area, so the VRT based on the NDVI is larger than that based on

SIF. In practical applications, according to the different responses

of SIF and the NDVI to meteorological drought, SIF is more

suitable for early drought monitoring and vegetationmanagement,

while the NDVI is more suitable for regional long-term disaster

prevention and vegetation management.

As shown in subsection 4.3, there were differences in the

VRT among the different vegetation types. In general, when a

drought event occurs, vegetation can absorb water from the soil

to help it grow. The reason why the VRT of woody vegetation was

FIGURE 10
The XWT between the monthly SPI5 (A–C)/SPI3 series (D–F) and large-scale climate patterns and solar activity in the PRB.
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longer than that of herbaceous vegetation might be due to the

higher drought tolerance of woody vegetation. The ability of trees

to resist drought comes from their deep root and xylem systems

for water storage and long life (McDowell et al., 2008). The roots

and stems of woody vegetation can utilize more soil water

content (Xu et al., 2020). Due to the complex vertical

structure, the performance of MFs in water and soil

conservation was better than that of pure forests (Kilic, 2021),

and their drought resistance may be stronger. Therefore, the VRT

in the MF was greater than that in the evergreen broad-leaved

forest.

5.2 Possible physical mechanisms for the
correlation between vegetation and
teleconnection factors

ENSO was closely correlated with precipitation, temperature,

and meteorological drought in the PRB (Huang et al., 2017; Li et al.,

2019). In general, large-scale climatic patterns influence vegetation

growth by influencing water vapour and heat conditions. The ENSO

can influence vegetation growth by redistributing water vapour and

heat (Yeh et al., 2014). The PDO is also an important factor affecting

drought in the PRB, and different types of droughts in the PRB are

closely related to large-scale climate patterns (Han et al., 2019). The

phase change in the PDO (cold and warm) was closely related to

regional temperature and precipitation changes and significantly

affected the interannual and seasonal changes in vegetation growth

by controlling the regional climate (Zhang et al., 2017).

Vegetation cannot grow without the Sun, and the activity of

sunspots has periodic characteristics and will change the solar

radiation intensity (Balasubramaniam and Henry, 2016). Solar

radiation also provides necessary energy for evapotranspiration,

and the change in evapotranspiration intensity can affect

precipitation by influencing the content of water vapour in

the atmosphere and then indirectly affecting the growth of

vegetation (Dong et al., 2017). Zhou et al. (2013) showed that

solar energy can influence regional climate (such as precipitation

and temperature) and then affect vegetation growth by

influencing circulation movement.

In general, ENSO and PDO affect vegetation dynamics by

influencing regional climate characteristics. The process of solar

activity affecting vegetation dynamics is indirect. Solar activity first

affects circulation, then affects regional climate characteristics, and

finally affects vegetation. The process is more indirect, which may

be the reason why the ENSO and PDO are more closely related to

drought and vegetation in the PRB.

5.3 Limitations and extensions

In general, different definitions of drought will lead to

different drought characteristics. Previous studies have shown

that when calculating the drought index, if more variables are

considered, such as temperature, evaporation and soil moisture,

the trend in drought will change (Sohrabi et al., 2015; Liu et al.,

2021). In this study, the SPI, with multiple time scales and easy

calculation, was selected to represent meteorological drought. In

future studies, meteorological drought indices with multiple

factors could be selected to evaluate the relationship between

meteorological drought and vegetation. The effect of drought on

vegetation is a complex process. This paper only studied the

response between meteorological drought and vegetation.

Agricultural drought is closely related to soil moisture, and

hydrological drought is closely related to watershed

hydrological conditions and may also affect the dynamic

change in vegetation. Previous studies have shown that

vegetation growth is closely related to soil water content and

runoff (Peel, 2009; Zhang et al., 2016). Therefore, future studies

on the relationship between drought and vegetation should fully

consider the impact of different types of droughts on vegetation.

Notably, the feedback between different types of droughts and

vegetation would be an interesting study. Causal analysis has

been applied in environmental science in recent years. Wei et al.

(2022) used the Granger causality test to analyse the feedback

relationship between vegetation and soil moisture on the Loess

Plateau. Shi et al. (2022) used convergent cross mapping to study

the causal relationship between meteorological drought and

hydrological drought. Wang et al. (2018) used convergent

cross mapping to study the feedback relationship between

precipitation and soil moisture. Therefore, future studies on

the feedback relationship between vegetation and drought

based on causal analysis can be carried out. In addition, due

to the impacts of climate change and human activities, more

people have begun to pay attention to the nonlinear impacts

caused by climate change. This study introduces the DITI in

information theory to study the relationship between

meteorological drought and vegetation. Some studies have

explored the effects of drought on vegetation using machine

learning methods (Ribeiro et al., 2019; Lees et al., 2022).

However, these methods are used to explore the relationship

between drought and vegetation from the perspective of

statistical algorithms. The impacts of drought on vegetation

can be further explored based on plant physical models in the

future.

6 Conclusion

In this study, the relationship between meteorological

drought and the dynamics of vegetation was evaluated from

both linear and nonlinear perspectives in the PRB, and the

differences between the VRT based on the NDVI and SIF

were compared. Moreover, the influences of teleconnection

factors on the response relationship were analysed. The results

can aid in understanding the mechanism of vegetation dynamic
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response to meteorological drought and provide a good reference

for regional drought prevention. The main conclusions are

summarized as follows:

(1) The spatial distribution characteristics of vegetation cover

and photosynthetic capacity in the PRB were similar, with

low spatial characteristics in the west and high spatial

characteristics in the east. The vegetation cover and

photosynthetic capacity in the PRB showed an increasing

trend from 2001 to 2019.

(2) Compared with the NDVI, SIF was more closely related to

meteorological drought. The VRT based on the NDVI was

typically 4–5 months, accounting for 36.41% (4 months) and

39.95% (5 months), respectively. The VRT based on the

NDVI was typically 3–4 months, accounting for 36.58%

(3 months) and 30.75% (4 months), respectively. The VRT

on woody vegetation was longer than that on herbaceous

vegetation.

(3) Large-scale climatic patterns and solar activity can affect

vegetation growth by influencing meteorological drought in

the PRB. Compared with sunspots, the ENSO and PDOwere

more closely related to the response relationship between

meteorological drought and vegetation in the PRB.
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