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Tunnel squeezing brought great difficulties to the construction and severely

threatened the safety of on-site operators. The researches regarding large

deformation evaluation have been widely developed, but actual conditions of

tunnels are considerably complex, producing a large variety of uncertainty

information existing in the evaluation process. Therefore, we constructed an

unascertained measurement model incorporating four membership functions

for evaluation of tunnel squeezing based on the collected datasets.

Simultaneously, information entropy was introduced to objectively calculate

the index importance for each index. For the first group data (GPI), the accuracy

associated with fourmembership functions are 100%, 83.33%, 50%, and 83.33%,

respectively, while the accuracy of GPII are 70%、77.5%、67.5%, and 70%,

respectively. Linear function and parabolic function show better

performance on uncertainty information interpretation according to the

classification results. The results revealed that the uncertainty model

constructed in this study can enrich the available uncertainty evaluation system.
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Introduction

Various technologies related to tunnel engineering have been greatly developed, such

as ventilation technology, support technology, excavation technology, operation

management, rock characteristics (Wang et al., 2021b; Du et al., 2022; Wang et al.,

2022; Yu et al., 2022), prediction and prevention of geological disasters (Feng et al., 2015;

Wang et al., 2021a; Feng et al., 2022; Zhou et al., 2021a; Zhou et al., 2021b), among which

geological disasters are the main risk factors in engineering. In recent years, with the

excavation of various tunnels in underground at great depth, the hazards regarding large

deformation of surrounding rock frequently occurred. Currently, the scientific

community gradually focused on the large deformation of excavated tunnels (Zhang

et al., 2003; Singh et al., 2007; Chen, 2008; Lai et al., 2018; Sharma et al., 2020). Large

deformation of surrounding rock can be divided into extrusion and expansion (Wood,
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1972; Barton et al., 1974; Jethwa et al., 1984; Barla, 1995; Barla,

2001; He et al., 2002). The former occurs in soft rocks with high

geostress, while the latter mainly occurs in rock mass with strong

expansion properties. The stress redistribution caused by

excavation exceeds the ultimate shear stress, resulting in a

large-scale plastic failure zone in the surrounding rock of the

tunnel (Gioda and Cividini, 1996; Panet, 1996; Barla, 2001; Singh

et al., 2007; Dwivedi et al., 2013). Most of the large deformation of

surrounding rock occurs in deep and long soft rock tunnels, e.g.,

in China, Zhegushan Highway Tunnel, Guanjiao Tunnel,

Jiazhuqing Tunnel, Dazhailing Tunnel, the China-Laos railway

tunnel, etc. The above-mentioned tunnels all suffered from large

deformation to some extent, which brought great difficulties to

the construction. In addition, the weak surrounding rock is more

prone to squeeze and occur large deformation under the action of

high in-situ stress. At this time, the surrounding rock ruptures

and squeezes out of the tunnel boundary and further damages the

supporting structure, which will seriously lead to tunnel collapse

even cause damage to construction workers (Liu, 2004; Chen,

2008; Liu et al., 2008; Yu, 2020; Ren et al., 2021). The large

deformation of surrounding rock is gradually accelerated with

the development of time (Bhasin and Grimstad, 1996; Barla,

2001; Singh et al., 2007; Azizi et al., 2019). Therefore, the

evaluation of tunnel squeezing is of great significance for

improving the construction efficiency, reducing the cost, and

ensuring the safety of the construction personnel (Aydan et al.,

1993; Aydan et al., 1996; Hoek, 2001; Ghiasi et al., 2012; Panthi,

2013; Azizi et al., 2019).

The tunnel squeezing is a major engineering problem that needs

to be solved urgently in this field.Many scholars tried to use different

methods to evaluate the severity of large extrusion deformation

(Dube et al., 1986; Jiang et al., 2004; Fatemi Aghda et al., 2016; Azizi

et al., 2019; Liao et al., 2020). For example, Singh et al. (2007)

evaluated the tunnel squeezing based on burial depth (H) and rock

quality index (Q). Then, Goel et al. (1995) introduced the rock mass

number N (the Q value of SRF = 1) into the fitting curve equation.

Additionally, Liu et al. (2019) proposed an improved cloud model

for the prediction of large deformation of surrounding rock in Mila

Mountain Tunnel in Tibet based on the uncertainty and

randomness of tunnel squeezing prediction. Although various

methods associated with tunnel squeezing evaluation has been

widely explored, the mechanism of this geological hazard is

considerably complex, leading to a large variety of uncertainty

exists in the evaluation of tunnel squeezing. (ISRM, 1995; Steiner,

1996; Malan and Basson, 1998; Palmstrom and Broch, 2006;

Williams, 2010; Dwivedi et al., 2014; Farhadian and Nikvar-

Hassani, 2020; Zhang et al., 2020).

In view of the wide application and robust uncertainty

information interpretation of unascertained measurement

theory in this field, e,g., stability evaluation, scheme

optimization, risk assessment, and performance evaluation.

This study aims to develop a hybrid model based on

information entropy and unascertained measurement

incorporating four membership functions to evaluate the

tunnel squeezing, which is able to enrich the available risk

evaluation methods for underground excavation projects.

Method description

There are n samples in the evaluation object space

Y � {y1,y2, ..., yi, ..., yn}, (i � 1, 2, 3, ..., n), and each sample

contains m predictors. X �
{x1, x2, ..., xj, ..., xm}, (j � 1, 2, 3, ...,m) was used to represent the

predictor space. There, yi � {xi1, xi2, xi3, ..., xij, ..., xim}, (yi ∈ Y),
where, xij(i � 1, 2, 3, ..., n; j � 1, 2, 3, ...,m) represents the jth

predictor variable of the ith sample. Assuming that there are K

evaluation levels for the degrees of deformation, therefore, the grade

set can be shown as

Ω � {L1, L2, L3, ..., Lk, ..., LK}, (k � 1, 2, 3, ..., K). It is worth

noting that the evaluation space is an ordered segmentation

category (Jing and Hua, 2008; Tu et al., 2008; Wang, 2019), that

is, Lk+1 > LK.

Single-index measurement matrix

According to the above yi ∈ Y, (i � 1, 2, 3, ..., n) is the ith

research sample in the evaluation system, and the predictor

xj ∈ X, (j � 1, 2, 3, ...,m) reflects the characteristic of the

research object. In this paper, yij, (i � 1, 2, 3, ..., n; j �
1, 2, 3, ...,m) was defined as the measure-valued of yi under the

index xj. It is assumed that there are K evaluation levels for each

measure-valued (yij), and the grade set is

Ω � {L1, L2, L3, ..., Lk, ..., LK}, (k � 1, 2, 3, ..., K). Afterwards, we

defined a possibility measure akij � a(yij ∈ Lk), it is known as

the unascertained measure. It indicates the degree to which the

measured value yij belongs to the kth evaluation level and satisfies

the following three requirements at the same time: non-negativity,

normalization equation and additivity, as shown in Eqs 1–3

respectively.

0≤ a(yij ∈ Lk)≤ 1 (1)
a(yij ∈ Ω) � 1 (2)

a[yij ∈ ∪
K

k�1
Lk] � ∑K

k�1
yij ∈ Lk(k � 1, 2,/, K) (3)

(akij)m×K
�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1i1 a2i1 / aKi1
a1i2 a2i2 / aKi2
..
. ..

.
1 ..

.

a1im a2im / aKim

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The above Eq. 4 (akij)m×K, (i � 1, 2, ..., n; j � 1, 2, ...,m; k �
1, 2, ...,K) is the single-index measurement matrix of ith sample.

The single index measurement judgment matrix is calculated

by the membership function. In this paper, we will use four types
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membership functions (Zhou et al., 2020b; Zhou et al., 2021a):

linear, parabolic, exponential and sine functions, as shown in Eqs

5–8 respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−x
br+1 − br

+ br+1
br+1 − br

(br <x≤ br+1)

0 (x> br+1)

ar+1(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 (x≤ br)
x

br+1 − br
− br
br+1 − br

(br < x≤ br+1)

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − ( x − br
br+1 − br

)2

(br <x≤ br+1)

0 (x> br+1)

ar+1(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 (x≤ br)

( x − br
br+1 − br

)2

(br < x≤ br+1)

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − 1 − ex−br

1 − ebr+1−br

0 (x> br+1)

ar+1(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 (x≤ br)

1 − ex−br

1 − ebr+1−br
(br < x≤ br+1)

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
− 1
2
sin

π

br+1 − br
(x − br+1 − br

2
)(br < x≤ br+1)

0 (x> br+1)

ar+1(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 (x≤ br)
1
2
+ 1
2
sin

π

br+1 − br
(x − br+1 − br

2
)(br <x≤ br+1)

(8)
Where, ar(x) and ar+1(x) are the membership corresponding to

grade Lk and Lk+1, respectively. br and br+1 are the left and right

endpoints, respectively.

Information entropy theory

Based on the above single-index measurement matrix (Eq. 4),

a more objective method is applied to determine the index weight

in this paper, i.e., information entropy (Ruan et al., 2021). Wij

represents the weight of jth index under ith sample, which can be

calculated through Eq. 9.

Wij � ξ ij

∑m
j�1
ξ ij

, (i � 1, 2, ..., n; j � 1, 2, ..., m) (9)

Where, 0≤Wij ≤ 1, and∑m
j�1Wij � 1. ξij(0≤ ξij ≤ 1)

represents the value of entropy, which can be

FIGURE 1
Spatial location of engineering cases used in this study.
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calculated via the single index measurement vectors akij, referring

to Eq. 10.

ξij � 1 + 1
lnK

⎛⎝∑K
k�1

akij ln a
k
ij
⎞⎠ (10)

Then, the index weight vector of the ith sample can be

expressed as: Wij � (Wi1, Wi2, ..., Wij, ..., Wim).

Comprehensive measurement matrix

The multi-index comprehensive measurement matrix is

calculated as follows (Jia et al., 2019; Ma et al., 2021).

Ak
i � ∑m

j�1
Wija

k
ij, (i � 1, 2, ..., n; k � 1, 2, ..., K) (11)

Where, Ak
i � A(yi ∈ Lk) is the multi-index comprehensive

measurement vector. It represents the degree to which the

TABLE 1 Engineering cases used for tunnel squeezing evaluation.

Indicators cases 1 2 3 4 5 6

C1 P1(m) 15 14.9 13.12 13.42 15.86 14.12

P2(m) 9.88 9.78 8.66 8.94 9.24 9.08

P3 0.5 0.25 0.5 0.75 0.5 0.5

P4(d) 12 24 11 10 106 100

P5 0.25 0.5 0.25 0.25 0.75 0.75

P6(m) 4 2 3 3.2 0.6 0.6

C2 P7(m) 176 131 62 159 63 65.5

P8 0.25 0.5 0.25 0.25 1 0.75

P9 4 3 2 2 7 5

P10 0.5 1 0.5 0.5 0.75 0.75

C3 P11 (MPa) 20 4.5 10 15 2 5

P12 (MPa) 20,000 10,000 15,000 17,000 8,000 10,000

P13 (%) 0.44 2.62 1.09 0.77 2.91 2.66

P14 1.33 0.38 0.71 1 0.08 0.22

Actual grade 1 2 1 1 4 3

TABLE 2 The classification standards of tunnel squeezing.

Indicator Risk predictive grades for large deformation

L1 L2 L3 L4

C1 P1 <5 10 (0.5) 15 (0.75) >20 (1)

P2 <4 (0.25) 8 (0.5) 12 (0.75) >16 (1)

P3 Reasonable (0.25) Basically reasonable (0.5) Unreasonable (0.75) Extremely unreasonable (1)

P4 <15 (0.17) 30 (0.33) 60 (0.67) >90 (1)

P5 Reasonable (0.25) Basically reasonable (0.5 Unreasonable (0.75) Extremely unreasonable (1)

P6 >4 (1) 3 (0.75) 2 (0.5) <1 (0.25)

C2 P7 <50 (0.25) 100 (0.5) 150 (0.75) >200 (1)

P8 Dry (0.25) Wet (0.5) Dripping (0.75) Gushing (1)

P9 <2 (0.4) 3 (0.6) 4 (0.8) >5 (1)

P10 Weak weathering (0.25) Medium weathering (0.5) Strong weathering (0.75) Complete weathering (1)

C3 P11 >40 (1) 22.5 (0.563) 10 (0.25) >2.5 (0.063)

P12 >2000 (1) 1750 (0.875) 1,250 (0.625) <1,000 (0.5)

P13 <2 (0.33) 3 (0.5) 5 (0.83) >6 (1)

P14 >0.75 (1) 0.375 (0.5) 0.2 (0.27) <0.15 (0.2)
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evaluation sample yi belongs to the grade k. In addition,

0≤Ak
i ≤ 1, and∑K

k�1Ak
i �∑K

k�1∑m
j�1Wijakij � ∑m

j�1(∑K
k�1akij) ·Wij � 1.

(Ak
i )n×K �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A1

1 A2
1 / AK

1

A1
2 A2

2 / AK
2

..

. ..
.

1 ..
.

A1
n A2

n / AK
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

Where, (Ak
i )n×K, (i � 1, 2, ..., n; k � 1, 2, ..., K) is the multi-

index comprehensive measurement matrix. Then the

multi-index comprehensive measurement vector of the ith

sample can be expressed as: Ai � (A1
i , A

2
i , ..., A

k
i , ..., A

K
i ).

Credible identification principle

In order to determine the grade of individual sample, the

credible identification principle was utilized. The grade of

samples can be calculated through Eq. 13 based on the above-

mentioned comprehensive multi-index measurement vectors

(Shi et al., 2010).

Lik � min⎛⎝∑K
k�1

Ak
i ≥ λ, k � 1, 2, ..., K⎞⎠ (13)

Where, Lik is the grade of sample ith, and

Lik ∈ Ω, (Ω � {L1, L2, L3, ..., Lk, ..., LK}. λ(λ≥ 0.5), normally, λ �
0.6 or λ � 0.7 (Zhou et al., 2020a; Zhou et al., 2020b; Zhou et al.,

2021b; Chen et al., 2021).

Sample score

Although the risk level of samples is judged through credible

identification principle, it is difficult to further distinguish the

severity of the tunnel deformation, that is, the large deformation

cannot be quantitatively analyzed. There, each sample can be

scored by the following equation.

SCi � ∑K
k�1

NumkAik, (1≤ k≤K; 1≤ i≤ n) (14)

where, SCi is the score of sample ith, Numk is the value assigned

to grades {GR1, GR2, GR3, GR4}.

FIGURE 2
Index system of squeeze evaluation.
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Squeezing evaluation using
unascertained measurement

The influencing factors of tunnel squeezing are divided

into objective and subjective factors, the former includes

geological conditions, such as rock mass conditions,

engineering geological conditions, and geo-hydrologic

conditions; the latter refers to construction technology,

survey and design. Studies shown that poor geological

conditions are the main factors for tunnel squeezing, such

as the strength of surrounding rock, in-situ stress, and

groundwater. This study employed two sets of data

collected from the literature to evaluate tunnel squeezing.

For the first group of data, the construction of index system

TABLE 3 Engineering cases of tunnel squeezing.

Samples Rc RQD/Mpa GW/10 L/(min·m) θ P Deformation grade

1 45 0.46 18 26 0.58 3

2 51 0.53 19 38 0.51 3

3 26 0.42 22 42 0.61 3

4 51 0.51 19 66 0.31 4

5 55 0.52 17 39 0.62 3

6 18 0.38 18 28 0.31 5

7 15 0.37 55 62 0.28 5

8 26 0.25 57 55 0.45 4

9 31 0.45 62 58 0.26 4

10 29 0.47 79 63 0.33 4

11 12 0.31 113 56 0.28 5

12 59 0.43 99 67 0.31 4

13 56 0.41 75 71 0.45 4

14 37 0.46 62 69 0.32 4

15 29 0.44 78 22 0.33 4

16 35 0.42 99 26 0.41 4

17 42 0.41 76 58 0.55 4

18 36 0.43 55 60 0.61 5

19 49 0.44 67 62 0.31 4

20 31 0.42 74 61 0.58 4

21 22 0.35 72 66 0.21 4

22 26 0.55 81 63 0.36 4

23 13 0.58 94 22 0.55 5

24 29 0.47 39 57 0.62 5

25 21 0.41 63 27 0.52 4

26 37 0.44 74 29 0.41 4

27 32 0.49 91 59 0.41 4

28 56 0.28 92 58 0.55 4

29 11 0.22 96 61 0.43 4

30 49 0.51 110 63 0.33 3

31 55 0.45 16 16 0.5 3

32 58 0.5 26 22 0.5 3

33 29 0.22 55 26 0.6 4

34 49 0.75 19 31 0.3 3

35 31 0.39 37 15 0.6 4

36 53 0.45 12 19 0.3 3

37 46 0.59 10 19 0.2 3

38 56 0.61 66 21 0.4 3

39 26 0.35 23 29 0.2 4

40 31 0.28 71 21 0.3 4
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considers geological factors and construction technology,

while only geological factors are taken into consideration

for the second one. Simultaneously, we use GPI to represent

the first set of data, and the second group data is described by

GPII. The spatial location of datasets used in this study was

shown in Figure 1.

The first group data is composed of six research samples,

simultaneously, the evaluation results are categorized into

four grades Ω(GPI) � {L1, L2, L3, L4}, namely, no large

deformation, slight large deformation, medium large

deformation and strong large deformation. The initial data

(Bai et al., 2021) of these six samples are listed in Tables 1, 2 is

the classification standard corresponding to individual index.

The first set of data includes 14 evaluation indicators, which

can be generally divided into three categories: tunnel design

and engineering construction factor (C1), the engineering

geological condition (C2), the mechanical and physical

properties of rock (C3). There are six second-level

indicators in C1, four in C2 and four in C3, as shown in

Figure 2.

The second group was obtained from the Telmo Tunnel in

the Chengdu-Kunming Railway double track (Wang, 2019),

which is a deep-buried tunnel with poor surrounding rock

conditions. Combine the current railway tunnel deformation

classification standard and previous tunnel deformation

research, five factors, i.e., the rock uniaxial compressive

strength (Rc), the integrity coefficient of rock mass (RQD),

the groundwater condition (GW), the angle between the main

structural plane and the axis of the tunnel (θ), and the structural

surface state (P) are considered as the evaluation indexes, as

shown in Figure 2. The evaluation set Ω(GPII) �
{L1, L2, L3, L4, L5} is denoted as no large deformation, slight

large deformation, medium large deformation, strong large

deformation and severe large deformation. The related

samples and classification standards (Wang, 2019) are

presented in Tables 3, 4, respectively.

Single indexmeasurement of samples

Firstly, based on the four different membership functions

shown in Eqs 5–8, the index measurement matrix calculated

by different membership functions are obtained. In

Figures 3A,B, different membership functions,

corresponding to profit and cost index, respectively, are

displayed, which can easily calculate the index membership

FIGURE 3
Membership function for different indexes. (A) Membership function of benefit index, and (B) Membership function of cost index.

TABLE 4 Classification standard for tunnel squeezing.

Grade Rc/Mpa RQD/% GW/10 L/(min·m) θ P

L1 80–120 80–100 0–5 0–18 0–0.2

L2 60–80 60–80 5–10 18–36 0.2–0.4

L3 40–60 40–60 10–25 36–54 0.4–0.6

L4 20–40 20–40 25–125 54–72 0.6–0.8

L5 0–20 0–20 125–250 72–90 0.8–1
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incorporating Eqs 5–8. The single-index measurement matrix

of the first and second group data can be represented by

GPI: (akij)m×K, (i � 1, 2, ..., n, n � 6; j � 1, 2, ..., m, m � 14; k �
1, 2, ..., K, K � 4) and GPII: (akij)m×K, (i � 1, 2, ..., n, n � 40; j �
1, 2, ..., m, m � 5; k � 1, 2, ..., K, K � 5) respectively.

Finally, taking sample 1 (GPI: y1) of the first set of data as an

example, the single index measurement matrix of sample1 is

listed in Eqs 14–17.

GPI: (aK1j)linear14 × 4
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0.53 0.47 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 0.48 0.52
1 0 0 0
0 0 1 0
0 1 0 0
0 0.8 0.2 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14a)

GPI: (ak1j)parabolic14 × 4
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0.779 0.221 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 0.730 0.270
1 0 0 0
0 0 1 0
0 1 0 0
0 0.96 0.04 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

GPI: (ak1j)exponential14 × 4
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0.896 0.164 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0.082 0.918 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

GPI(ak1j)sin e14 × 4
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0.547 0.453 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 0.469 0.531
1 0 0 0
0 0 1 0
0 1 0 0
0 0.905 0.095 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Index weight of squeezing evaluation

In this study, information entropy is introduced to calculate

the index weight coefficients of each sample referring to Eqs 9, 10.

There, only the weights calculated by linear function are

visualized, as shown in Figure 4.

FIGURE 4
Index weights calculated through linear membership
function.
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Determination of squeezing grade

For the first sample of first group, the multi-index

comprehensive measurement vectors calculated through the

linear function are listed GPI: Ak
1 � (A1

1, A
2
1, ..., A

k
1 , ..., A

K
1 )

� (A1
1, A

2
1, ..., A

4
1) � (0.5538, 0.2197, 0.2060, 0.0206). Similarly,

the multi-index comprehensive evaluation vectors of sample

one calculated by the remaining three measurement functions

(i.e., parabolic, exponential and sine function) are shown in

Table 5. In this paper, the classification standard of the first

group is set as 0.55, that is λI � 0.55, and λII � 0.6 for second

one. Therefore, according to the comprehensive measurement

vector in Table 5, the deformation grade of sample one can be

identified through Eq. 13. For instance, incorporating the

calculation results of the linear function into Eq. 13:

A1
1 + A2

1 � 0.5538> 0.55, it can be clear that the risk level of

sample one is L1. The grade of sample one is calculated as L2
while using parabolic function, exponential function and sine

function, as shown in Table 5. According to the above criteria,

the remaining samples are evaluated, and the results are listed

in Figure 5; Table 6. Similarly, the squeezing level of dataset

two also can be calculated as shown in Figure 6. Both sets of

data show that the evaluation performance of exponential

function is not ideal, and both are lower than the other three

membership functions.

Sample score for tunnel squeezing

For most comprehensive evaluation models, risk level

judgment of samples can be high-efficiently calculated,

however, few models are able to quantify the samples

simultaneously. Sample score can easily distinguish the risk

FIGURE 5
Accumulated measurement of proposed model calculated
by four functions.

TABLE 5 Comprehensive unascertained measure based on linear function.

Sample Comprehensive unascertained measure Grade

L1 L2 L3 L4 Actual Predictive

1 0.5538 0.2197 0.2060 0.0206 1 1 (Linear)

0.5353 0.2543 0.1984 0.0120 1 2 (parabolic)

0.5164 0.2026 0.2810 2.785 × 10–12 1 2 (exponential)

0.5478 0.2328 0.1985 0.0209 1 2 (sine)

TABLE 6 Evaluation results of unascertained measurement (GPI).

Samples Actual grade Unascertained measure theory (λI � 0.55)

Linear Parabolic Exponential Sine

1 1 1 2 2 2

2 2 2 2 2 2

3 1 1 1 1 1

4 1 1 1 2 1

5 4 4 4 3 4

6 3 3 3 3 3

Accuracy 100% 83.33% 50% 83.33%
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state of samples at the same grade, which is beneficial to take

more accurate measures to prevent geological hazards for on-

site engineering issues. There, the scores of samples existing in

the two groups data are shown in Table 7; Figure 7, making it

possible to identify the most dangerous sample in the dataset.

In Figure 7, the score of sample 29 is highest in comparison

with other samples, that is, this sample is more likely to occur

large deformation.

Conclusion

In this paper, two sets of data with different evaluation

index system are collected, and the unascertained

measurement theory is used to comprehensively evaluate

the tunnel squeezing. The calculation of this hybrid model

includes single-index measurement matrix, index weight

coefficient and comprehensive measurement matrix.

Ultimately, credible identification principle is used to

evaluate the risk level. The main conclusions are listed as

following:

(1) Four membership functions are used in this paper: linear,

parabolic, exponential, and sine function. The accuracy of

the first datasets are: 100%, 83.33%, 50%, and 83.33%,

respectively, while the accuracy of second dataset are:

70%, 77.5%, 67.5%, and 70%, respectively.

(2) Two groups of data evaluate the tunnel squeezing

through constructing different dataset. For the first

dataset, sample five is the most dangerous sample

while sample 29 is the most dangerous one for the

other dataset.

(3) The factors affecting the large deformation of surrounding

rock are complex, not only related to the mechanical

properties of rock and engineering geological factors,

but also related to the construction conditions. There is

high uncertainty in the evaluation of large deformation of

surrounding rock, more models should be explored to

remove various uncertainty existing in the evaluation

process in the next research.

FIGURE 6
Evaluation results obtained through four membership
functions.

TABLE 7 Quantitative scoring of individual sample about tunnel
squeezing (GPI).

Samples Membership function type

Linear Parabolic Exponential Sine

1 1.69 1.69 1.76 1.69

2 2.26 2.20 2.19 2.29

3 1.55 1.51 1.51 1.53

4 1.62 1.61 1.70 1.66

5 3.07 3.00 2.95 3.03

6 2.83 2.74 2.76 2.83

FIGURE 7
Sample score associated with tunnel squeeze.
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