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The new numerical model for studying the dynamic evolution of soil–rock

mixture landslides is presented in this article. The numerical model based on the

generalized interpolationmaterial pointmethod analyzes a simplified slope. The

gravity is linearly loaded, and the linear elastic model is used to update the stress

to obtain the initial state of the slope. A small soil cohesion is set to trigger the

slope sliding until the equilibrium state is reached again. During this period, the

elastic–plastic material model based on the Drucker–Prager criterion is

adopted for soil and stones. The differences in dynamic evolution between

the homogeneous soil slope and soil–rockmixture slope are studied. Under the

same stone content, the influence of the size and shape of stone on the

dynamic evolution of slope is studied.
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Introduction

The soil–rock mixture (SRM) slope is a common slope type in nature, which is mainly

composed of rock and soil with significant differences in properties (Yue and Morin,

1996). In southwest China, the development of water resources and the construction of

many water conservancy facilities resulted in the formation of a more widely distributed

reservoir bank slope, including a large number of slopes belonging to the SRM slope.

Under the action of reservoir water soaking, wave scouring, and reservoir fluctuation, the

weathering degree of rock and soil increases, the shear strength decreases, and then is

destroyed, which poses a severe threat to water conservancy facilities and the lives and

property of nearby residents.

The research method of the SRM slope is very distinct from that of the homogeneous

slope (He and Kusiak, 2018; Li et al., 2021a; Zhou et al., 2021), and the typical methods

often encounter great challenges in this problem (Li et al., 2021b; Cui et al., 2021; Li et al.,
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2022). Previous studies on SRM have focused on shear strength

(Springman et al., 2003; Cen et al., 2017; Zhang et al., 2016),

permeability characteristics (Yilmaz et al., 2012; Tang et al.,

2015), and determining the reliability and failure risk of SRM

slopes (Yang et al., 2019; Napoli et al., 2021). The spatial

distribution, content, and particle size of block stones greatly

influence the shear strength characteristics of the SRM.When the

stone particle size is small, and the content is small, it has little

effect on the shear performance. When the rock reaches a specific

size and content, it becomes an essential factor affecting the

mechanical properties of SRM. The permeability of SRM

increases with the increase of fragment content, but the

permeability of fractured rock mass with incomplete

disintegration is relatively low. In the stability research of

SRM slope, the digital image processing technology is usually

used to establish the SRM slope model. Then the finite element

method (FEM) is used for simulation analysis. The current

analysis results show that the SRM slope is difficult to form

the sliding surface from the slope toe to the slope top, and the

rock mass has a particularly positive impact on the stability of the

SRM slope.

The idea of this article is to study the dynamic evolution of

unstable SRM slope landslide by means of numerical simulation,

which is helpful for us to find out the dynamic characteristics of

SRM slope when large deformation and failure occurs, the

influence of stones on it during the landslide process and the

accumulation characteristics that finally reach the stable state.

The numerical method used in this article is the material point

method (MPM). The MPM (Mast 2013; Guide 2019) was

proposed by Sulsky et al. (1994). They changed the constitutive

equation to the calculation on the material point (MP), so the fluid

in particle (FLIP) method is extended to the solid mechanics

problem, and the MPM framework is established. It employs a

Eulerian background grid and Lagrangian particle dual

description; all the information is carried by the MP, the

control equation is solved on the background grid, and the

shape function is used to map the information between them.

The grid will be reestablished at each time, which effectively avoids

the numerical solution caused by grid distortion. Therefore, the

MPM has excellent advantages in solving large deformation

problems. In the past few years, MPM has been applied to the

research of many physical problems, including explosion problems

(Cui et al., 2013), high-speed impact problems (Liu et al., 2015; Liu

et al., 2016; Ye et al., 2018) and the analysis of granular materials

(Jiang et al., 2020). The application of MPM in geotechnical

problems includes landslide (Andersen and Andersen, 2010; Liu

et al., 2018; Ying et al., 2021), dam failure (Zabala and Alonso,

2012; Zhao et al., 2017), debris flow (Zhang and Jayaraman, 2013)

and rock cracking (Nairn and Guo, 2005).

MPM has many similarities with other numerical methods,

such as the particle finite element method (PFEM), smoothed

particle hydrodynamics method (SPH), and discrete element

method (DEM). Ye et al. (2018) conducted a detailed

comparative discussion on the similarities and differences of

these methods. The original MP method adopts a piecewise

linear shape function, and its gradient is discontinuous at the

grid boundary, resulting in the numerical oscillation of the MP

when crossing the grid. In 2004, Bardenhgen and Kober extended

the MPM based on the Petrov–Galerkin method and proposed

the generalized interpolation material point method (GIMP),

which improved the smoothness of shape function and effectively

suppressed the stress oscillation of MPM (Bardenhagen and

Kober, 2004). GIMP is adopted in this article, and the specific

simulation procedure is as follows:

• Determine the initial state of the SRM slope.

• Trigger landslide.

• Simulate the dynamic evolution process of the

sliding body.

The explicit time integration scheme is adopted in the

simulation, and the Jaumann stress rate tensor is used to

ensure the objective stress rate (Chen and Brannon, 2002;

Zhang et al., 2016). The constitutive characteristics of soil are

described by the elastic-plastic material model based on the D-P

yield criterion. In order to make the simulation process more

stable, this article adopts a minor time step and a stable

momentum mapping scheme. Based on the aforementioned

numerical methods, the dynamic evolution characteristics of

homogeneous soil slope and SRM slope are compared. Under

the same stone content, the influence of the shape and size of

block stones on the landslide is studied.

MPM and GIMP

Like the FEM, the MPM is also a numerical method based on

the Galerkin framework, so some scholars regard it as a variant of

the FEM (Wang et al., 2016). The most significant difference

between MPM and FEM is that MPM uses two systems of MPs

and a background grid to describe the simulated object (Mast,

2013), but it should be pointed out that the status of MPs and

background grid is different. MPs occupy a dominant position,

and all the information is stored on the MPs. Unlike SPH and

DEM, these MPs are only the integral point of the control

equation in space and do not represent the actual particles.

The grid occupies a secondary position and is mainly used to

solve the control equation. The information mapping between

the MPs and the grid is controlled by the shape function built on

the background grid node (Jiang et al., 2020).

Governing equation and discretization

Before discussing GIMP, we briefly discuss the original

MPM. MPs always carry mass information and will not be

Frontiers in Earth Science frontiersin.org02

Li et al. 10.3389/feart.2022.968250

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.968250


lost, so the MPM inherently meets the mass conservation. In this

study, the heat exchange is not considered, so the energy

conservation law is also satisfied. To sum up, the system’s

state can be determined only by solving the momentum

equation. Based on the updated Lagrangian scheme, the

momentum equation of the continuum can be expressed as

ρ€ui � σ ij,j + ρbi, (1)

where ρ represents the current mass density of the material, ui
represents the displacement, σ ij represents the Cauchy stress, the

superscript represents the time derivative, the subscript

represents the component of the tensor, the partial derivative,

and bi represents the volume force of unit mass, such as gravity.

The momentum Equation 1 needs to be satisfied in the

current configuration of the continuum, and the boundary

conditions are

⎧⎪⎨⎪⎩ (njσ ij)∣∣∣∣∣∣∣Γt � ti,

vi
∣∣∣∣∣∣Γu � vi,

(2)

where Γt and Γu represent the given surface force boundary and

the given displacement boundary, respectively, nj is the unit

vector of the outer normal of boundary Γt, �ti is the surface force

acting on the boundary Γt, and �vi is the velocity of the

displacement boundary Γu.

According to the principle of virtual displacement and the

technique of partial integration, a weak form of governing

equation can be obtained:

∫
Ω
ρ€uiδuidV + ∫

Ω
ρσsijδui,jdV − ∫

Ω
ρbiδuidV − ∫

Γt
ρ�tsiδuidA � 0,

(3)
where δui represents a virtual displacement equal to 0 on Γu,

σsij � σ ij/ρ represents specific stress, and �tsi � �ti/ρ represents the

boundary surface force.

As shown in Figure 1, the region Ω is discretized into blue

MPs, and the density of the continuum can be approximated as

ρ(xi) � ∑
p

mpδ(xi − xip), (4)

where δ is the Dirac-delta function,mp represents the mass of the

MP p, and xip is the coordinate of theMP p. As a result, Equation

3 can be transformed into a particle summation form.

∑
p

mp€uipδuip +∑
p

mpσ
s
ijpδuip −∑

p

mpbipδuip −∑
p

mp�t
s
iph

−1δuip

� 0,

(5)
where the subscript p denotes the physical quantity carried by the

MP at the xip position, and h is the imaginary boundary layer

thickness introduced to transform the last item at the left end of

Equation 3 into volume integral.

In each calculation step of the MPM, the MP and the

background grid are fixed together, so the information

mapping can be realized by interpolating the shape function

NI(xi) established on the background grid node, and the

variables on the background grid node are represented by the

FIGURE 1
Discrete diagram of material point method.
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quantity with a subscript I. The displacement uip and virtual

displacement δuip of the MPs can be expressed as

uip � NIpuiI, (6)
δuip � NIpδuiI, (7)

where NIp represents the value of the shape function of the grid

node I at the MP. In two-dimensional problems, the background

grid of the original MPM usually adopts a regular four-node

plane element, and its shape function is always a piecewise linear

shape function

NIp � 1
4
(1 + ξIξp)(1 + ηIηp), I � 1, 2, 3, 4 (8)

in the equation, ξp and ηp denote the natural coordinates of the

MPs, ξI and ηI are the natural coordinates of the grid node.

According to Equations 6, 7, the motion equation of the

background grid can be rewritten as

_piI � fint
iI + fext

iI , xI ∉ Γu, (9)
piI � mI _uiI, (10)

fint
iI � −∑

p

NIp,jσ ijp
mp

ρp
, (11)

fext
iI � ∑

p

NIpmpbip +∑
p

NIp
mp

ρp
�tiph

−1mp

ρp
, (12)

where piI represents themomentum of the background grid node

I in the i direction. For simplicity, mI adopts the lumped mass

matric. fint
iI and fext

iI represent the internal force and external

force of node I in the i direction, respectively.

Considering that the computational domain Ω is time-

varying, Equation 9 must be satisfied at each time step; the

continuous-time is discretized by the central difference method

pn+1/2
iI � pn−1/2

iI + fn
iIΔt, (13)

where Δt represents the increment of each time step, which is a

fixed value in this article, the superscript n represents the time

step and fn
iI � fint

iI + fext
iI .

From MPM to GIMP

The original MPM always experiences the cell crossing error

(Guide, 2019), which leads to incorrect simulation results. GIMP

can effectively overcome this error. Compared with the SPH

method, it introduces particle characteristic function to expand

the integration area of particle variable. When the MPs pass

through the boundary of the background grid, the integration of

particle variables can remain continuous. As shown in Figure 2A,

Lp represents the partition of the total domain Ω occupied by an

MP, so theMP is not associated with a point, but with an interval.

Figure 2B shows the distribution of the contribution of the MP to

the background grid in the same configuration. At this time, the

MP contributes to two adjacent grids, so the grid intersects, that

is, the influence domain of the shape function is larger than that

of a grid space. Compared with the piecewise linear shape

function, the MP is not only associated with one background

grid (de Vaucorbeil et al., 2020).

The characteristic function of the MP satisfies the unit

decomposition condition, so it can ensure that the physical

quantity is conserved in the simulation process. When the

characteristic function is equal to the Dirac Delta function,

GIMP is equivalent to MPM. In this article, the characteristic

function is

χp(xip) � { 1, if x ∈ Ωp,
0, else.

(14)

Characteristic function (14) is a simple example, which can

be defined as the unit partition of the initial configuration. This

GIMP technique is called continuous particle GIMP or cpGIMP.

Weight functions SIp and their gradient functions SIp,j are shown

in Equations 15, 16.

SIp � 1
Vp

∫
Ωp∩Ω

χ(xip)NIp(xip)dx, (15)

SIp,j � 1
Vp

∫
Ωp∩Ω

χ(xip)NIp,j(xip)dx, (16)

FIGURE 2
(A) Characteristic function χp(x) for one MP. (B) Treating the grid-crossing problem in GIMP.
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where Vp � ∫Ωχp(xip)dΩ represents the volume of an MP.

Equation 5 can be rewritten as Equation 17 by applying

Equations 15, 16.

∑
p

∫
Ωp∩Ω

mp€uip

Vp
χpδuipdΩ +∑

p

∫
Ωp∩Ω

mp

σsijp
Vp

χpδuipdΩ

−∑
p

∫
Ωp∩Ω

mp

Vp
bipχpδuipdΩ −∑

p

∫
zΩ

mp

Vp

�tsipχph
−1δuipdΓ

� 0. (17)

The displacement uip and virtual displacement δuip of the MPs

can also be obtained by interpolating the background grid nodes

according to the weight function SIp.The solution of themomentum

equation is the same as that of the original MPM, but GIMP

provides a more smooth weight function, and specifically, SIp,j
has C1 continuity. It should be pointed out that since the influence

domain of SIp,jexceeds one grid, the farthest grid that the MPs can

influence should be considered when applying boundary conditions.

Time integration scheme

In this article, the update-stress-first (USF) format with good

energy conservation is used for stress updating (Zhang et al.,

2016; Guide 2019), and the detailed time integration schemes are

as follows:

1) The weight function SIp is used to map the mass and

momentum of the MPs to the corresponding background

grid node and then the node speed vIi is solved:

mn
I � ∑

p

mpS
n
Ip, (18)

Pn−1/2
iI � ∑

p

SnIpmpv
n−1/2
ip , (19)

vn−1/2iI � pn−1/2
iI

mn
I

. (20)

2) Strain rate _εn−1/2ijp and rotation rate Ωn−1/2
ijp of MPs are solved

according to node velocity and then the mass density is

updated:

_εn−1/2ijp � ∑
I

1
2
(SnIp,jvn−1/2iI + SnIp,iv

n−1/2
jI ), (21)

Ωn−1/2
ijp � ∑

I

1
2
(SnIp,jvn−1/2iI − SnIp,iv

n−1/2
jI ), (22)

ρn+1p � ρnp/(1 + _εn−1/2ijp Δt). (23)

The elastic test stress is calculated by the elastic constitutive

model:

~σnijp � σn−1ijp + _σn−1/2ijp Δt. (24)

The stress rate is calculated by the following equations:

_σ ij � σ∇ij + σ ikΩjk + σjkΩik, σ∇ij � CσJ
ijkl _εkl , (25)

where σ∇ij is the Johman stress rate and CσJ
ijkl is the elastic stiffness

tensor. Using the returnmapping algorithm, the test stress is brought

into theD-P criterion and the stress beyond the yield surface is pulled

back to the yield surface to obtain the true stress σnijp.

3) The internal and external forces of nodes are calculated

according to Equations 11, 12, and the node momentum is

updated according to Equation 9. The weight function SIp is

used for the calculation.

4) The updated momentum is mapped back to the MP, and the

hybrid momentummapping scheme is adopted in this article,

namely the mixture of PIC (particle in cell) and FLIP schemes

due to the FLIP scheme experiences relatively strong

numerical instability, and the momentum dissipation of

the pure PIC scheme is very serious (Mast 2013; Zhang

and Jayaraman, 2013).

vn+1/2ip � α∑
I

Pn+1/2
I SnIp/mn

I + (1 − α)⎛⎝vn−1/2ip + Δt∑
I

fn
iIS

n
Ip/mn

I
⎞⎠.

(26)
The range of α is [0, 1]. When the values at both ends are

taken, they represent the pure FLIP format or the pure PIC

format, respectively. Generally, 0.01 for α can obtain better

numerical stability and keep momentum conservation.

Model setup

In this article, four types of slopes are established, as shown in

Figure 3. They are pure soil slopes, SRM slopes with arbitrary shape

stones, SRM slopes with round stones, and SRM slopes with oval

stones. The diameter of round stones is 0.54 m, and the long and

short axes of oval stones are 0.86 and 0.34 m, respectively. The stone

content of the three kinds of SRM slope is the same, 18%. The shape

of the block stone mainly considers the three situations of irregular

rock in nature, round and oval pebbles formed by long-term

scouring by flowing water. In order to make the results more

analytical, the initial position of the blocks are the same as

possible when the models are established. The specific material

parameters are shown in Table 1.

The background grid size is 0.1 m, and fourMPs are arranged in

each grid. The spacing of each MP is 0.05 m, with a total of

23,490 MPs. The number of MPs of soil and rocks in the soil-

rockmixture slope is 19,090, and 4,400, respectively. The time step is

0.01 ms, simulating 100,000-time steps, a total of 10 s. Before the

simulation starts, the gravity is linearly loaded, and the linear elastic

model is employed to update the stress; until the linear stage is

completed, the dynamic damping is applied to make the kinetic

energy of the slope return to 0 so as to obtain the initial state of the

slope model. The essential boundary condition is applied on the left
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side of the model, the Coulomb friction boundary is applied on the

bottom, and the friction coefficient is 0.2.

Dynamic evolution analysis

According to the simulation results, three aspects of the SRM

slopes and homogeneous soil slope are compared and analyzed in

this section. In Sections 4.1–4.3, we analyze the kinetic energy

variation and the velocity distribution, the equivalent plastic

deformation, the final configuration, and maximum sliding

distance in the process of slope failure.

The kinetic energy and rate

The kinetic energy curves of homogeneous soil slope and

SRM slopes during the failure process are shown in Figure 4.

Overall, although the nature of the slopes is different, the

duration of the landslide is the same, about 4 s; from the

kinetic energy curve, the landslide can be divided into

accelerated sliding, deceleration sliding, and stable stage.

The acceleration time of SRM slope with round stones is

the shortest, only 1.5 s. The acceleration time of SRM slope

with arbitrary shapes stones is the most extended, 2s.

Correspondingly, the longest and shortest deceleration

stages are the SRM slope with round stones and the SRM

slope with arbitrary stones.

FIGURE 3
Digital model of soil slope and SRM slope. (A) Soli slope. (B) SRM slope with arbitrary shapes of stones. (C) SRM slope with round stones. (D) SRM
slope with oval stones.

TABLE 1 Material parameters for the SRM slope.

Parameter Soil Stone

ρ/(kg/m3) 1800 2,400

E/MPa 30 20,000

] 0.33 0.2

ϕ/° 22 42

c/kPa 1 900

ψ/° 0 0
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The highest peak kinetic energy is the homogeneous soil

slope, followed by the SRM slope (arbitrary shape stones). The

former is about 2.5 times that of the latter, and it should be

noted that the mass of the homogeneous soil slope is less than

that of the SRM slopes. Therefore, the variation of the kinetic

energy of homogeneous soil slope is very violent. Comparing

the peak kinetic energy of the SRM slopes, it can be found that

the SRM slope with oval stones is the smallest, which proves

that the contribution of stone shape to slope stability is also

different when the stone content is the same. From the

morphological analysis, the round stones have a high

degree of symmetry; however, because it does not contain

small blocks, the round stones have a more significant

contribution than arbitrary stones to maintaining slope

stability. In contrast, the anisotropy of the long and short

axes of the oval stones is large, so the peak kinetic energy of the

SRM slope (oval stones) is the smallest.

The velocity distribution at different moments during the

slope failure process is shown in Figure 5; A to D, respectively,

represent the four different slope types mentioned

aforementioned. The pictures with subscripts 1, 2, and 3,

respectively, show the velocity maps of the acceleration stage,

peak kinetic energy moment, and deceleration stage.

From the velocity distribution of the four slopes, the

homogeneous soil slope is uniform and continuous; the SRM

slope shows layered characteristics, and their distribution

patterns also show different features due to various stones. In

terms of speed, the maximum speed of the four slopes is the same

in the acceleration stage (0.5s). At the peak energy moment, the

velocity of the homogeneous soil slope is the largest, exceeding

3 m/s, and the smallest is the SRM slope with oval stones. The

maximum velocity distribution range of homogeneous soil slope

is the widest, followed by the SRM slope with arbitrary stones,

and the smallest is the SRM slope with oval stones. In the

deceleration stage (3.5s), the SRM slope with arbitrary shape

stones has the highest velocity, which reaches 2 m/s, but it is only

distributed at the front of the sliding body, and the speed in other

areas is less than 1 m/s.

The plastic zone

Figure 6 draws the plastic zone distribution of 1s, 5s, and

their peak kinetic energy moments, respectively. The plastic zone

of the homogeneous soil slope is continuous and smooth from

start to end, and the plastic zone of soil around the main plastic

zone decreases uniformly. SRM slopes contain multiple plastic

zones interlaced with each other and show an obvious rock-

around phenomenon; that is, the plastic zone is distributed

around the hard block, and that is, the stone shape plays a

key role in the distribution of the plastic zone.

By comparing the plastic zone distribution of the SRM slopes,

it can be found that the SRM slope with arbitrary shape stones is

the most complex, and there is more soil entering the plastic yield

state. In other words, the proportion of rock and soil still in a

stable state is the smallest. The properties of the SRM at the

bottom are as stable as those of bedrock. In summary, it can be

concluded that under the same rock content, the larger volume

and shape anisotropy of the rock is more beneficial to slope

stability.

The displacement and final configuration

The accumulation configuration and maximum

displacement of the slope after stability are shown in Figure 7,

and Figure 8 shows the horizontal, vertical, and total

displacements of four slopes after re-stabilization.

FIGURE 4
Kinetic energy curve. (A) Kinetic energy curve during simulation. (B) 0 ~ 5s apparent kinetic energy curve.

Frontiers in Earth Science frontiersin.org07

Li et al. 10.3389/feart.2022.968250

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.968250


According to Figure 8, the vertical displacement in the

four slope models is very close to the total, indicating that the

slope collapse mainly occurs in the vertical direction. The

displacement of homogeneous soil slope is the largest, and the

total, vertical, and horizontal displacement reach 9. 3, 8.9, and

5.4 m, respectively. Comparing the displacement of the SRM

slopes, the SRM slope with oval stones has the minor

displacement, followed by the SRM slope with round

stones, and the SRM slope with arbitrary shape has the

most significant displacement, about 8.7 m. Smaller stones

can easily be carried by the soil and move together, while

larger stones have large inertia, so it is difficult to change their

motion state.

According to the final configuration and displacement

distribution of each slope in Figure 7, compared with SRM

slope with oval stones and SRM slope with round stones, the

FIGURE 5
Rate cloud maps. (A1) ~(A3) Rate (m/s) distribution of the homogeneous soil slope at 0.5, 1.6, and 3.5 s. (B1) ~(B3) Rate (m/s) distribution of the
SRM slope (arbitrary shapes stones) at 0.5, 2.0 and 3.5 s. (C1) ~(C3) Rate (m/s) distribution of the SRM slope (round stones) at 0.5, 1.5, and 3.5 s. (D1)
~(D3) Rate (m/s) distribution of the SRM slope (oval stones) at 0.5, 1.8, and 3.5 s.
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sliding area of the former is smaller, and the displacement of

most areas is less than 2 m. Most of the bottom areas are

stable without sliding. Areas with a more than 4 m

displacement are concentrated in the front of the slope,

mainly caused by the upper rock and soil collapse. By

comparing their shapes, the SRM slopes with pebbles

(i.e., C and D in Figure 7) are smoother than the SRM

slope with stones of arbitrary shapes, second only to the

homogeneous soil slope. The surface of SRM slope with

arbitrary stones is not uniform, which indicates that the

accumulation shape after SRM slope failure is closely

related to the smoothness of stones.

Discussion

This article investigates the dynamic evolution of SRM

slopes based on GIMP and compares it with that of

FIGURE 6
Variation of the plastic zone. (A1) ~ (A3) Plastic zone distribution of the homogeneous soil slope at 1.0, 1.6, and 5.0 s. (B1) ~ (B3) Plastic zone
distribution of the SRM slope (arbitrary shape stones) at 1.0, 2.0, and 5.0 s. (C1) ~ (C3) Plastic zone distribution of the SRM slope (round stones) at 1.0,
1.5, and 5.0 s. (D1) ~ (D3) Plastic zone distribution of the SRM slope (oval stones) at 1.0, 1.8, and 5.0 s.
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FIGURE 7
Displacement distribution and final configuration after the landslide. (A1)Displacement (m) cloud map of the homogeneous soil slope at 10.0 s.
(A2) Final configuration of the homogeneous soil slope at 10.0 s. (B1)Displacement (m) cloudmap of the SRM slope (arbitrary shapes stones) at 10.0 s.
(B2) Final configuration of the SRM slope (arbitrary shapes stones) at 10.0 s. (C1) Displacement (m) cloud map of the SRM slope (round stones) at
10.0 s. (C2) Final configuration of the SRM slope (round stones) at 10.0 s. (D1)Displacement (m) cloudmap of the SRM slope (oval stones) rate at
10.0 s. (D2) Final configuration of the SRM slope (oval stones) at 10.0 s.
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homogeneous soil slopes, and investigates the influence of

stone shape and size on the dynamic evolution of SRM slopes

at the same stone content. However, there are some

shortcomings in this research that need to be optimized,

and they are discussed in detail as follows:

1) In actual engineering, the stone distribution of SRM slopes

is highly random. Only four sets of simulations were

performed in this article, which was limited by the

arithmetic power of calculation when conducting the

research. More and more randomly distributed stones

should be set up for simulation and analysis in the

future, and then a statistical rule can be derived. In

addition, the factor of stone composition is not

negligible under the same stone content, and the

simulation analysis of SRM slopes with many different

compositions may be able to obtain quantifiable results,

which is self-evident for the guidance of practical

engineering.

2) It is crucial to carry out model experiments and compare

them with the results of numerical simulations. Subsequent

collapse experiments should be carried out for homogeneous

soils as well as SRM piles to record the pile morphology and

rate at typical moments and the pile configuration when the

collapse stops. Different SRM pile models are set up with

different stones, and the location of each stone should be

recorded to ensure that the numerical model is consistent

with the physical model. It is guaranteed that each set of

experiments is a single variable to improve the credibility of

the experiments.

3) As SRM slopes mostly exist near the reservoir area, the

influence of water on its stability is crucial, and the impact

on the reservoir area after the slope collapse and slides into the

reservoir area should also be considered. The subsequent

work on fluid-solid coupling should be carried out based

on the multiphase material point method, considering the

water factor, conducting the targeted simulation, and

improving numerical experiments.

Conclusion

In this article, the complex engineering problem of the SRM

slope is studied, mainly considering two factors: the size and the

shape of the stones. First, four slope models are established

according to the engineering practice, and then the failure

process is simulated and analyzed by GIMP. The conclusions

are as follows:

1) For slopes with the same geometric size, the duration of their

failure is the same, regardless of whether they contain stones;

the homogeneous slope has more tremendous kinetic energy

during a landslide, and it slides out farther. The order of

kinetic energy of SRM slope is: SRM slope with arbitrary

stones, SRM slope with round stones, SRM slope with oval

stones. The reason is that the small stones will be wrapped in

the soil and slide together, and the contribution of oval

pebbles with large-scale differences in an orthogonal

direction to the stability of the slope is better than that of

round pebbles.

2) The plastic zone of homogeneous slope failure is a penetrating

strip, while the plastic zone of SRM slope is interlaced with

multiple plastic zones, showing an apparent rock-

surrounding phenomenon. Under the condition of the

FIGURE 8
Total, horizontal, and vertical displacements after the slope is stabilized again.
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same stone content, the soil entering the plastic zone in the

SRM slope with large stones is smaller than that with little

stones. The soil entering the plastic yield in SRM slope with

oval stones with large shapes anisotropy is the least, and there

are many rocks and soil at the bottom without any plastic

deformation.

3) The accumulation form after the failure of the slope is closely

related to whether there are stones in it. Whether the stones

are smooth will also affect the shape of the accumulation

body. Any shape of stones will lead to an uneven slope surface,

while the slope containing smooth pebbles is relatively

smooth.
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