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Recently, unsupervised domain adaptation (UDA) has attracted increasing attention

to address the domain shift problem in the semantic segmentation task. Although

previousUDAmethods have achievedpromising performance, they still suffer from

the distribution gaps between source and target domains, especially the resolution

discrepancy in the remote sensing images. To address this problem, this study

designs a novel end-to-end semantic segmentation network, namely, Super-

Resolution Domain Adaptation Network (SRDA-Net). SRDA-Net can

simultaneously achieve the super-resolution task and the domain adaptation

task, thus satisfying the requirement of semantic segmentation for remote

sensing images, which usually involve various resolution images. The proposed

SRDA-Net includes three parts: a super-resolution and segmentation (SRS) model,

which focuses on recovering high-resolution image and predicting segmentation

map, a pixel-level domain classifier (PDC) for determining which domain the pixel

belongs to, and an output-space domain classifier (ODC) for distinguishing which

domain the pixel contribution is from. By jointly optimizing SRS with two classifiers,

the proposed method can not only eliminate the resolution difference between

source and target domains but also improve the performance of the semantic

segmentation task. Experimental results on two remote sensing datasets with

different resolutions demonstrate that SRDA-Net performs favorably against

some state-of-the-art methods in terms of accuracy and visual quality. Code

and models are available at https://github.com/tangzhenjie/SRDA-Net.
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1 Introduction

Remote sensing imagery semantic segmentation, aiming at

assigning a semantic label for each pixel, has enabled various

high-level applications, such as land-use survey, urban planning,

and environmental protection (Zheng et al., 2017; Pan B. et al.,

2019; Mou et al., 2020). Deep convolutional neural networks

(CNNs) have already shown amazing performance in the

semantic segmentation task (Long et al., 2015; Chen et al.,

2018; Wang Q. et al., 2019; Pan B. et al., 2020). To guarantee

the superior representation ability, CNNs usually require a large

number of manually labeled training data. However, the

manually annotating process for each pixel is time-consuming

and labor-intensive.

UDA tries to learn a well-performed model for the target

domain only under the supervision of the source data and has

become a powerful technology to handle the problem of

insufficient labeling. Most UDA-related works focus on

aligning features of source and target domains in a deep

network by extracting domain-invariant features (Zhang et al.,

2018; Wu et al., 2019). In recent years, some works begin seeking

to minimize the domain shift at the pixel level, by means of

turning source domain images into target-like images by

adversarial training (Zhang et al., 2018; Li et al., 2019). In

addition, some studies are proposed to address this problem

by reducing the spatial structure domain discrepancies in the

output space (Tsai et al., 2018; Vu et al., 2019).

However, these typical algorithms mainly address the

semantic segmentation problem on natural scene image, and

the performance would be influenced when applied on remote

sensing images because of the spatial resolution difference.

Spatial resolution (Pan Z. et al., 2019; Liu et al., 2019) is one

of the important characteristics of remote sensing images. Unlike

natural scene images, the sensors used to acquire remote sensing

images usually have significant differences, which results in

different spatial resolutions. For the same object, there are

often large differences in resolution in remote sensing images

obtained by different sensors. For example, a car in a 4 m-

resolution remote sensing image can never be the same size as

a car in a 1 m-resolution image, which has a great impact on

domain adaptation semantic segmentation. On the other hand, if

we only considered UDA for remote sensing images with the

same resolution (Liu and Su, 2020; Tasar et al., 2020), the

available data should be severely compressed. Therefore, we

may conclude that UDA for remote sensing images should

not only narrow the gaps between source and target domains

but also address the issue of different resolutions.

To the best of our knowledge, there are few UDA algorithms

for remote sensing images that explicitly consider the resolution

problem. The existing algorithms usually neglect the resolution

problem when the resolution differences between the source and

target domains are not obvious (Yan et al., 2020; Jun et al., 2020)

or deal with the problem by simple interpolation (Zhaoxiang

et al., 2021) or adjust the parameters of kernel function (Liu and

Qin, 2020). For instance, Yan et al. (2020) proposed a triplet

adversarial domain adaptation method to learn a domain-

invariant classifier in output space by a novel domain

discriminator, without considering the resolution problem

between the source and target domains. Instead of matching

the distributions in output space, Zhaoxiang et al. (2021)

proposed to eliminate the domain shift by aligning the

distributions of the source and target data in the feature

space, where the resolution problem was dealt with

interpolation. Liu and Qin (2020) minimized the feature

distributions distance between the source and target domains

through metric under different kernel functions, which reduced

the effect of resolution problem by adjusting the parameters of

kernel function. However, the existing UDA methods for remote

sensing images have not explicitly studied the resolution

problem.

In this article, explicitly considering the resolution problem, a

novel end-to-end network is designed, which can simultaneously

conduct Super-Resolution and Domain Adaptation, to improve

the segmentation performance from low-resolution remote

sensing data to high-resolution remote sensing data. Figure 1

briefly depicts the problem setting: source domain (low-

resolution remote sensing images) with labels and target

domain (high-resolution remote sensing images) without

labels. SRDA-Net is motivated by two recent research works:

1) super-resolution and semantic segmentation can promote

each other, and 2) adversarial training-based UDA methods

for semantic segmentation. Recently, some studies have shown

that super-resolution and semantic segmentation can boost each

other. For instance, researchers indicate that super-resolution

results can be improved by semantic priors, such as semantic

segmentation probability maps (Wang et al., 2018) or

segmentation labels (Rad et al., 2019). In the field of remote

sensing, high-resolution images contain more detailed

information, and this is very important for image

segmentation (Lei et al., 2019). Lei et al. (2019) proposed to

embed image super-resolution into the segmentation network to

improve the performance on both super-resolution and

segmentation tasks. Furthermore, most of the UDA methods

successfully reduce the domain discrepancies drawing support

from the adversarial training. For instance, Zhang et al. (2018)

applied the adversarial loss to the lower layers of the

segmentation network because the lower layers mainly capture

the appearance information of the images. Tsai et al. (2018)
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employed the adversarial feature learning in the output space

over the base segmentation model. Vu et al. (2019) also reduced

the discrepancies of feature distributions in output space using

adversarial entropy minimization. To be specific, the SRDA-

Net consists of three networks: a multi-task model for super-

resolution and semantic segmentation (SRS), a pixel-level

domain classifier (PDC), and an output-space domain

classifier (ODC). By integrating a super-resolution network

and a segmentation network into one architecture, SRS can

eliminate the resolution gap between the source and target

domains, and further enhances the semantic segmentation

capability. PDC is fed with high-resolution images generated

by the super-resolution network, and outputs their domain

(source or target domain) for each pixel. ODC is fed with the

predicted label distributions from the segmentation network,

and then outputs the domain class for each pixel label

distribution. Similar to generative adversarial networks

(GANs) (Goodfellow et al., 2014), the SRS model can be

regarded as a generator, while PDC/ODC models can be

treated as two discriminators. Through the adversarial

training, the SRS model can learn domain-invariant features

at both the pixel and output-space levels.

To summarize, the major contributions of SRDA-Net can be

stated as follows:

• A new UDA method named SRDA-Net is proposed for

semantic segmentation, to adapt the changes from

low-resolution remote sensing images to high-resolution

remote sensing images.

• A multi-task model composed of super-resolution and

segmentation is built, which not only eliminates the

resolution difference between the source and target

domains but also obtains improvements on the semantic

segmentation task.

• Two domain classifiers are designed at the pixel level and

output space, to pursue domain alignment. With the help

FIGURE 1
Description of the problem setting: given a source domain composed of labeled low-resolution remote sensing data, and a target domainmade
up of unlabeled high-resolution remote sensing data, this task intends on predicting the labelmap for image from the target domain using a semantic
segmentation model trained by source domain images.
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of adversarial training, the domain gap can be effectively

reduced.

2 Related works

This section briefly reviews some important works about

semantic segmentation, single image super resolution, and

unsupervised domain adaptation.

2.1 Semantic segmentation

Semantic segmentation aims to assign a semantic label to each

pixel in an image. It plays an important role in many fields, such as

autonomous driving and urban planning. In 2014, fully

convolutional network (FCN) (Long et al., 2015) presents

amazing performance in some pixel-wise tasks (such as semantic

segmentation). After that, the models based on FCN have made

significant improvements on several segmentation benchmarks

(Maggiori et al., 2017, (Badrinarayanan et al., 2016, Ronneberger

et al., 2015). Some model variants are then proposed to exploit the

contextual information by adopting multi-scale inputs (Chen et al.,

2014, 2018, Ding et al., 2020b) or employing probabilistic graphical

models (Zheng et al., 2017). For instance, Chen et al. (2014, 2018)

proposed a dilated convolution operation to aggregate multi-scale

contextual information. Ding et al. (2020b) introduced a two-stage

multi-scale training strategy to incorporate enough context

information. In order to describe objects consistently, Zheng

et al. (2020) proposed a standalone end-to-end edge-aware

neural network (EaNet) for urban scene semantic segmentation.

Moreover, the attention mechanism is also utilized for semantic

segmentation (Fu et al., 2019, Ding et al., 2020a).

2.2 Single image super resolution

Single image super resolution (Freeman and Pasztor, 1999)

attempts to recover high-resolution images from the

corresponding low-resolution ones, which has been applied

broadly in many occasions, such as product quality

inspection, medical diagnosis, and remote sensing image

reconstruction. Given the HR image Iy and the degradation

function D, the LR image Ix can be obtained by the following

degradation process:

Ix � D Iy; δ( ), (1)

where δ is the parameter of the degradation function. The Single

image super resolution process is as follows:

Îy � F Ix; θ( ), (2)

where F is the super resolution model, and θ is the parameter.

The conventional non-CNNs method mainly focuses on the

domain and feature priors. For example, interpolation methods

such as bicubic and Lanczos generate the high-resolution pixels

by the weighted average of neighboring low-resolution pixels.

However, CNN-based methods (Haut et al., 2018; Arun et al.,

2020; Mei et al., 2020; Liu et al., 2021; Jiang et al., 2020) consider

the super resolution as a mapping from the low-resolution space

to high-resolution space in an end-to-end manner, showing great

breakthrough. For example, Arun et al. (2020) designed a 3-D

super resolution neural network for hyperspectral images. Han

et al. (2019) proposed a multi-level and multi-scale to solve the

super-resolution problem of multispectral image (MSI). Wei

et al. (2020) utilized the deep unfolding technique to

construct the network. Lei and Shi (2022) proposed a new

hybrid-scale self-similarity exploitation network for remote

sensing image SR. Moreover, some researchers proposed the

perceptual loss (Johnson et al., 2016) and adversarial training (Lei

et al., 2020; Li et al., 2020) to improve perceptual quality of super

resolution result.

2.3 Unsupervised domain adaptation

Since the distributions of source domain and target domain

data are different, we find a measure criterion defined on feature

space to make the source domain and target domain data as close

as possible. Then the predictive function based on the source

domain data can be utilized to the target domain data.

We denote that X is the instance set, Z is the feature set, DS
and D̃S are the distributions of source domain data defined on X
and Z, and DT and D̃T are the distributions of target domain

data defined on X and Z. The H distance, expressed as Eq. 3, is

generally utilized in most methods to measure the distance

between two domains.

dH D̃S, D̃T( ) � 2 sup
h∈H

|P
D̃S

I h( )[ ] − P
D̃T

I h( )[ ]|, (3)

where h is the predictive function, and H is the set of h.

The work mainly focuses on visual semantic segmentation, the

review of UDA is limited in this task as well. Many UDA-based

segmentation approaches (Zhang et al., 2018, Wu et al., 2019, Lee

et al., 2019, Tsai et al., 2019) use adversarial training to minimize

cross-domain discrepancy in the feature space. Some works (Tsai

et al., 2018, Vu et al., 2019) propose to align the predicted label

distributions in the output space. Tsai et al. (2018) carried out the

alignment on the prediction of the segmentation network, and Vu

et al. (2019) proposed to do it on entropy minimization of the

prediction probability. In contrast, pixel-level domain adaptation

(Zou et al., 2020, Tasar et al., 2020, Li et al., 2019) makes use of

generative networks to turn source domain images into target-like

images. Li et al. (2019) presented a bidirectional learning system for

semantic segmentation, which is a closed loop to learn the

segmentation adaptation model and the image translation model
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alternatively, causing the domain gap to be reduced gradually at the

pixel level. In addition, a curriculum learning strategy is proposed in

the study of Zhang et al. (2019) by leveraging information from

global label distributions and local super-pixel distributions of the

target domain. Moreover, self-supervised learning approach (Pan F.

et al., 2020) is usually used in UDA.

3 The proposed approach

In this section, we discuss the methodology of the proposed

SRDA-Net, and the overall framework is shown in Figure 2. In

order to reduce the resolution domain gap, we integrate the

super-resolution into the segmentation model to eliminate the

impact of different resolutions. By optimizing the SRS as well as

two domain classifiers (PDC and ODC) with adversarial

optimizing, the domain gap in pixel-level and output-space

can be gradually reduced, thus improving the performance.

3.1 Problem description

It is worthy of defining cross-domain semantic segmentation

with mathematical notations, before illustrating the method in

detail. Formally, let us suppose S as a source domain from a

low-resolution remote sensing dataset, where low-resolution

images IS and pixel-level annotations AS are provided; T as a

target domain from high-resolution remote sensing dataset,

which only provides high-resolution images IT . Note that

the label space of S and T is the same, denoted as RC,

where C denotes the number of categories. In a word, given

IS , AS , and IT , our goal is to reduce the domain gap (including

resolution difference) between S and T , and learn a

segmentation model to predict pixel-wise category of T . In

the following, we first describe the asymmetric multi-task

(super-resolution and segmentation) model. Then, the

adversarial domain adaptation (pixel level and output space)

is presented in details.

FIGURE 2
Overview of the proposed Super-Resolution Domain Adaptation Network (SRDA-Net). The two models, super-resolution model and the
segmentation model, are integrated together based on asymmetric multi-task learning, as presented in the upper part. At the stage of training, two
images randomly selected from source domain and target domain, respectively, are input into the SRS model. The purple and red curves,
respectively, indicate the input/output of the source and target domains, and, the two-way arrow indicates the data flow involved in the training
process. Note that source images are used for training the super-resolutionmodel and segmentationmodel in the supervisedmode, while the target
images only participate the super-resolution training. The two domain classifiers, PDC and ODC, are displayed in left and right bottom parts,
respectively. The super-resolution images from SRS are fed into PDC, and the predicted label distributions from SRS are fed intoODC. The SRS can be
optimized by adversarially training SRS and the two classifiers. In the testing stage, the downsampled test images are input into the SRS for predicting
the segmentation maps.
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3.2 Multi-task model: Super-resolution
and segmentation

Over the past few years, CNN-based methods have been

widely applied to solve the semantic segmentation problem.

However, those methods may perform worse when

generalizing to the unseen images, especially the domain gap

between the training (source domain) and test (target domain)

images are obvious. This problem is critical for remote sensing

images because the resolution of them usually changes

dramatically, which seriously affects the generalization ability

of the segmentation models. Therefore, it is important to

eliminate the resolution difference for cross-domain semantic

segmentation in remote sensing.

Recently, some studies (Wang et al., 2018; Lei et al., 2019)

show that super-resolution and semantic segmentation can boost

each other. Although super-resolution and segmentation are two

different and challenging tasks, they may have certain

relationship. Super-resolution can provide images with more

details, which is helpful for improving the segmentation

accuracy. Label maps from segmentation dataset or semantic

segmentation probability maps may contribute to recover

textures faithful to semantic classes during the super-

resolution process.

Based on the earlier discussions, we propose a novel model

based on the aysmmetric multi-task learning, which consists of

super-resolution and segmentation models. In order to make

super-resolution and segmentation boost each other, two

strategies are adopted: 1) introducing a pyramid feature fusion

structure between the two tasks; and 2) imposing the cross-

entropy segmentation loss to train the segmentation network, for

the generated high-resolution images of the source domain.

During training, a source domain image, pairing with a

downsampled target domain image, is taken as the input to

the SRS network. The source domain images are used to train

both the super-resolution network and the segmentation

network, while the target images only participate in the super-

resolution training process, shown in Figure 2. At the testing

stage, the downsampled test images are input into the SRS

network to obtain the pixel-wise scope maps.

To be specific, due to GPU memory limitation, we use the

residual Atrous Spatial Pyramid Pooling (ASPP) Module (Wang

L. et al., 2019) as the shared feature extractor. For the super-

resolution model, we only use a few deconvolutions to recover

the high-resolution images, without using PixelShuffle (Shi et al.,

2016). To transfer the low-level features effectively from super-

resolution stream to segmentation stream, we introduce the

pyramid feature fusion structure (Lin et al., 2017) between the

two streams. Moreover, the super-resolution results of the source

domain are also fed to the segmentation stream. Meanwhile, the

segmentation stream also ensures to recover textures faithful to

semantic classes during super-resolution stream.

The proposed SRS model is optimized through the following

loss:

LSRS � αLseg + β LidT + LidS( )
Lseg � Lcel S IS( ), ↑ AS( ) + Lcel S ↓ R IS( )( ), ↑ AS( )
LidT � Lmse R ↓ IT( ), IT( )
LidS � Lper R IS( ), ↑ IS( ) + 0.5 × Lfp

Lfp � LL1 E ↓ R IS( )( ),E IS( )( ),

(4)

where Lcel represents the 2D cross-entropy loss, the standard

supervised pixel-wise classification objective function (Wang

Q. et al., 2019); Lmse is the pixel-wise mean squared error

(MSE) loss, which is widely applied to optimize the objective

function for image super resolution; Lper is the perceptual

loss (Johnson et al., 2016); LL1 represents the L1 norm loss;

and Lfp is the fixpoint loss (Kotovenko et al., 2019). The ↑
and ↓ denote upsampling and downsampling operations,

respectively. S, R, and E denote segmentation model,

super-resolution model, and the shared feature extractor,

respectively. Note that, in order to easily superimpose the

style of the target domain and stabilize the adversarial

training process, we use Lper and Lfp to train the super-

resolution model of source domain images. α and β denote the

weighting factors for semantic segmentation and super-

resolution, respectively.

3.3 Adversarial domain adaptation

Although the proposed asymmetric multi-task model

can eliminate the resolution difference between the source

and target domains, some other domain gaps (e.g., color,

texture etc.) still exist. Affected by various human and

natural factors, such as sensors, weather conditions, and

imaging locations, these differences are inherent in remote

sensing imagery. Therefore, how to learn the domain-

invariant features for remote sensing imagery is a critical

problem.

An effective framework to deal with the aforementioned

problem is adversarial learning. It consists of two main parts:

a generator network and a discriminator network. Its main idea is

to train the discriminator to predict the domain label of the data,

while the generator network attempts to fool it, as well as

implements the segmentation task on source domain data.

Through training the two networks alternately, the feature

domain gap can be gradually reduced, thus obtaining the

domain-invariant representations.

The proposed method also takes the adversarial learning

to alleviate the domain gap. Specially, the PDC and ODC

are designed as discriminators, and the SRS is adopted as

the generator. By the adversarial training, SRS will

learn the domain-invariant features that fool the PDC

and ODC.
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3.4 Pixel-level adaptation

The proposed SRS model eliminates the resolution difference

between the source and target domains, while it does not reduce

the gap in other aspects. To address this problem ulteriorly, PDC

is designed to receive the high-resolution images from the source

or target domain and classify the domain for each pixel.

Concretely, the PatchGAN (Li and Wand, 2016) is applied as

PDC, and the network architecture is shown at the bottom left of

Figure 2.

The loss objective of PDC can be formulated as following:

LPDC � EIfake~pdata Ifake( ) Ifake − 1( )2[ ] + EItrue~pdata Itrue( ) Itrue( )2[ ]
Itrue � Dpdc IT( ) ∈ RH×W×1

Ifake � Dpdc IRS( ) ∈ RH×W×1

IRS � R IS( ) ∈ RH×W×3,

(5)
where Dpdc is the PDC model, H and W denote the height and

width of the high-resolution target domain image, respectively.

Accordingly, the inverse of PDC loss is calculated by:

LPDCinv � EItrue~pdata Itrue( ) Itrue − 1( )2[ ] + EIfake~pdata Ifake( ) Ifake( )2[ ].
(6)

Finally, the adversarial objective functions is given as:

min
θSRS

LSRS + LPDC, (7)
min
θPDC

LPDCinv, (8)

where θSRS and θPDC denote the network parameters of SRS and

PDC, respectively. During the training phase, the parameters of

the two models are updated in turns using Eq. 7 and Eq. 8.

3.5 Output-space adaptation

Different from the image classification task that is based on

global features, the generated high-dimensional features for the

semantic segmentation encode complex detailed representations,

which will result in contextual relationships among neighboring

pixels. Therefore, adaptation only in the pixel space may not be

enough for semantic segmentation. On the other hand, although

segmentation outputs are in the low-dimensional space, they

contain rich information, for example, scene layout and context.

Moreover, in the segmentation task of remote sensing, images

from the source or target domain should share strong similarities

both in spatial and local representations. For example, the

rectangular road region may cover the part of cars,

pedestrians, and green plants that often grow around the

buildings. Thus, we adapt the low-dimensional softmax

outputs of segmentation predictions via an adversarial

learning scheme.

To be specific, we design ODC to distinguish domain source

for the distribution of pixels, which receives the segmentation

softmax output: P � S(I) ∈ RH×W×C, where C is the number of

categories. We forward P to ODC using a cross-entropy loss

LODC for the two classes (i.e., source and target). The ODC loss

can be written as:

LODC � −∑
h,w

1 − z( )log Pfake( ) + z log Ptrue( )
Pfake � Dodc PT( ) ∈ RH×W×1

Ptrue � Dodc PS( ) ∈ RH×W×1

PT � S ↓ IT( ) ∈ RH×W×C

PS � S IS( ) ∈ RH×W×C,

(9)

where Dodc denotes the ODC model.

Accordingly, the inverse of ODC loss is defined as:

LODCinv � −∑
h,w

1 − z( )log Ptrue( ) + z log Pfake( ), (10)

In the end, the adversarial objective functions are expressed

as follows:

min
θSRS

LSRS + LODC, (11)
min
θODC

LODCinv, (12)

where θSRS and θODC represent the parameters of SRS and ODC

networks, respectively. They can be optimized in turns by

minimizing Eq. 11 and Eq. 12 during the training stage.

3.6 Final objective function

To initialize parameters of the network better, we first use the

following loss function to pre-train the model:

min
θR

β LidT + LidS( ) + LPDC (13)
min
θPDC

LPDCinv (14)

where β denotes a weighting factor for super-resolution, θR is the

parameters of R network. During training stage, the R and PDC

networks are optimized in turns using Eq. 13 and Eq. 14.

For the whole models training, including SRS, PDC and

ODC, the objective functions can be formulated as:

min
θSRS

LSRS + LPDC + LODC, (15)
min
θD

LPDCinv + LODCinv, (16)

where θD denotes the network parameters of PDC and ODC.

During the training phase, the parameters of SRS, PDC, and

ODC are optimized in turns byminimizing Eq. 15 and Eq. 16. Eq.

15 and Eq. 16 together constitute the adversarial training as the

generator and discriminator loss. The training procedure of our

proposed SRDA-Net is illustrated in Algorithm 1.
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Algorithm 1. the proposed SRDA-Net.

4 Experimental results

In this section, we validate the performance of the proposed

SRDA-Net. First, the experimental dataset and implementation

details are described, and then, the experimental results are

reported and analyzed to demonstrate the effectiveness of

SRDA-Net. Finally, the two strategies to achieve mutual

promotion of super-resolution and segmentation in SRS are

discussed.

4.1 Datasets description

1) Mass-Inria: the following two UDA datasets are used for

single-category semantic segmentation.

• Massachusetts Buildings Dataset (Volodymyr, 2013)

contains 151 aerial images of the Boston area at 1 m

spatial resolution. The ground truth provides two

semantic classes: building and non-building. The

whole dataset is divided into three parts: a training

set with 137 images, a testing set with 10 images, and a

validation set with four images. Among these sets, the

training set is considered as the source domain.

• Inria Aerial Image Labeling Dataset (Maggiori et al., 2017)

is composed of 360 tiles with a resolution of 0.3 m on

10 cities across the globe. Ground truth provides

two semantic classes, building and non-building

classes. We split the training set (image 1 to 5 of

each location for validation, and 6 to 36 of each

location for training). We consider the training set

of this dataset as the target domain. We finally

validate the results of the algorithm on the

validation set of this dataset.

2) Vaih-Pots: we use the following two UDA datasets for

multi-category semantic segmentation.

• ISPRS Vaihingen 2D Semantic Labeling Challenge

contains 33 images of different sizes at 9 cm spatial

resolution, taken over the city of Vaihingen (Germany).

Each image consists of a true orthophoto extracted from a

larger orthophoto mosaic. There are six labeled categories:

impervious surface, building, low vegetation, tree, car, and

clutter/background. This dataset is considered to be a

source domain.

• ISPRS Potsdam 2D Semantic Labeling Challenge dataset is

composed of 38 ortho-rectified aerial IRRGB images with a

size of 6,000, ×, 6,000 at 5 cm spatial resolution, taken over

the city of Potsdam in Germany. The ground truth is

provided for 24 tiles alike Vaihingen dataset. We

randomly choose 12 images as the training set, and

other 12 images as the testing set.

Note that the resolution gap of Mass-Inria (around

3.333 times) is greater than Vaih-Pots (around 2.0 times).

4.2 Evaluation metric and implementation
details

1) Evaluation metric

The intersection-over-union (IoU) is adopted as the main

evaluation metric, and it is defined as:

IoU Pm, Pgt( ) � Pm ∩ Pgt

Pm ∪ Pgt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, (17)

where Pm is the prediction and Pgt is the ground truth. Mean IoU

(mIoU) is used to evaluate model performance on all classes.

2) Implementation details

Network architectures: in SRS, due to GPU memory

limitation, we choose the residual ASPP module (Wang L.

et al., 2019) to capture contextual information, as the shared

feature extractor. For the super-resolution stream, we only use a

few deconvolutions to recover the high-resolution images. As for

two discriminators, we apply the patch generative adversarial

network (PatchGAN) Li and Wand (2016) classifier as the PDC

Network, and for ODC network we choose is similar to Tsai et al.

(2018), which consists of five convolution layers with kernel of

4 × 4 and stride of 2, where the channel number is 64, 128, 256,

512, and 1, respectively.

Training and testing details: in the training stage, Adam

optimization is applied with a momentum of 0.9. For the Mass to

Inria experiments, α is set to 2.5, and β set to 10. Due to different

resolutions, the Mass images and labels are cropped to 114 ×

114 pixels, and then the labels are interpolated to 380 ×

380 pixels. The Inria images are cropped to 380 × 380 pixels
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and resized to 114 × 114 pixels. During the stage of testing,

images from Inria are cropped to 625 × 625 patches without

overlap and resized to 188 × 188 pixels. In the Vaih to Pots

experiments, α and β are set to 5 and 10, respectively. The low-

resolution image is cropped to 160 × 160 pixels and the high-

resolution is cropped to 320 × 320 pixels during training stage.

During the testing stage, images of Pots are cropped to 500 ×

500 pixels without overlap and resized to 250 × 250 pixels. In the

actual training process, we first pre-train the model with learning

rate 2 × 10–4. Then the framework is trained with a learning rate

of 1.5 × 10–4. For image and label, bicubic interpolation and

nearest neighbor interpolation are used, respectively. Since the

resolution difference between the source and target domains

causes a great influence on domain adaptation, the interpolation

of labels generates greater gain than error.

Our stepwise experiments:

• NoAdapt: as a contrast model, NoAdapt is directly trained

without domain adaptation from the source domain to the

target domain.

• SRS: based on NoAdapt model, SRS is trained to eliminate

resolution gap between the source and target domains.

• SRS + PDC: based on the SRS model, PDC is added further

to the training process by the adversarial learning.

• SRS + ODC: on the basis of the SRS model, ODC is

introduced into the training process by the adversarial

learning.

• SRDA-Net (SRS + PDC + ODC): the proposed SRDA-Net

model.

Other comparison experiments:

• AdaptSegNet: in this work, Tsai et al. (2018) employ the

adversarial feature learning in output space of the base

segmentation model. Instead of having only one

discriminator over the feature layer, Tsai et al. (2018)

propose to install another discriminator on one of the

intermediate layers as well.

• CycleGan-FCAN: Fully Convolutional Adaptation

Networks (FCAN) (Zhang et al., 2018) is a two-stage

method, where appearance adaptation networks (AANs)

first adapts source domain images to appear as if drawn

from the “style” in the target domain, then

representation adaptation networks (RANs) attempt

to learn domain-invariant representations. To better

adapt the source images to appear as if drawn from

the target domain, we replace AAN in FCAN with the

cycle generative adversarial network (CycleGan) Zhu

et al. (2017).

In the experiments, we reported their no adaptation and final

results, for comparison with our stepwise experiments.

4.3 Mass → Inria

The experimental results of the methods mentioned earlier

for the shift from Mass to Inria are summarized in Table 1,

including AdaptSegNet (Tsai et al., 2018), CycleGan-FCAN

(Zhang et al., 2018), and our stepwise experiments: NoAdapt,

SRS, SRS + PDC, SRS + ODC, and SRDA-Net. The bold values

denote the best scores in the corresponding column.

From Table 1, it can be seen that our proposed method

(SRDA-Net) achieves the best result: IoU of 52.8%. Under the

same training condition, result (52.8%) of SRDA-Net

outperforms that of AdaptSegNet (best result of 48.5%) and

CycleGan-FCAN (best result of 49.7%), increased by 8.87 and

6.24%, respectively. Moreover, in order to explore the effect of

resolution problem on the domain adaptation results, we

construct experiments on two training data settings (source

TABLE 1 Comparison results of domain adaptation from Mass to Inria val datasets.

Method % BaseNet Source domain Target domain IoU

AdaptSegNet Tsai et al. (2018) ResNet-101 He et al. (2016) Mass Inria 32.9

AdaptSegNet Tsai et al. (2018) ResNet-101 He et al. (2016) Mass ↓ Inria 35.0

AdaptSegNet Tsai et al. (2018) ResNet-101 He et al. (2016) ↑ Mass Inria 48.5

CycleGan-FCAN Zhang et al. (2018) ResNet-101 He et al. (2016) Mass Inria 32.9

CycleGan-FCAN Zhang et al. (2018) ResNet-101 He et al. (2016) Mass ↓ Inria 41.8

CycleGan-FCAN Zhang et al. (2018) ResNet-101 He et al. (2016) ↑ Mass Inria 49.7

NoAdapt ResidualASPP Wang et al. (2019a) Mass Inria 31.9

SRS ResidualASPP Wang et al. (2019a) Mass Inria 36.7

SRS + PDC ResidualASPP Wang et al. (2019a) Mass Inria 46.0

SRS + ODC ResidualASPP Wang et al. (2019a) Mass Inria 39.4

Full (SRDA-Net) ResidualASPP Wang et al. (2019a) Mass Inria 52.8
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domain: Mass, target domain: Downsampled Inria; source

domain: Upsampled Mass, and target domain: Inria) for each

comparison method. From the results, we observe that the setting

(source domain: Upsampled Mass and target domain: Inria)

achieves best result, and the setting (source domain: Mass and

target domain: Downsampled Inria) performs better than general

training data setting, which confirms that when the resolution

difference between the source and target domains is smaller,

domain adaptation semantic segmentation networks will achieve

better results. Moreover, when the resolution difference between

the source and target domains is larger, the gain obtained by

eliminating the resolution difference is greater than the error

introduced by interpolation. In comparison, our method does

not need to consider this and obtained better results owing to

eliminating resolution gap by integrating super resolution into

the segmentation model.

FIGURE 3
Qualitative results of the Inria val dataset (Source domain: Massachusetts Buildings).

TABLE 2 Comparison results of domain adaptation from Vaih to Pots val dataset.

Methods % BaseNet Source Target Impervious Building Vegetation Tree Car Clutter mIoU

AdaptSegNet Tsai et al.
(2018)

ResNet-101 He et al.
(2016)

Vaih Pots 51.8 45.5 46.2 11.8 35.3 18.5 34.9

AdaptSegNet Tsai et al.
(2018)

ResNet-101 He et al.
(2016)

Vaih ↓ Pots 59.4 54.2 47.0 26.3 52.2 32.2 45.2

AdaptSegNet Tsai et al.
(2018)

ResNet-101 He et al.
(2016)

↑ Vaih Pots 55.1 55.6 43.0 31.5 60.6 1.6 41.2

CycleGan-FCAN Zhang
et al. (2018)

ResNet-101 He et al.
(2016)

Vaih Pots 51.8 45.5 46.2 11.8 35.3 18.5 34.9

CycleGan-FCAN Zhang
et al. (2018)

ResNet-101 He et al.
(2016)

Vaih ↓ Pots 50.1 42.5 33.1 31.6 44.1 22.6 37.3

CycleGan-FCAN Zhang
et al. (2018)

ResNet-101 He et al.
(2016)

↑ Vaih Pots 47.9 51.2 43.0 41.7 61.1 23.8 44.8

NoAdapt ResidualASPP Wang et al.
(2019a)

Vaih Pots 29.1 36.3 37.6 19.3 2.8 23.4 24.7

SRS ResidualASPP Wang et al.
(2019a)

Vaih Pots 26.5 32.0 35.2 17.3 32.0 17.5 26.7

SRS + PDC ResidualASPP Wang et al.
(2019a)

Vaih Pots 58.3 51.1 51.8 27.9 62.5 20.5 45.4

SRS + ODC ResidualASPP Wang et al.
(2019a)

Vaih Pots 51.2 21.7 17.9 12.3 54.2 13.0 28.4

Full (SRDA-Net) ResidualASPP Wang et al.
(2019a)

Vaih Pots 60.2 61.0 51.8 36.8 63.4 18.3 48.6
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As for the results compared with the baseline method, the

adaptation results of the three methods outperform their

corresponding results of NoAdapt. In addition, SRS improves

the IoU significantly, from 31.9 to 36.7%, increasing by 4.8%,

which shows the effectiveness of combining image super-

resolution in the segmentation network to eliminate the

resolution gap between the source and target domains.

In order to explore the semantic segmentation performance

further, Figure 3 shows the visualization results of our step-by-

step and the AdaptSegNet/CycleGan-FCAN methods. The

images in the first column are selected from the Inria val

dataset. The second column shows the ground truth, and the

remaining columns illustrate the prediction results of SRS, SRS +

PDC, SRS + ODC, SRDA-Net, AdaptSegNet (48.5%), and

CycleGan-FCAN (49.7%). On the whole, after adding the

PDC or ODC, some segmentation mistakes are removed

effectively. According to the results of SRS + PDC and SRS +

ODC, PDC plays a more important role in learning domain-

invariant features than ODC (improvement of 9.3 vs. 2.7%).

When the domain gap is reduced by integrating PDC and ODC

to SRS, a better segmentation result can be obtained. Moreover,

we can observe that visualization segmentation results of SRDA-

Net outperform the results of best AdaptSegNet/CycleGan-

FCAN.

4.4 Vaih → Pots

The results of AdaptSegNet (Tsai et al., 2018), CycleGan-

FCAN (Zhang et al., 2018), and our stepwise experiments are

listed in Table 2, which are adapted from Vaih to Pots. The

bold fonts represent the best scores of the corresponding

columns. It can be observed that the proposed method

obtains the best performance with mIoU of 48.6%.

Compared with the best comparative result (45.2%,

obtained by AdaptSegNet), the SRDA-Net contributes 3.4%

relative mIoU improvement. Under the condition of no

adaptation, among the three baseline methods, mIoU of

our method is slightly lower. This is because that

parameters of residual ASPP module are less than half of

ResNet-101, which limits the learning power of the network.

According to the mIoUs of SRS+PDC and SRS + ODC, PDC

(18.7%) is more effective at learning domain-invariant

features than ODC (1.7%).

From the results of comparison experiments, we find that the

setting (source domain: Mass and target domain: Downsampled

Inria) achieves best result, and the setting (source domain:

Upsampled Mass and target domain: Inria) performs better

than general training data setting. However, compared with

Mass → Inria, the gap of resolution between Vaih and Pots is

relatively small, thus it is difficult to determine whether to

upsample the source domain or downsample the target

domain to obtain better results. However, there is no need to

our proposed method (SRDA-Net).

For reporting the effect of our algorithm, Figure 4 gives the

three typical example labeling results. From the visual results, we

FIGURE 4
Qualitative results of the Pots val dataset (Source domain: ISPRS Vaihingen 2D semantic dataset).

TABLE 3 Ablation experiments of SRS.

NoAdapt +strategy1 +strategy2 SRS

IoU 31.9 33.5 36.2 36.7
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can find that the segmentation results are getting more and more

refined in our step-by-step experiments, and our SRDA-Net

obtains the finer segmentation results.

4.5 Study of two strategies in SRS

To make super-resolution and segmentation promote each

other, we propose two strategies in the SRS model: 1) a pyramid

feature fusion structure between the two tasks; 2) a cross-entropy

segmentation loss is applied to the generated high-resolution

source domain images to train the segmentation network. In this

section, we construct ablation experiments of SRS and SRS+PDC

vs. CycleGan experiments to illustrate the effectiveness of two

strategies. From Table 3, we can observe that both strategies

improve the segmentation performance compared to the baseline

model (NoAdapt). The SRS (strategy1 + strategy2) achieves the

best segmentation accuracy, which shows that both strategies can

transfer detailed information from super-resolution to improve

segmentation performance.

4.6 SRS+PDC vs. CycleGan

The SRS+PDC module is essentially a super-resolution

style transfer model, which improves the effect of semantic

segmentation. As shown in the results in Table 1 and Table 2,

SRDA-Net performs better than CycleGan-FCAN because

the SRS+PDC module reconstructs more texture

information. For further clarification, the qualitative

FIGURE 5
Qualitative results of super-resolution with style transfer from CycleGAN and SRS+PDC.
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super-resolution results of source domain images with style

transfer from CycleGan and SRS+PDC are shown in Figure 5.

It can be observed that CycleGan generates monotonous and

unnatural textures, like buildings in Figure 5. Moreover, we

find that some objects in the results of CycleGan get

distorted, like cars in Figure 5. The reason is that the

upsampled source domain images are blurry, which drops

some information and confirms that SRS+PDC captures the

characteristics of images and produce more natural and

realistic textures to help improve semantic segmentation

results.

5 Conclusion

In this article, we propose a novel end-to-end framework

named SRDA-Net to explicitly address the resolution

adaptation problem in the field of semantic segmentation.

SRDA-Net can simultaneously deal with the super-

resolution task and the domain adaptation task, thus

meeting the requirement of semantic segmentation for

remote sensing images, which usually involve various

resolution images. To be specific, a multi-task model is

built to simultaneously accomplish the semantic

segmentation, as well as eliminate the difference in

resolution between the source and target domains. By

means of the adversarial learning, the pixel level and

output space domain classifiers are designed to guide the

SRS model to learn domain-invariant features, which can

eliminate the domain gap effectively. In order to verify the

effectiveness of the proposed method, two datasets are

constructed, which have different resolutions in their

source and target domains: Mass-Inria and Vaih-Pots.

Extensive experiments demonstrate the effectiveness of

SRDA-Net when domain adaptation involving the

resolution difference.
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