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The Zhongjiannan Basin is located west of the South China Sea (SCS) and was

affected by the left-lateral strike-slip of the Red River Fault (RRF), the West Edge

Fault of the South China Sea (WEFSCS) and the continental rifting of the South

China Sea in the early Cenozoic. The Zhongjiannan Basin formed in a strike-pull

basin with an S‒N distribution. During the middle Miocene, the sea spreading of

the SCS stopped, but the dynamicmechanism of the Zhongjiannan Basin, which

controlled the sedimentary and the structural evolution after the late Miocene,

remains unclear. In this paper, through the segment interpretation of the latest

seismic section in the Zhongjiannan Basin, we conduct a comparative study of

the sedimentary structure in the southern and northern Zhongjiannan Basin

since the late Miocene. Combined with the regional tectonic dynamics analysis,

we propose that the sedimentary and structural evolution of the Zhongjiannan

Basin since the late Miocene was mainly controlled by residual magmatic

activity in the Southwest Subbasin (SWSB) after expansion stopped, and the

compressional structure stress field weakened gradually from south to north.

The compressional tectonic stress field from north to south was formed in the

northern basin under the dextral strike-slip movement of the RRF. The

sedimentary and structural environment was relatively stable in the middle

basin. Therefore, the sedimentary-structure evolution of the Zhongjiannan

Basin since the late Miocene was controlled by the two different structural

stress fields. The above knowledge not only has guiding significance for oil and

gas exploration in the Zhongjiannan Basin but also provides a reference for

studying the initiation time of dextral strike-slip along the Red River Fault Zone,

as well as the junction position between the RRF and the WEFSCS.
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1 Introduction

The Indian plate and Eurasian plate collision led to the

extrusion of the Indo-china block southeast since the

Cenozoic and formed the giant strike-slip structural belt of

the Ailaoshan-Red River Fault Zone (Tapponnier et al., 1986;

Replumaz et al., 2001; Schoenbohm et al., 2005; Schoenbohm et

al., 2006). The two left-lateral strike-slip fault zones, as well as the

continental rifting of the SCS, jointly controlled the sedimentary

and structural evolution of the western basin in the SCS in the

early Cenozoic. A series of strike-pull basins of the SCS

distributed along the fault zones, such as the Yinggehai Basin,

Zhongjiannan Basin and Wan ‘an Basin, were formed (Sun et al.,

2003; Cai, 2014; Yin et al., 2015; Lei et al., 2021). To enter the

Miocene, the tectonic dynamics of western basins in the SCS

underwent a major change due to the seafloor spreading of the

SCS ending and the sinistral strike-slip movements of RRF and

WEFSCS weakening (Zhu and Lei, 2013; Cai, 2014; Sun et al.,

2019a; Zhang et al., 2021). The basins transformed into a

depression subsidence stage, and the tectonic activity was

weak. The crustal rose and fall with sea level, causing the

basins in the western SCS conference to transition into the

phase of uplift and local slow deposition. The crust of the

western basins has been uplifted (denuded) and sinked (rapid

subsidence) several times since the late Miocene, but the dynamic

mechanism controlling the sedimentary-structure evolution of

the basins during this period remains unclear. We select the

Zhongjiannan Basin in the western SCS as the research object,

using the latest seismic sections obtained by the Guangzhou

Marine Geological Survey, and analyse the sedimentary

characteristics and structural development in the northern,

central and southern basins since the late Miocene. Combined

with an analysis of the regional tectonic dynamic environment,

the dynamic processes controlling the sedimentary-structural

evolution of the Zhongjiannan Basin since the late Miocene

are studied.

2 Geological setting

The Zhongjiannan Basin is located in the western SCS, with a

nearly north-south lozge-shaped distribution as a whole (Chen

and Zhong, 2008). It is bounded by the Qiongdongnan Basin in

the north and the RRF-WEFSCS in the west and connected with

the SWSB by the Xiya uplift in the southeast (Figure 1). It is a

hydrocarbon basin with a complex geological structure

background. The RRF (Allen et al., 1984; Liu et al., 2012) and

theWEFSCS are connected in the northern part of Zhongjiannan

Basin, and both are jointly control the sedimentary-structure

evolution of the basin, making it a strike-slip basin (Zuchiewicz et

al., 2013; Nguyen and Hoai, 2019). However, the junction

position of the two faults and their relationship are still

unclear. On the other hand, the Zhongjiannan Basin is

influenced by several tectonic movements, such as continental

margin rifting to seafloor spreading, resulting in a continental

margin extension basin nature (Briais et al., 1993; Li et al., 2014).

Therefore, the Zhongjiannan Basin has both strike-slip and

extensional structural attributes and widely developed flower

structure and extensional structure styles in the basin.

A structural pattern of alternating uplift and depression as well

as faults, folds and unconformity interfaces developed in the basin.

Five sets of strata were developed, namely, Holocene—Pliocene,

Upper Miocene, Middle Miocene—Lower Miocene,

Oligocene—Upper Eocene, and Middle Eocene—Paleocene (Gao

et al., 2000; Chen and Zhong, 2008). The Cenozoic sedimentary

formations are 2000–11,000 m thick. According to the seismic

reflection characteristics of the unconformity interface and the

regional seismic sequence division scheme, eight obvious seismic

reflection interfaces, T1, T2, T3, T5, T6, T7, T8, and Tg, can be

recognized in the Zhongjiannan Basin (Qiu et al., 1997; Zhong and

Gao, 2005). Among them, Tg is the initial continental margin rifting

and basement interface of the basin, T7 and T6 is the South China

Sea breakup unconformity, T7 representing continental margin

breaking and the beginning of seafloor spreading, T6

FIGURE 1
Regional tectonic background of the Zhongjiannan Basin,
South China Sea YGHB- Yinggehai Basin, PRMB- Pearl River Mouth
Basin, QDNB- Qiongdongnan Basin, ZJNB- Zhongjiannan Basin,
WAB- Wan ‘an Basin, NWSB- northwest subbasin of SCS,
SWSB- Southwest Subbasin of SCS, ESB- East Subbasin of SCS,
SLS- Sulu Sea, CS- Celebes Sea, PS- Philippine Sea: (1)- Combined
belt of Western SCS, including RRF in the north, WEFSCS in center
and Wan ‘an Fault in the south, (2)- Combined belt of Northern
SCS, namely, Qiongnan suture zone, (3)- subduction-collision
zone of Eastern SCS, (4)- Subduction collision zone of SCS.
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corresponds to the tectonic event of oceanic ridge jumping, and T5 is

the unconformity interface formed at the end of seafloor spreading.

T3 corresponds to the tectonic transition surface of important

regional plate recombination events and rapid global sea level

decline. Based on the comparison of drilling data and seismic

data (Fyhn et al., 2009; Fyhn et al., 2013), it is determined that

the age of the unconformity interface is 11.6 Ma, which is the

interface between themiddleMiocene and LateMiocene. This paper

mainly studies the tectonic dynamics of sedimentary-structure

evolution above the T3 interface (since the late Miocene) in the

Zhongjiannan Basin.

3 Data and methods

The 2D seismic data used in this paper are all measured data

from the marine survey conducted in Zhongjiannan Basin by the

Guangzhou Marine Geological Survey. The 2D seismic data were

collected in 2001, with 240 tracks and 30 coverage times, a

distance of 50 m between shot points and a recording length

of 9 s. The acquisition ship was the Tanbao ship, with a density of

32 km × 32 km and a distance of 4 km between velocity spectral

points. The seismic data were reprocessed in 2013, with a

distance of 1 km between velocity spectral points. In this way,

the quality of seismic data can be improved to the maximum

extent, and the sedimentary stratigraphic structure and tectonic

reflection characteristics can be displayed more clearly from their

recognition at shallow depths.

4 Characteristics of sedimentary
structure development in the
Zhongjiannan Basin since the late
Miocene (T3)

In the Zhongjiannan Basin, the reflecting interface between

the Middle Miocene and late Miocene (T3) is a regional

unconformity interface that can be traced throughout the

basin and represents a transition from slow to rapid

subsidence. The sedimentary-structure features above the T3

interface can be divided into three sections: south, middle and

north.

FIGURE 2
Sedimentary-structure development characteristics in the northern Zhongjiannan Basin (See line A1 in Figure 1 for profile location).
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The stratigraphic development of the southern section of the

Zhongjiannan Basin is relatively complete. The seismic reflection

characteristics are parallel or subparallel, indicating that the tectonic

activity was weak, the sedimentary was stable, and the fault structure

did not develop during the early deposition. However, due to the

influence of magma intrusion and upwelling in the later period, the

seamount emerged more, a large amount of magma formed

horizontal compression on the stratum, and the stratum was

arched at the seamount, showing an inclined shape and partial

deflection deformation. The magmatic activity and incline and

bending deformation of the strata mainly occurred in the

southern uplift zone but weakened to the north (Figure 2).

In the middle Zhongjiannan Basin (middle section), the

seismic reflection characteristics show parallel continuous

reflection above the T3 interface, which shows that the

formation retains the original sedimentary characteristics.

Fault and fold structures are few, and the overall tectonic

activity is weak. In addition to the northern central depression

affected by magma upwelling, the rest is characterized by stable

sedimentary characteristics (Figure 3).

The sedimentary structure above the T3 interface in the

northern section of the Zhongjiannan Basin is relatively

complex and can be roughly divided into three layers (Figure

4). The seismic reflection of the bottom layer (T3–T32) is parallel

and continuous, reflecting stable sedimentary characteristics

without folding deformation and indicating that it was not

affected by tectonic activity. The seismic reflection of the

middle layer (T32-T2) is disorderly, and the seismic reflection

interface is discontinuous and inclined or curved, indicating that

the stratum is damaged and that the tectonic activity is intense.

From the characteristics of the disorderly seismic reflection,

tectonic activity occurred when the strata were not

consolidated diagenesis, so it can be inferred that tectonic

activity and deposition occurred simultaneously. The seismic

reflection interface of the upper layer (above T2) is relatively

continuous, but most of it is inclined and curved, reflecting that

FIGURE 3
Sedimentary-structure development characteristics in the central Zhongjiannan Basin (See line A2 in Figure 1 for profile location).
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FIGURE 5
Seismic reflection characteristics between the Zhongjiannan Basin (A) and the U1434A drill of the SWSB (B).The position of profile a is shown in
Box e in Figure 2A. The position of profile b can be seen along survey Line A2 in Figure 1.

FIGURE 4
Sedimentary-structure development characteristics in the southern Zhongjiannan Basin (See line A3 in Figure 1 for profile location).
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although the tectonic activity is weaker than that of the middle

layer, it has continued until now, and there are still folds and

faults in local areas (Figure 4).

5 Tectonic dynamics of the
Zhongjiannan Basin since the late
Miocene (T3)

5.1 Southern Zhongjiannan Basin

Sedimentary and structural development in the southern

Zhongjiannan Basin shows that sequence stratigraphy

developed stably since the late Miocene, but later influenced

by magma upwelling, the stratigraphy became tilted and bent.

From the formation development and structure analysis, the

formation deformation caused by these magmatic activities is a

long process, and the early strata (below T3) do not show

obvious synsedimentary folds, indicating weak magmatic

activities before the late Miocene. The strata below T3 have

the characteristics of cutting (Figure 2), and the upper strata

(above T3) have the phenomenon of overpassing near

seamounts, indicating relatively strong magmatic activity

after T3 (since Pliocene). Some magmatic rocks directly

reach the seafloor to form seamounts (Figure 2), indicating

that the activity has continued until now. Because the southern

Zhongjiannan Basin is close to the SWSB and the magmatism in

Zhongjiannan Basin weakens from south to north, we infer that

these magmatic activities are from the residual magmatic

activities of the SWSB after seafloor spreading (Li et al.,

2014; Li et al., 2015; Sun et al., 2019b; Sun et al., 2021). By

further comparing the seismic section passing through the

spreading center of the SWSB (Figure 5), it is found that the

development and structural characteristics of the strata above

the T3 interface in the southern Zhongjiannan Basin are very

similar to those of the SWSB, which were deformed by the uplift

of the magma in the late stage (Figure 5). This further confirms

that the tectonic dynamics in the southern Zhongjiannan Basin

since the late Miocene are mainly derived from the residual

magmatic activity of the SWSB. In addition, the magmatic

FIGURE 6
The junction position of RRF and WEFSCS in seismic section. The position of profile can be seen survey line A6 in Figure 1.
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activity was weak in the early Miocene (before the late Miocene)

and strong in the late Miocene (since the late Miocene), which

may be related to the supply of deep magma. These magmatic

activities intruded into the bottom of the strata, resulting in

compressional inclined or bending deformation of the strata,

which was strong near the SWSB and gradually weakened to the

FIGURE 7
Seismic reflection sections of the Huaguang Sag of the Qiongdongnan Basin (A) and Yinggehai Basin (B), cited by Liu et al, 2015a. Note: The
locations of Sections a and b are shown Lines A7 and A8 in Figure 1, respectively.

FIGURE 8
Tectonic dynamicsmodel of the Zhongjiannan Basin before and after the lateMiocene. YGHB- Yinggehai Basin, PRMB- Pearl RiverMouth Basin,
QDNB- Qiongdongnan Basin, ZJNB- Zhongjiannan Basin, WAB- Wan ‘an Basin, NWSB- northwest subbasin, SWSB- southwest subbasin, ①-RRF,
②-WEFSCS,③-Wan�an Fault. (A) Tectonic setting and stress field orientation of Zhongjiannan Basin before the late Miocene. (B) Tectonic setting and
stress field orientation of Zhongjiannan Basin after the late Miocene. (C) Structural model of the S-N profile in the western South China Sea after
the late Miocene.
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north, so that the central (central depression) and northern

Zhongjiannan Basin were basically unaffected.

5.2 Northern Zhongjiannan Basin

The structural characteristics above the T3 interface in the

northern Zhongjiannan Basin are significantly different from

those in the central and southern basins, showing that the

middle and upper strata (above T32) have experienced strong

tectonic activity and that the strata have been severely damaged

(Figure 4). Due to the stable development and weak tectonic activity

of the strata above the T3 interface in the middle of the

Zhongjiannan Basin, the dynamics cannot come from the south.

Combined with the analysis of regional tectonic movement during

this period, we speculate that it is probably related to the dextral

strike-slip movement of the Red River Fault zone in the north.

At the end of the Mesozoic, the Indian plate subducted

into the Eurasian plate, resulting in the formation of the

Himalayan orogenic belt and Tibetan Plateau, as well as the

Indochina Peninsula extruding southward along the

Ailaoshan-Red River Fault Zone (Tapponnier et al., 1986;

Tapponnier et al., 1990; Briais et al., 1993; Cao et al.,

2017). The Red River fault zone extends from northwest

Yunnan to the SCS (Tapponnier et al., 1986; Rangin et al.,

1995; Liu et al., 2015b). The fault zone has the characteristics

of segmented activity in space and is characterized by early

sinistral strike-slip movement and late dextral strike-slip

movement over time (Trinh et al., 2012; Cai et al., 2019).

At present, there are two scientific controversies concerning

the RRF that have become research hotspots in earth science

(Cao et al., 2011; Liu et al., 2012; Liu et al., 2015a; Cao et al.,

2017). One is the starting time of dextral strip-slip movement

of the RRF, which is 17 Ma (Tapponnier et al., 1990; Gilley et

al., 2003), 8 Ma (Xiang et al., 2004, 2006), and 5 Ma (Leloup et

al., 1993; Leloup et al., 1995; Leloup et al., 2001). The other is

that the junction position and their relationship between the

RRF and WEFSCS in the western SCS are still uncertain.

According to the reflection characteristics of the seismic

section in the northern Zhongjiannan Basin, the formation

above the T32 interface had a greater influence by the

extrusion stress field, and the seismic reflection characteristics

show clutter reflection, which reflects that tectonic activity

occurred in unconsolidated rock and that tectonism and

sedimentation occurred at the same time (Figure 4).

Calculating the position of sedimentary thickness and the

structural layer, we speculate that the earliest time of tectonic

activity is 7–8 Ma, but the exact age is subject to subsequent

drilling dating. This is the sedimentary-structure response of the

dextral strike-slip of the RRF in the northern Zhongjiannan

Basin. According to the location of the folds in the section (Figure

6), the junction position of the RRF and WEFSCS can be

confirmed. The cut-off point is in the position between the

central seismic section and northern seismic section. At the

junction position, the top seismic section shows that there is an

obvious fracture trace, and there is also a deep large fault, which

should be the transition zone between the RRF and WEFSCS. By

measuring the junction position in this section (Figure 6) and in

the western SCS (Figure 1), the junction position between the RRF

and WEFSCS can be determined for the sea area of N15.5°. North

of N15.5° is the influence region of the RRF, and to the south is the

influence region of the WEFSCS, they are independent fault

systems of each other since the late Miocene. The dextral

strike-slip RRF affecting the formation only in the northern

Zhongjiannan Basin is characterized by the formation of

extrusion deformation and does not affect the formation in the

central Zhongjiannan Basin. In other words, the WEFSCS has not

experienced dextral strike-slip along with the RRF since 7–8 Ma.

We tracked the characteristics of the seismic profile in the

Qiongdongnan Basin and Yinggehai Basin near the RRF (Figure

7) and discovered that the formation development and structural

deformation characteristics are similar to those in the northern

Zhongjiannan Basin since the late Miocene, which further

confirms that the tectonic dynamics of the northern

Zhongjiannan Basin came from the dextral strike-slip

movement of the RRF since the late Miocene.

5.3 Tectonic dynamic model

The tectonic dynamic environments of the Zhongjiannan Basin

before and since the late Miocene are completely different. Before

the late Miocene, affected by Indosinian Block extrusion in the

southwest direction, the RRF and WEFSCS experienced sinistral

strike-slip movement together. With the seafloor spreading of the

SWSB, the Zhongjiannan Basin was controlled by an extensional

stress field in the N‒S direction, and a strike-slip-pull-apart basin

was formed with alternations between uplift and depression (Figure

8A). The Zhongjiannan Basin has been affected by two distinct

tectonic dynamic environments since the late Miocene. The

southern basin was mainly affected by residual magmatic activity

after the expansion of the SWSB stopped. Due to magma upwelling,

the Zhongjiannan Basin folds and bends, and the tectonic stress field

gradually weakens from south to north, while the central

Zhongjiannan Basin is basically unaffected. The northern

Zhongjinan Basin was mainly affected by dextral strike-slip

movement of the RRF, and the formation above the T32

interface experienced strong folding and deformation.

Sedimentary-structural features recorded that the dextral

movement of the RRF occurred at 7–8Ma and lasted until now

but gradually weakened after the T2 interface (approximately 5 Ma)

(Figure 8B). The WEFSCS did not follow the dextral strike-slip

movement of the RRF. According to the deformation range of

stratigraphic folds caused by the dextral strike-slip of the RRF, the

junction position of the RRF and the WEFSCS can be determined,

which is approximately N15.5°(Figure 8C).
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6 Conclusion

1. There have been different sedimentary-structure characteristics

in the south, middle and north of Zhongjiannan Basin since the

late Miocene. Under the influence of magmatism, the formation

in the southern basin was uplifted, tilted and deformed locally.

The middle formation is stable, and the tectonic activity is weak.

In the northern basin, a strong compressional structure occurred,

and the formation was damaged or folded.

2. The Zhongjiannan Basin has been affected by two tectonic

dynamics since the late Miocene. In the south, it was affected

by residual magmatic activity after the expansion of the SWSB

stopped, forming longitudinal uplift and a transverse compressive

tectonic stress field, which gradually weakened from south to

north. In the north, the tectonic activity was weak, and the

deposition was stable at the early stage (T3-T32), but during

the late stage (above T32), the compressional tectonic stress field

was formed under the influence of the dextral strike-slip

movement of the RRF, which has lasted until now.

3. The sedimentary-structure characteristics of the Zhongjiannan

Basin since the late Miocene reveal that the dextral strike-slip

movement of the RRF occurred at 7–8Ma, and the junction

position between the RRF and WEFSCS is approximately N15.5°.
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