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The neritic region of the Chaoshan plain is located on the northeastern (NE)
boundary of the South China Sea (SCS). Despite the extensive research on the
stratigraphic architecture and sedimentary processes within the Chaoshan
plain, the neighboring neritic area remains largely unexplored. In this study,
we provide a new set of ages on seventeen quartz optically stimulated
luminescence (OSL) dating results from four cores (SY2-2, SY3-1, SY3-2, and
HS02) to investigate the regional chronostratigraphy and sedimentology of the
area. The samples were collected at depths ranging from 0.6 to 73.5 m and
yielded ages ranging from 4.9 ± 0.3 ka to >139 ± 28 ka. Sedimentation thickness
from cores SY3-2, SY2-2, and HS02 is less than 4.2 m, 5.5 m, and 6.4 m,
respectively, since at least Marine Isotope Stage (MIS) 5, and the Holocene
sediments of core SY3-2 are less than 4.2 m thick. The preservation state of the
sediments in the area is poor since at least 83.6 ka, indicating an intensified
erosion in the neritic region of the northeastern South China Sea (NESCS) since
at least MIS 5. This erosion may have been caused by fluvial incision resulting
from sea-level decline during the last glacial period, as well as strong
transportation caused by coastal currents.
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1 Introduction

The continental shelf is a vital component in sedimentation and the land-sea
interaction, holding significant geological information such as changes in sea level,
tectonic activity, and sedimentary processes (Li et al., 2014; Wang et al., 2019; Qin et al.,
2023; Wang et al., 2023). The eastern continental shelf of China is abundant in
Quaternary sediments with thicknesses exceeding 10 m since the Holocene (Wang
et al., 2020). For instance, the Holocene sediments thicknesses recorded from core
samples in the Bohai Sea and the south Yellow Sea are around 15 and 13 m thick,
respectively (Liu et al., 2010; Lan et al., 2018; Chen et al., 2020; Long et al., 2022). Studies
on the inner shelf of the East China Sea have mainly yielded a paleoclimate record since
the Last Deglaciation, with thickness of the Holocene sediments approximately 20 m
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thick (Xu et al., 2009; Zheng et al., 2010). The thickness of the
Holocene deposits in from the northern South China Sea (SCS)
are around 10 m (Wang et al., 2020). The sedimentation
characteristics of these regions revealed that aggradation was
the dominant process in the eastern continental shelf of China
since the Holocene. The Chaoshan Plain is located in
southeastern China and borders the northeastern South China
Sea (NESCS). The Quaternary deposits in the Chaoshan plain
reach a maximum thickness of about 141 m (ChenW., 1984; Song
et al., 2012). Several investigations on the Quaternary sediments
have been conducted in the Chaoshan plain using multi proxy
dating techniques (Chen G., 1984; Li et al., 1987; Li et al., 1988;
Zong, 1992; Zheng and Li, 2000; Song et al., 2012; Tang et al.,
2018; Zhong et al., 2022). On the contrary, core and
chronological data from the adjacent neritic area are limited.
The lack of information on sedimentary structures and ages in
the area has hindered thorough comprehension of the
sedimentary evolution of the Chaoshan region. It remains
unclear how many transgressive layers have formed in this
area since the Holocene and whether aggradation or incision
has been the dominant process since that time. Additionally, the
contribution of the sea-level changes and/or tectonic activities on
sedimentary process are still debated. The present study
employed the optically stimulated luminescence (OSL) dating
method to determine the age of the Quaternary sediments from
four cores in the neritic area of the Lianjiang River plain, namely,
SY2-2, SY3-1, SY3-2, and HS02. The chronological data obtained
from these cores will provide an opportunity to understand the
timing of the deposition of the Quaternary sediments and factors
that led to its formation in the region.

2 Geological setting and sample
collection

The SCS is located at the intersection of Eurasia, India-Australia,
and the Philippine Sea plates, and is considered as the largest
marginal sea in East Asia (Xia et al., 2020). The Chaoshan plain
is lying at the NESCS and composed of three major sub-plains, the
Lianjiang River plain, the Rongjiang River plain, and the Hanjiang
River plain (Figure 1). The Lianjiang River plain extends to about
50 km inland, with a drainage area of up to 838.5 km2 and water
discharge amounts of approximately 587 million m3/yr (Tang et al.,
2018). It characterized by warm-and-wet zone influenced by the East
Asian summer monsoon (EASM), with an annual temperature of
22.3°C on average and annual precipitation from 1800 to 2,100 mm
(Tang et al., 2018). Differential uplifting–subsidence movement
from the Neogene to the early Quaternary has changed the
Lianjiang River plain into a faulted basin (Chen W., 1984).
Therefore, the Lianjiang River plain has a large accommodation
space for the Quaternary deposition, and the thickness of
sedimentary sequences reaches up to 141 m (Chen W., 1984; Li
et al., 1987; Wang et al., 1997).

Four borehole cores were obtained by rotary drilling from the
neritic area of the Lianjiang River plain (Figure 1), i.e., HS02
(116°44ʹ6.51ʺ E, 22°52ʹ10.67ʺ N), SY3-1 (116°43ʹ56.05ʺ E,
22°54ʹ7.07ʺ N), SY3-2 (116°43ʹ57.32ʺ E, 22°54ʹ6.44ʺ N), and SY2-2
(116°46ʹ44.2ʺ E, 22°54ʹ37.36ʺ N). The drilling sites are at an altitude
that ranging between 29 and 34 m below mean sea level (bmsl), and
core lengths range from 95.15 m to 95.35 m. Details of core lithology
are shown in Supplementary Table S1. Seventeen OSL samples were
collected from cores SY2-2, SY3-1, SY3-2, and HS02. Despite the

FIGURE 1
Location of the Chaoshan Plain, its neritic area, and core sites. (A) General map of the northern SCS and its significant surface circulations. The
Chaoshan Plain and its adjacent neritic area are outlined by a solid red line rectangle. The surface circulations in the northern SCS were adapted from
Zhang et al. (2022). The SCSBK abbreviation denotes the SCS Branch of Kuroshio, and the black numbers represent major modern surface currents, as
follows: 1: Guangdong Coastal Current, 2: SCS Warm Current, 3: Loop Current, and 4: Coastal Current. (B) The major area of the Chaoshan Plain,
include the Lianjiang River, Hanjiang River, and Rongjiang River plains. Four cores (SY3-1, SY3-2, SY2-2, and HS02) were obtained from the neritic area of
the Lianjiang River plain. Core WYZK-06 was from Song et al. (2012), and core CN-01 was from Tang et al. (2018). Base maps from http://www.gscloud.
cn/and https://www.ngdc.noaa.gov/mgg/global/global.html.
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sampling difficulties that prevented high-resolution sampling, this
limitation does not affect the scientific discussion presented in our
study.

3 OSL dating

3.1 Samples pretreatment

Seventeen OSL samples were treated with 10% HCl and 30%
H2O2 successively to remove carbonates and organic materials.
Wet sieving was utilized to obtain coarse-grained fractions
(90–125 µm) according to availability. 90–125 µm fractions were
treated with 40% HF for ~40 min to remove feldspar and washed
with 10% HCl for about 30 min to remove the fluoride
precipitation generated during etching. The purity of quartz
fractions was tested by the infrared stimulated luminescence
(IRSL) signals.

3.2 De determination

90–125 µm quartz fractions were mounted on the center
(5 mm diameter) of 9.7-mm diameter stainless-steel discs
using silicone oil for equivalent dose (De) measurements.
Irradiation, preheating, and OSL measurements were
conducted on a Risø TL/OSL-DA-20 reader equipped with
a90Sr/90Y beta source and blue LEDs (λ = 470 ± 20 nm)
(Bøtter-Jensen et al., 1999). All quartz signals were stimulated
at 130 °C for 40 s and recorded by an EMI 9235QA

photomultiplier tube fitted with a 7.5-mm Hoya U-340 filter.
The De in this study was measured by the SAR-SGC method (Lai
and Ou, 2013), a combination of single aliquot regenerative dose
(SAR) protocol (Murray and Wintle, 2000) and standard growth
curve (SGC) method (Roberts and Duller, 2004; Lai, 2006). The
preheat for natural and regenerative dose signals was 260 °C for
10 s (Wintle and Murray, 2006), and the preheat for test doses
response was 220 °C for 10 s. Preheat plateau test and dose
recovery test results from this study and neighboring Pearl
River Delta showed that preheat temperature at 260°C for 10 s
was appropriate for dating (Xu et al., 2020; Lin et al., 2022; Xu
et al., 2022; Lin et al., 2023). For samples SY3-2-G01, SY3-2-G02,
SY3-2-G03, and those from core SY2-2, 6 aliquots were measured
using the SAR protocol, and 12 aliquots were measured for the
natural LN/TN measurement. Given the saturation of the OSL
signal in samples from cores SY3-2 and SY2-2, the De value of
samples SY3-2-G04, SY3-2-G05, and samples from cores SY3-1,
HS02 were determined based solely on the natural LN/TN

measurement to expedite the measurement process. After
eliminating any obvious statistical outliers, the final De value
for a sample was calculated.

3.3 Quartz luminescence characteristics

Tests including the preheat plateau, dose recovery, recycling
ratio, and recuperation were conducted on sample SY3-2-G01 to
examine the suitability of luminescence properties for the SAR
protocol (Wintle and Murray, 2006).

The preheat plateau test was conducted with a preheat
temperature ranging from 200°C to 300°C with an interval of
20°C for 10 s and cut-heat temperatures kept at 220°C for 10 s,
using a heating rate of 5 C/s. Twelve aliquots (two aliquots per
preheat temperature) were measured at each temperature point. The
results indicate a preheat plateau between 260°C to 280°C
(Figure 2A).

The dose recovery test is to examine whether the De

measurement protocol can recover a known laboratory dose
(Wintle and Murray, 2006). Ideally, the measured dose is in
agreement with the given laboratory dose (Wintle and Murray,
2006). The dose recovery test was applied to twelve natural
aliquots of sample SY3-2-G01. The given laboratory dose is
20.83 Gy. The measured average De value at the 260°C
preheat temperature was 21.3 Gy, resulting in the ratio of
dose recovery of 1.02 (Figure 2B). The results are within 10%
of the natural dose, indicating that the SAR protocol can recover
a laboratory dose.

Recycling ratio and recuperation tests are mainly examining
whether no obvious thermal transfer was present and whether
sensitivity changes could be well corrected in the measurement
(Wintle and Murray, 2006). Research showed that a reliable De

value can preferably meet two requirements including
recuperation < 5% and the recycling ratio within 0.9–1.1
(Wintle and Murray, 2006). The average recycling ratio for
sample SY3-2-G01 at the 260°C preheat temperature was 1.01
(Figure 2C), indicating that the sensitivity changes were well
corrected. The recuperation for sample SY3-2-G01 at the 260°C
preheat temperature was 1.7% (Figure 2D), suggesting that no

FIGURE 2
Quartz luminescence characteristics for sample SY3-2-G01. (A)
Preheat plateau test, (B) dose recovery test, (C) recycling ratio test, and
(D) recuperation test at different preheat temperatures.
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obvious thermal transfer was present. Besides, the accepted De

aliquots for each sample in this study matched the criteria of
recycling ratios between 0.9 and 1.1 and recuperation
ratios <5%.

3.4 Dose rate measurement

Inductively coupled plasma mass spectrometry (ICP-MS)
was used for measuring uranium (U) and thorium (Th).
Inductively coupled plasma/optical emission spectrometry
(ICP/OES) was utilized for determining potassium (K). The
cosmic ray dose was calculated depending on the depth,
altitude, and geomagnetic latitude of each sample. The
moisture content was estimated to be 25% ± 5% for all OSL
samples, considering the variation of moisture content within
the burial period in the study region. The dose rates and final
ages were calculated on the website program DRAC (Durcan
et al., 2015).

4 OSL dating results and discussion

4.1 Sediment ages of cores

Representative decay and growth curves of samples SY3-2-
G01 and SY2-2-G15 are shown in Figure 3. The decay curves show
that OSL intensity decreasing rapidly during the first second of
stimulation toward background levels, indicating that the OSL
signals are dominated by the fast component in these samples
(Wintle and Murray, 2006). The well-fitted growth curves show
that the combined SAR–SGC protocol is appropriate for all the
samples in this study. Our quartz OSL results from the four cores
are listed in Table 1 and can be shown in Figure 4, with ages
ranging from 4.9 ± 0.3 ka to 139 ± 28 ka. Quartz OSL signal

saturation could be observed in sixteen samples, with De exceeding
190 Gy, indicating that the obtained dating results are regarded as
minimum ages (Lai, 2010; Murray et al., 2021; Long et al., 2022; Xu
et al., 2022).

The De is usually saturates at ~150 Gy, resulting in age
underestimation for sediments over 50 ka (Buylaert et al., 2007;
Lai, 2010; Timar-Gabor et al., 2011; Lai and Fan, 2014; Chapot
et al., 2016). Underestimation of quartz OSL age is common in
coastal deposits. OSL and thermally transferred OSL (TT-OSL)
signals of quartz samples from the coastal plain of Israel
demonstrated that the upper limit of quartz De from Nilotic
origin is close to 140 Gy (Faershtein et al., 2019). In the
western Bohai Sea (China), the De values of quartz OSL
samples are >200 Gy, resulting in ages saturation at >80 ka
(Long et al., 2022). Core HPQK01 in the Pearl River Delta also
showed that quartz OSL ages ranging from 125 ± 18 ka to 58 ± 6 ka
are considered as minimum ages due to the OSL signal
saturation >150 Gy (Xu et al., 2022). Age underestimation of
fine quartz (11–44 μm) from the Lianjiang River plain occurred
on samples older than ~130 ka (Tang et al., 2018). Our results
suggest that the quartz OSL ages older than ~60 ka are
underestimated as a result of signal saturation (~180 Gy).

4.2 Poor preservation of the late Quaternary
sediments

The OSL dating results obtained from core sediments in the
neritic area of the Lianjiang River plain suggest that the timing of
deposition is between 4.9 ± 0.3 ka and >83.6 ± 6.5 ka, with
sedimentation thickness of less than 6.4 m since at least MIS 5
(Figure 4). The sediment thickness in the inner Lianjiang River
plain is at least 80 m since MIS 5, which gradually decreases to
less than 20 m thick in the outer Lianjiang River plain (Song
et al., 2012; Tang et al., 2018) (Figure 5). In the neritic area of the

FIGURE 3
OSL decay and growth curves of samples (A) SY3-2-G01 and (B) SY2-2-G15 in the neritic area of the Lianjiang River plain.
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Lianjiang River plain, the Holocene sediments are around the
same thickness as those in the outer Lianjiang River plain, less
than 4.2 m (Tang et al., 2018) (Figure 5). However, core
sediments at depths of 12.9 m, 18 m, and 19.4 m were dated
to 1,442 ± 65 cal a BP, 11,712 ± 508 cal a BP, and 9,321 ± 221 cal
a BP, respectively, indicating that nearly 20 m thick of the
Holocene sedimentation formed in the neritic area between
the Chaoshan plain and Nanao Island (Sun et al., 2007). The
Bohai Sea and the China Sea contain the Holocene sediments
that are more than 12 m thick (Liu et al., 2017; Long et al., 2022),
while they are thinner in the SCS, around 10 m (Wei et al., 2015;
Wang et al., 2020). The neritic area of the Lianjiang River plain
has comparatively poor conditions for sedimentary

preservation. The preservation of the late Quaternary
sediments in the Lianjiang River plain is still debated. Some
studies attributed it to tectonic activities, while others suggested
the corresponding of the sea-level variations (Song et al., 2012;
Tang et al., 2018).

The South China Block comprises four NE-trending faults,
namely, the Littoral, Changle-Nan’ao, Zhenghe-Dabu, and
Shaowu-Heyuan-Yangjiang faults (Figure 6) (Sun et al., 2014;
Wang et al., 2014). Of these faults, the Littoral and Changle-
Nan’ao faults are active since the Quaternary, and have a
significant impact on the Liangjiang River plain and its
neritic area (Xu et al., 2010; Wang et al., 2014). These faults
have influenced sedimentary evolution and paleo-depositional

TABLE 1 OSL dating results from cores SY3-1, SY3-2, SY2-2, and HS02, in the neritic area of the Lianjiang River plain.

Sample ID Depth
m)

Grain
size (μm)

Aliquot
number

Moisture
(%)

U
(ppm)

Th
(ppm)

K (%) Dose rate
(Gy/ka)

De
(Gy)

Age (ka)

SY3-1-G02 19.1 90–125 3a 25 ± 5 3.2 ± 0.16 14.22 ±
0.71

2.06 ±
0.21

2.98 ± 0.17 321 ± 16 >107.6 ±
8.2

SY3-2-G01 0.6 90–125 4b + 10a 25 ± 5 5.07 ±
0.25

15.57 ±
0.78

2.08 ±
0.21

3.57 ± 0.18 17.6 ±
0.5

4.9 ± 0.3

SY3-2-G02 4.8 90–125 4b + 8a 25 ± 5 2.25 ±
0.11

11.29 ±
0.56

1.97 ± 0.2 2.66 ± 0.15 222 ± 12 >83.6 ±
6.5

SY3-2-G03 6.5 90–125 6b + 6a 25 ± 5 1.79 ±
0.09

9.47 ± 0.47 1.84 ±
0.18

2.36 ± 0.14 229 ± 18 >97.1 ±
9.6

SY3-2-G04 10.2 90–125 5a 25 ± 5 3.9 ± 0.2 16.92 ±
0.85

2.16 ±
0.22

3.37 ± 0.18 239 ± 41 >71 ± 12.7

SY3-2-G05 14.4 90–125 7a 25 ± 5 4.1 ± 0.2 15.75 ±
0.79

2.25 ±
0.22

3.39 ± 0.18 243 ± 33 >71.7 ±
10.4

SY2-2-G15 5.45 90–125 6b + 5a 25 ± 5 2.27 ±
0.11

9.47 ± 0.47 1.75 ±
0.18

2.39 ± 0.14 236 ± 23 >98.9 ±
11.1

SY2-2-G14 14.95 90–125 6b + 7a 25 ± 5 2.97 ±
0.15

13.79 ±
0.69

2.21 ±
0.22

3.05 ± 0.17 227 ± 16 >74.6 ±
6.8

SY2-2-G13 19.55 90–125 6b + 4a 25 ± 5 4.05 ± 0.2 14.72 ±
0.74

2.01 ± 0.2 3.12 ± 0.17 402 ± 69 >129 ± 23

SY2-2-G12 28.45 90–125 6b + 5a 25 ± 5 3.46 ±
0.17

13.18 ±
0.66

2.23 ±
0.22

3.09 ± 0.18 312 ± 30 >101 ±
11.3

SY2-2-G10 43.35 90–125 2b + 5a 25 ± 5 3.78 ±
0.19

10.2 ± 0.51 1.64 ±
0.16

2.52 ± 0.13 334 ± 20 >133 ± 11

SY2-2-G09 47.75 90–125 2b + 4a 25 ± 5 3.81 ±
0.19

18 ± 0.9 2.17 ±
0.22

3.36 ± 0.18 335 ± 26 >99.7 ±
9.4

SY2-2-G07 64.05 90–125 3b + 6a 25 ± 5 3.17 ±
0.16

14.24 ±
0.71

1.96 ± 0.2 2.87 ± 0.16 334 ± 28 >117 ± 12

SY2-2-G03 73.45 63–125 6b + 5a 25 ± 5 3.59 ±
0.18

17.62 ±
0.88

2.59 ±
0.26

3.63 ± 0.21 506 ± 96 >139 ± 28

HS02-G01 6.4 90–125 9a 25 ± 5 2.7 ± 0.14 11.73 ±
0.59

2.06 ±
0.21

2.82 ± 0.16 233 ± 27 >82.6 ±
10.6

HS02-G02 10.5 90–125 4a 25 ± 5 3.18 ±
0.16

14.65 ±
0.73

2.11 ±
0.21

3.07 ± 0.17 197 ± 38 >64.2 ± 13

HS02-G03 12.7 90–125 3a 25 ± 5 2.93 ±
0.15

13.47 ±
0.67

2.21 ±
0.22

3.03 ± 0.17 249 ± 11 >82.1 ± 6

a Numbers of aliquots measured using the standard SGC, method.

b Numbers of aliquots measured using the standard SAR, method.
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FIGURE 4
Profiles and OSL ages of cores HS02, SY3-1, SY3-2, and SY2-2.

FIGURE 5
The stratigraphic correlation of cores WYZK-06, CN-01, HS02, SY3-1, SY3-2, and SY2-2. Core HS02, SY3-1, SY3-2, and SY2-2 were obtained during
this study, while coreWYZK-06was obtained from Song et al. (2012), and core CN-01was obtained from Tang et al. (2018). Core altitude is represented in
the Y-axis as below mean sea level (bmsl) and above each core stratigraphy as above mean sea level (amsl).
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environments, resulting in accumulation and transportation of
the Quaternary along the faults (Sun et al., 2007).

However, the southeastern neritic area of the Lianjiang River
plain is under intense interaction of the SCS and Lianjiang River.
Global sea level declined since the end of the last interglacial
period and reached the maximum at ca. 130 m bmsl during the
last glacial maximum (LGM; ca. 30–20 ka) (Hanebuth et al., 2006;
Hodgson et al., 2006; Lambeck et al., 2014; Spratt and Lisiecki,
2016). Low-stand sea level led to the incision of the Lianjiang

River and the exposure of the continental shelf in the northern
SCS (Wei et al., 2015; Xu et al., 2019). A series of buried
paleochannels extending from the southeastern neritic area of
the Lianjiang River plain to approximately 25 km offshore were
discovered and considered as the paleo-Lianjiang River (Figure 7)
(Liu et al., 2005). The cores in this study are located at the
southern part of the paleo-channels of the Lianjiang River, where
they likely experienced fluvial incision during the last glacial
period. Lan et al. (1991) demonstrated that the medium coarse
sands in the Taiwan Shoal were mainly transported by the
currents from the coastal region of southeastern China during
10–20 ka BP based on the 14C dating. Sediments from the core
sites were largely transported to the Taiwan Shoal by the
Hanjiang diluted water and Guangdong Coastal Currents
(Figure 1A), resulting in limited sediments in the neritic area
of the Lianjiang River plain (Lan et al., 1991; Lian and Li, 2011).
Studies have shown that terrigenous sediments can be
transported and spread by oceanic currents once they enter
continental margins (Liu et al., 2008; Liu Z. et al., 2016;
Zhang et al., 2022). For instance, the sediment from the Pearl
River is predominantly transported southwestward via coastal
currents, while Taiwan-derived sediments are among the
principal contributors in the NESCS due to the influence of
deep-water currents and surface currents that vary seasonally
(Liu Z. et al., 2016; Zhang et al., 2022). Therefore, fluvial incision
during the last glacial period and strong transportation by coastal
currents may result in poor preservation of sediments since at
least 83.6 ka in the study area.

The Chaoshan plain neritic area experienced poor sediment
preservation since MIS 5, while other regions experienced
transgressions and regressions resulting in more than 30 m thick
of deposition. Studies from the Bohai Sea, the western South Yellow
Sea, and the East China Sea have revealed evidence of sea-level
changes and their impact on sedimentary processes (Liu J. et al.,
2016; Liu et al., 2017;Wang et al., 2019;Wang et al., 2020; Long et al.,

FIGURE 6
The gravity anomaly and fault distribution in the South China
Block (SCB) and the northern Continental Margin of the SCS (modified
from Wang et al. (2014)). ① Littoral Fault Zone, ② Changle-Nan’ao
fault, ③ Zhenghe-Dabu Fault, ④ Shaowu-Heyuan-Yangjiang
Fault, ⑤ Wuchuan-Sihui Fault, ⑥Hepu-Beiliu Fault, red rectangle
shows the major area of Lianjiang plain and its southeastern neritic
area.

FIGURE 7
(A) The major area of Lianjiang River plain and its southeastern neritic area in this study. (B) Location of the paleo-river channel of paleo Lianjiang
River in the neritic area of the modern Lianjiang River mouth, modified from Liu et al. (2005).
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2022). Further research indicated that sea-level changes were
identified as the primary control for sedimentation on the
northeastern SCS, with Kuroshio intrusion being responsible for
the transport of Taiwan-derived sediment during the late
Quaternary (Zhang et al., 2022). In summary, the sedimentary
processes in the eastern continental shelf of China were mainly
influenced by sea-level changes.

5 Conclusion

In this study, we used quartz OSL technique to date the
Quaternary sediments from cores SY2-2, SY3-1, SY3-2, and
HS02 in the neritic area of the Lianjiang River plain. Seventeen
dates ranged from 4.9 ± 0.3 ka to >139 ± 28 ka. Except for SY3-2-
G01, all samples were considered minimum ages due to De
saturation (>190 Gy). Our findings reveal that the sediments have
been poorly preserved for at least 83.6 ka, with a sedimentation
thickness since at least MIS 5 of less than 6.4 m and Holocene
sediments of less than 4.2 m. This study has shown that erosion has
occurred in the neritic area of the Lianjiang River plain in the NESCS
since at least MIS 5 due to fluvial incision caused by low sea levels
during the last glacial period and strong coastal currents.
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