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Rock physics diagnostics (RPD) established based upon the well data are used to
deterministically predict elastic properties of rocks from measured petrophysical
rock parameters. However, with the recent advances in statistical methods,
machine learning (ML) can help to build a shortcut between raw well data and
rock properties of interest. Several studies have reported the comparison of rock
physics and machine learning methods for the prediction of rock properties, but
the scale dependence of the MLmodels was never investigated. This study aims at
comparing the results from rock physics and machine learning models for
predicting elastic properties such as bulk density (ρb), P-wave velocity (Vp),
S-wave velocity (Vs), as well as Poisson’s ratio (v) and acoustic impedance (Ip)
in a well from the Gulf of Mexico (GOM) in two different scale scenarios: the well
log and seismic scales. The well data under examination was split into training and
testing subsets to optimize and test the developed MLmodels. The RPD approach
was also used to validate and compare the accuracy of predicted elastic
properties. Backus averaging was later applied to upscale the well data to the
seismic scale to examine the scale dependence and prediction accuracy of
aforementioned physics-driven and data-driven approaches. Results show that
RPD and ML methods provided consistent results at both well log and seismic
scales, suggesting the scale independence of both approaches. Moreover, ML
models showed better estimation of rock properties due to their “apparent”match
with measured data at both scales compared to the RPD approach where a
significant mismatch betweenmeasured and predicted rock properties was found
in the reservoir section of the well. However, by conducting further quality control
of the sonic data, it was found that the measured Poisson’s ratio was extremely
high in the gas-saturated interval. Hence, the prediction from ML models in this
particular case cannot be trusted as ML models were trained based on poor-
quality well data with non-realistic Vs and v values. Such an issue, however, could
be identified and corrected using RPD as presented in this study. We demonstrate
the importance of incorporating domain knowledge, i.e., rock physics, to check
data quality and validate results from data-driven models.
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1 Introduction

As a branch of earth sciences, seismic rock physics integrates
the multiscale subsurface data for predicting various properties
of porous rocks through mathematical models frequently called
“rock physics transforms.” Particularly, these transforms relate
elastic properties (e.g., bulk density, P- and S-wave seismic
velocity, Poisson’s ratio, P-wave impedance) to petrophysical
rock properties (e.g., porosity, mineralogy) and their conditions
(e.g., pore fluid, stress). Rock physics diagnostics (RPD) is the
process of establishing the transform between the
aforementioned rock properties (Dvorkin et al., 2014). The
objective of RPD is to find a rock physics transform (model)
that quantitatively explains the well data by predicting the elastic
properties strictly through mathematical and physics-based
relations. Moreover, RPD is useful to conduct the quality
control (QC) of the well data as well as describe the texture of
sedimentary rocks based on established rock physics transform
(Avseth et al., 2010). The obtained elastic properties are then
used to derive or “forward model” the expected seismic
signatures of measured rock properties. The arsenal of
developed rock physics models (such as the soft sand, stiff
sand, constant cement, etc.) is available to conduct such
modeling (Avseth et al., 2005; Mavko et al., 2020). A number
of RPD studies have been conducted to predict rock properties
from the well and seismic data (Alabbad et al., 2021; Gogoi and
Chatterjee, 2021). The stiff sand model established from RPD was
used to build a rock physics template to diagnose a consolidated
sand reservoir (Ali et al., 2020). Suleymanov et al. (2021)
employed RPD to derive seismic reflections in a tight gas
sandstone reservoir. RPD was also performed by Wollner et al.
(2017) to correct erroneously measured S-wave velocity curves.
Moreover, Dvorkin and Wollner (2017) investigated the scale
dependence of rock physics transforms at the seismic scale, where
rock physics transforms were found to be scale-independent. By
means of RPD, the well data can be quantitatively explained and
then corrected, as needed, not only at the wireline scale but also at
the seismic scale.

RPD is strictly based on physics-based relations to link
petrophysical and elastic rock properties. However, one of the
main drawbacks of the RPD approach is that the input data
employed in rock physics transforms may not be of good quality,
particularly for the total porosity, mineralogy, and water saturation,
resulting in erroneous estimation of rock properties. Often, these
volumetric rock properties are calculated by petrophysicists in a
process that is prone to uncertainty and undesired artifacts. For
example, the clay content and saturation curves calculated from
gamma ray and resistivity data, respectively, are based on empirical
relations that require certain fitting parameters, which in turn may
introduce uncertainty and then carried away in RPD. The derivation
of petrophysical input parameters certainly requires expertise and
can be time-consuming.

Increasingly, researchers have made efforts to predict rock
properties from the well data by employing machine learning
(ML) and deep learning (DL) methods. Machine learning and
deep learning algorithms have been employed in many domains
of geosciences, including rock physics (Das et al., 2019; Weinzierl
and Wiese, 2021; Xiong et al., 2021; Suleymanov et al., 2022a),

reservoir characterization (Elkatatny et al., 2018; Gowida et al.,
2019) and seismic interpretation (Di et al., 2018; Wang et al.,
2018). Based on available data and the proposed task, the
subsurface data coming from seismic, drilling, and well
logging operations can serve as input parameters to predict
the rock properties of interest. For example, Tariq et al.
(2016) employ the well data for predicting compressional and
shear travel times, while Suleymanov et al. (2022b) predict sonic
travel times but using drilling data. However, few studies
reported the comparison of rock physics and machine learning
methods for the prediction of elastic properties from well log
data. As an example, Jiang et al. (2020) demonstrated the
applicability of machine learning in rock physics analysis.
Particularly, the rock physics modeling workflow was used to
generate 30 synthetic well logs to train and validate machine
learning models, while the measured well log data was used to test
the developed data-driven models. Azadpour et al. (2020) used
the combination of rock physics and machine learning
approaches to predict S-wave velocity, which improved the

FIGURE 1
Workflow of this study.
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prediction accuracy compared to the routine Xu-Payne (2009)
model. Elastic properties, such as Vp and Vs, were also predicted
from regression analysis performed per facies with porosity and
clay volume used as input parameters (Avseth et al., 2021).
However, the applicability of machine learning methods for
predicting elastic properties at the seismic scale is not well
understood yet. That is, the scale dependence of the machine
learning results is yet to be investigated.

This research focuses on applying rock physics and machine
learning methods to predict elastic properties, namely, bulk
density (ρb), P-wave velocity (Vp), S-wave velocity (Vs), as well
as Poisson’s ratio (v) and acoustic impedance (Ip) from the well
data in the Gulf of Mexico (GOM). In particular, we examine the
applicability of RPD versus three different ML models, such as
artificial neural networks (ANN), functional networks (FN), and
support vector machines (SVM), to predict elastic properties.
Well log data such as total porosity, gamma ray, and deep
resistivity logs were used as inputs to simulate the
petrophysical input parameters employed in rock physics
models, namely, porosity, mineralogy, and pore fluid,
respectively. Moreover, we investigate whether the results
obtained from machine learning are scale-dependent or not
(i.e., applicable at both well log and seismic scales). Predicted
elastic properties were evaluated based on correlation coefficient
(R) and average absolute percentage error (AAPE) between
measured and predicted values in these two methods. Finally,
we discuss the advantages and limitations of physics-driven and
data-driven approaches during the prediction of rock properties.

2 Materials and methods

This research primarily incorporates the petrophysical
analysis to delineate the reservoir intervals in the well data.
Once this analysis was conducted, the well data were
employed by physics-driven and data-driven methods to
predict elastic parameters of rocks. First, RPD was used as a
physics-based approach to relate petrophysical and elastic
properties of sedimentary rocks. Alternatively, ML was
employed as a data-driven approach for predicting the same
elastic properties at the well log scale. Next, the measured well
data and the obtained results were upscaled to the seismic scale to
investigate the scale dependence and accuracy of both
approaches. Figure 1 summarizes the workflow used in this
study, and details are included in the following sections.

2.1 Well data

As the first step, the petrophysical interpretation of the well data
was conducted to evaluate the physical properties of porous rocks.
Figure 2 illustrates the well data under examination from the
Mississippi basin in the Gulf of Mexico (GOM), which
incorporates a conventional suite of wireline logs such as gamma
ray, resistivity, bulk density, and sonic logs. According to the
petrophysical analysis of the well data, several depth intervals
describe high-porosity gas sand from a clastic depositional
environment. From the available wireline data, our main

FIGURE 2
Well log data from GOM dataset. From left to right: gamma ray, resistivity, saturation, porosity (total porosity is black, density-derived porosity
assuming full water saturation is blue), bulk density, velocities (S-wave velocity on left, P-wave velocity on right), P-wave impedance, and Poisson’s ratio.
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objective was to conduct rock physics andmachine learning analyses
in the lower part of the well interval (starting from 14.2 kft depth)
and compare the obtained results from physics-driven and data-
driven approaches. The remaining upper interval, in turn, was used
to optimize machine learning models prior to applying them in the
lower part of the well interval to validate developed models. Figure 3
illustrates the well data interval used in both rock physics and
machine learning modeling.

2.1.1 Total porosity
The total porosity is one of the critical inputs in rock physics

modeling controlling the elastic response of rocks. Therefore, we
quantify the total porosity from the measured bulk density as the
density-derived porosity:

ϕ � ρs − ρb( )/ ρs − ρf( ) (1)

where ρs is the density of the mineral matrix, ρb is the measured bulk
density, and ρf is the density of the pore fluid. By assuming the
density of the fluid 1.00 g/cc, and the density of mineral matrix
2.65 g/cc, Eq. (1) becomes:

ϕρ � 2.65 − ρb( )/ 2.65 − 1.00( ) (2)

The resultant porosity assuming this full water saturation is
shown in Figure 2 (blue curve). However, a more accurate
estimation of the total porosity can be obtained from another
physics-based equation. It can be calculated as Eq. (2), but now
using the density of the pore fluid as a saturation-weighted average
of those of water and gas as shown below:

ρf � Swρw − 1 − Sw( )ρg (3)

As a result, the total porosity becomes:

ϕt � 2.65 − ρb( )/ 2.65 − ρf( ) (4)

2.1.2 Clay content
Mineralogy is another critical input in rock physics modeling.

The modeling assumes that only two minerals are present in the well
data under examination: quartz and clay. One of the common ways
of obtaining the clay content from well log data is a linear

transformation from the gamma-ray (GR) log (Dvorkin et al.,
2014). The readings acquired from the GR tool are crucial to
identify the presence of shale in the formations. The clay content
can be determined from the selected pure-quartz (GRmin) and pure-
shale (GRmax) points or baselines in the GR log profile. In this study,
GR readings such as 30 and 115 API were selected as GRmin and
GRmax, respectively. The resulting clay content was calculated from
the GR log as follows:

C � GRlog − GR min

GR max − GR min
(5)

2.1.3 Acoustic impedance and Poisson’s ratio
In exploration geophysics, the contrast of acoustic impedance

determines seismic reflections of subsurface formations. Acoustic
impedance is a vital parameter that relates rock petrophysical and
elastic properties. According to the data available, the acoustic
impedance was calculated from the well data as the product of
the bulk density and seismic velocity (either P- or S-wave velocity)
measured on the same porous rock:

Ip � ρbVp (6)
Is � ρbVs (7)

Poisson’s ratio, on the other hand, is the ratio of various elastic
moduli or elastic-wave velocities. Essentially, Poisson’s ratio is the
ratio of lateral strain to the axial strain (Bachrach et al., 2000). Based
on available wireline data, the Poisson’s ratio was derived as a
function of elastic wave velocities:

v � 1
2

Vp
2/V2

s − 2

Vp
2/V2

s − 1
(8)

The calculated impedances (Ip and Is) and Poisson’s ratio (v) can
be found in Figure 2.

2.2 Rock physics diagnostics

We employ RPD as the physics-driven methodology, which
allows to predict the elastic properties of rocks from the well or

FIGURE 3
Same as Figure 2 but displaying only the well interval employed in rock physics and machine learning.
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core data through developed rock physics models (Dvorkin et al.,
2014). RPD can be used not only for the quantitative
interpretation of the rock elastic properties but also to provide
a qualitative explanation of these properties in terms of rock
texture, including the grain size sorting, pore space geometry,
degree of cementation, and the effect of clay (Avseth et al., 2010;
Salih et al., 2021; Salih et al., 2023). Schematically, RPD is
employed in two steps: (i) a theoretical fluid substitution
transform is used to replace the pore fluid in the entire well
data interval to a common pore fluid, formation brine, and (ii) by
cross-plotting the wet (fluid substituted) velocities versus total
porosity data with theoretical rock physics model curves
superimposed upon these data. Next, these cross-plots are
usually color-coded by a third variable indicative of the clay
content, which in turn, validates the relevancy of the rock physics
model for the well data under examination.

2.2.1 Fluid substitution
Fluid substitution is an integral part of rock physics analysis.

It allows to observe the difference between measured and
modeled elastic properties when the pore fluids and their
saturations are theoretically changed. Essentially, this step is
performed to eliminate the impact of pore fluids variations
and thus focus on the pure effect of texture and mineralogy
on rock elastic properties. In rock physics, Gassmann’s (1951)
fluid substitution is a theoretical transform that can help to
investigate various pore fluid and saturation scenarios at their
in-situ conditions. This transform primarily employs the fluid
properties computed from Batzle-Wang (1992) equations to
arrive at bulk modulus and seismic velocities of the rock
saturated with a particular pore fluid. The main outputs from
Batzle-Wang (1992) equations are the bulk modulus and the
density of the pore fluid such as gas and water. Table 1
summarizes the fluid properties obtained from Batzle-Wang
(1992) formulations applied at the reservoir pressure and
temperature.

The rock and fluid properties used in Gassmann’s (1951)
equations are listed in Table 1.

2.2.2 Rock physics models (transforms)
As a velocity-porosity science, rock physics provides physics-

based relations between the elastic-wave velocity and the measured
porosity in the well or laboratory (Dvorkin, 2021). This operation
can be inversely implemented to arrive at the porosity of the
subsurface formations from known seismic attributes. A number
of rock physics models were developed to relate these petrophysical

and elastic properties of rocks. The time average equation,
introduced by Wyllie et al. (1956), is among the first rock
physics transforms relating velocity to porosity:

1
Vp

� 1 − ϕ

Vps
+ ϕ

Vpf
(9)

whereVps is the velocity in themineral phase, andVpf is the velocity
in the fluid phase. However, this transform suffers from the
unrealistic simplicity of the model. The model idealizes a porous
rock as a combination of mineral and fluid phases in terms of layers.
The velocity in this transform is calculated as the sum of travel times
of minerals and fluids. Nevertheless, in nature, the rock is a
composite of varying-sized and irregularly shaped grains and
pores (Kerimov, 2018). The empirical equation introduced by
Raymer et al. (1980) is another historical equation that provides
a relation between the velocity and porosity of the rock.

Vp � 1 − ϕ( )2Vps + ϕVpf (10)

Compared to Wyllie et al. (1956) time average equation, this
rock physics transform is more accurate for consolidated rocks. By
using the same functional form, Dvorkin (2008b) showed that
S-wave velocity can be estimated as well (excluding friable sands):

Vs � 1 − ϕ( )2Vss

�������������
1 − ϕ( )ρs

1 − ϕ( )ρs + ϕρf

√
(11)

Where Vss is the S-wave velocity in the mineral phase, ρs and
ρf are the density of the mineral phase and the pore fluid,
respectively.

In addition to the aforementioned velocity-porosity models,
Mavko et al. (2020) present a number of rock physics models for
various lithologies, including unconsolidated and consolidated
sandstones, carbonates, and other sediments. These models can
be generally classified as inclusion models and grain-based
models. If the model is relevant to well data, it can
significantly contribute to the prediction of the rock texture.
In inclusion models, the pore space is represented as inclusions,
typically observed in carbonate rocks (Fournier et al., 2018;
Jaballah et al., 2021; Teillet et al., 2021). However, in grain-
based models, the rock is represented as a combination of ideally
rounded and identically shaped grain packs. Since the rock
under examination is sandstone (binary mixture of quartz
and clay minerals), we examine some of the widely used
granular effective medium (GEM) models that are usually
applied to rocks from clastic environments. The concept of
critical porosity introduced by Nur et al. (1998) is employed

TABLE 1 Rock and fluid properties used in theoretical fluid substitution.

Mineral/fluid Density (g/cc) Bulk modulus (GPa) Shear modulus (GPa)

Brine 1.027 2.88 0

Gas 0.263 0.132 0

Quartz 2.65 36.6 45

Clay 2.65 21 7
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in all grain-based models, mainly in sandstones. In addition;
Hertz-Mindlin (1949) contact theory is used to provide elastic
properties of the grain packs in these models. The soft-sand,
stiff-sand, and constant-cement models are among these models.
The soft-sand model is also called a friable sand model. This
model assumes that the porosity of the sand grain pack decreases
as a result of the presence of other small rock fragments
(Dvorkin and Nur, 1996). The stiff-sand model, however,
implies that the porosity decrease is accompanied by a
diagenetic trend due to cement formation and accumulation
observed in grain contacts (Mavko et al., 2009). The constant
cement model assumes that the initial cementation is present in
the sand grain pack, but the further porosity decrease is
accompanied by the deposition of non-cementing particles
(rock fragments) in the pore space (Avseth et al., 2000). The
illustration of these theories is presented in Figure 4.

2.3 Upscaling

From seismic exploration to well logging to core analysis, the scale
of investigation of subsurface formations varies dramatically from kft to
ft. The multiscale subsurface data are typically used to characterize
various rock properties. Oneway to bring themultiscale subsurface data
to a common scale is upscaling (Partyka et al., 2000). Upscaling is a
technique that allows finding the common or “effective” properties of
heterogeneous rocks. During this process, the wireline and core data are
usually upscaled to a seismic scale so that the obtained rock properties
can be compared and extrapolated, if needed, to the prospects away
from the well location and correlated with seismic data. In geophysics,
Backus (1962) averaging method is widely used to produce effective
rock properties at the seismic scale. Particularly, arithmetic average and
harmonic average were used to upscale petrophysical (clay content and
porosity) and elastic parameters, respectively. In this study, we used the

FIGURE 4
Theoretical rock physics models illustrating porosity reduction from left to right. From top to bottom: soft sand model, stiff sand model, contact
cement model, and constant cement model. Modified from Dvorkin (2021).
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upscaling technique to investigate the validity of RPD versus ML
approaches when the results are being upscaled at the seismic scale.

3 Results

3.1 Rock physics diagnostics

3.1.1 Fluid substitution
The first rock physics transform applied to well data under

examination was Gassmann’s (1951) fluid substitution. As stated in
the previous section, the lower part of the well interval was used for
rock physics analysis. Figure 5 indicates that a theoretically
substituted pore fluid, 100% saturated brine, impacted the elastic

response of porous rocks in the reservoir section of the well. Based
on the obtained results, the sensitivity of elastic properties to pore
fluid saturation is obvious in the upper part of the high-porosity
reservoir interval. Moreover, by plotting the impedance (Ip) versus
porosity as presented in Figure 6, we notice that a low-porosity high-
impedance domain of the cross-plot describes water-saturated rocks,
while hydrocarbon-saturated rocks have high porosity (ϕ > 0.2) and
an Ip that is predominantly below 5.5 km/s g/cc.

3.1.2 Rock physics modeling
As the second step in RPD, our objective was to establish the rock

physicsmodel which quantitatively explains thewell data. Bymaking the
cross-plots between 100% wet velocity and total porosity, as shown in
Figure 7, as well as color-coding the data by the GR-derived clay content,
the corresponding transform between rock properties can be found with
rock physics model curves superimposed on this cross-plot. The success
of the model is defined by the consistency of the model curves and the
well data color-coded by the clay content. Among the available arsenal of
rock physics models, we examine four different velocity-porosity-
mineralogy transforms: Raymer-Dvorkin, soft-sand, stiff-sand, and
constant-cement models. The inputs in all these models are
essentially the porosity, mineralogy, and pore fluid. However,
aforementioned models (except the Raymer-Dvorkin model) require
additional inputs, namely, the critical porosity, differential pressure,
shear correction factor, and coordination number. The properties of
individual minerals (quartz and clay) are listed in Table 1. The critical
porosity was 0.4, the shear correction factor was 1, and the differential
pressure was 30MPa which is the average reservoir pressure. The only
input which was different in these models was the coordination number.
For the soft-sand and stiff-sandmodels, the coordination number was 6,
while for the constant-cement model, it was 12. Figure 7 shows the
application of these models on velocity-porosity-mineralogy cross-plots.
In particular, the model curves (each representing a 20% clay content
increment from top to bottom) are superimposed on the color-coded
data. Based on plotted cross-plots, the constant-cement model was most
relevant to well data under examination. This can be confirmed by the
fact that the top curve (0% clay content) and bottom curve (100% clay
content) are consistent with the color-coded clay content in the data.
Thus, the constant-cement model was established as a rock physics
transform to quantitatively predict elastic properties of rocks.

FIGURE 5
Measured (black) and computed (blue) elastic properties of rocks for 100% water saturation.

FIGURE 6
Cross-plot of P-wave impedance vs total porosity color coded by
water saturation at in-situ conditions.
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We use the selected constant-cement model to predict elastic
properties from the available petrophysical properties. This operation
can be achieved using the following inputs: the total porosity, clay content,
and water saturation. The RPD-based prediction of elastic properties is
presented in Figure 8 using the clay content computed from the GR log.
According to the obtained predictions, the resulting elastic properties
match the overall trends of the measured profiles but fail to accurately
reproduce them. In particular, the RPD-based approach showed lower
accuracy in reproducing the measured Vp, Vs, and v curves, especially
within the reservoir zone (Figure 8). The evaluation of predicted elastic
attributes was based on correlation coefficient (R) and average absolute

percentage error (AAPE) between measured and predicted rock
properties. Table 2 shows the quantitative performance indicators for
results from this approach, with the AAPE ranging between 4% and 10%.

3.2 Machine learning analysis

3.2.1 Data description, pre-processing, and
statistical analysis

Machine learning models were trained and tested with
2610 data points in the upper part of the well interval and

FIGURE 8
Measured and predicted well log curves in 14.2–14.7 kft depth interval: GR, saturation, clay content (predicted from GR log), bulk density, velocity
(P-wave velocity on right and S-wave velocity on left). The black curves are for the measured data and blue ones for the rock physics model. Elastic
properties are predicted from the constant-cement model.

TABLE 2 Quantitative performance of the established rock physics model for predicted elastic properties.

Rock physics model ρb (g/cc) Vp (km/s) Vs (km/s) Ip (km/s g/cc) v

R AAPE R AAPE R AAPE R AAPE R AAPE

Constant-cement 0.999 0.010 0.548 4.320 0.506 10.110 0.816 4.312 0.864 10.698

FIGURE 7
Cross-plots of wet-rock velocity vs the total porosity color coded by GR-derived clay content for the 14.2–14.7 kft depth interval. Model curves are
from the Raymer-Dvorkin, soft-sand, stiff-sand, and constant-cement models. The upper and lower curves are for pure quartz and clay mineralogy,
respectively. The different curves represent the variable mineralogy (clay and quartz) with 20% clay increment and starting from 0% clay (100% quartz) in
the upper most curve.
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validated with 1003 data points in the remaining depth interval.
The latter was used in RPD, as we demonstrated above. The total
porosity, gamma-ray, and resistivity curves were selected as
machine learning model inputs to represent the petrophysical
parameters employed in rock physics models, namely, the
porosity, mineralogy, and pore fluid, respectively. The idea
behind selecting the gamma-ray log was to provide indirect
information about the mineralogy, particularly shale and non-
shale sedimentary rocks. Similarly, the resistivity log was used as
pore fluid indicator, especially between hydrocarbon and water-
saturated rocks. The bulk density, P- and S-wave velocities were
selected as outputs in machine learning models as our primary
goal was to compare the predicted elastic properties from rock
physics and data-driven modeling.

Data preprocessing was conducted as a first stage towards
obtaining successful data-driven models. This step is usually
performed through statistical analysis, feature scaling, removal of
duplicates, outliers, and any other unrealistic values observed in the
dataset. However, statistical analysis showed that the well data under
examination was of high quality, which excluded any data removal.
Moreover, statistical analysis of the well data showed a good
distribution of the data, which is crucial for developing successful
data-driven models.

3.2.2 Optimization of ML models
A traditional approach to finding the optimum model

parameters in ML is based on hyperparameter tuning. This
step allows observing which combination of model
parameters is the most appropriate for achieving a high
prediction performance. By employing the upper part of the
well log data, hyperparameter tuning was conducted to find the
optimum parameters of the data-driven models. The upper part
of the well data was randomly distributed by a 70:30 data ratio
for the model training and testing purposes. Each machine
learning model consists of several adjustable parameters
tuned to obtain accurate output predictions. In the ANN
model, the adjustable parameters are the number hidden of
layers and neurons, as well as network, training, and transfer
functions. The FN model consists of method and type model
parameters. The SVM model, in turn, can be tuned using the
kernel function, epsilon (ε), kernel option, lambda (λ), C-value,
and verbose parameters. The quality of the developed models

TABLE 3 Optimized parameters of machine learning models.

SVM ANN FN

Parameter Optimized value Parameter Optimized value Parameter Optimized value

Kernel function Gaussian No. of hidden layers 1 Method FNFBM

Kernel option 1 No. of neurons 25 Type Non-Linear 2

λ 1×10-3 Network function fitnet

ε 1×10-3 Training function trainlm

Verbose 1 Transfer function tansig

C-value 500

FIGURE 9
Measured and predicted well log curves in 14.2–14.7 kft depth
interval. From left to right: bulk density, velocity (P-wave velocity on
right and S-wave velocity on left), P-wave impedance, and Poisson’s
ratio. The black curves are for themeasured data and red ones for
the machine learning models. Elastic properties were predicted from
ANN (top), FN (middle), and SVM (bottom) models.
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was determined by R and AAPE. Table 3 presents the optimized
parameters of the developed ANN, FN, and SVM models for
predicting the elastic properties of rocks.

3.2.3 Prediction from ML models
Once the ML models were optimized through

hyperparameter tuning, they were used for predicting elastic
properties of rocks from another depth interval unseen during
the development and optimization of data-driven models. In ML,
this step can also be termed the validation stage. In this study, we
select the lower part of the well interval (Figure 3) to validate the
optimized ML models since both intervals consist of similar
lithology and pore fluids. The idea behind selecting the lower
interval was to compare the results from RPD and ML, as the
former was conducted on the bottom part of the well interval. The
predicted outputs, such as ρb, Vp, Vs, as well as the v and Ip
(computed from predicted outputs), are presented in Figure 9.
The measured rock properties are shown by black, while the
predicted ones are shown by red curves. Moreover, the
quantitative performance of ANN, FN, and SVM models is
presented in terms of R and AAPE values in Table 4.
Compared to the RPD-based approach, data-driven models
showed better estimation of elastic properties, as presented in
Table 4. The AAPE did not exceed 3% when using ML (Table 4),
while the error reached up to 10% for RPD (Table 2). Among
these models, the ANN model produced slightly more accurate
predictions of elastic properties than FN and SVM models.

3.3 Prediction at the seismic scale

The scale dependence of rock physics and machine learning
models was investigated at the seismic scale. The idea here was to
determine if the models produced based on well log data can be used
for prediction at the seismic scale. To achieve this, we first upscaled
the measured well data using the Backus (1962) averaging method to
arrive at the seismic scale. Then, the upscaled wireline data were
used in rock physics and machine learning analyses to predict elastic
properties, but once again, at the seismic scale.

According to theWidess (1973) discussion of the limit of resolvable
thickness from seismic data, if the value of wavelength (λ) divided by
eight (λ/8) is less than thin bed thickness, then such a feature is
resolvable. The equation below was used to calculate the wavelength:

λ � Vp mean( )
freq

(12)

whereVp(mean) is themean value ofmeasured P-wave velocity (2.72 km/
s),freq is the frequency at the reservoir level. By assuming the frequency
at the reservoir level of 30 Hz, the wavelength of 297 ft was computed
and later divided by 8 to generate a resolvable window size. As a result,
the window size of 37 ft was computed for the well data under
examination. The resolvable window size was used during Backus
(1962) averaging of rock properties. In other words, every 37 ft of the
well interval was averaged to produce a single or “effective” value rock
property instead of 74 values (2 data points per foot). Figure 10 shows the
results from Backus (1962) averaging method.

TABLE 4 Quantitative performance of machine learning models for predicting elastic attributes at the well log scale.

ML model
ρb (g/cc) Vp (km/s) Vs (km/s) Ip (km/s g/cc) v

R AAPE R AAPE R AAPE R AAPE R AAPE

ANN 1.000 0.023 0.845 2.196 0.843 2.559 0.935 2.196 0.915 2.907

FN 0.999 0.067 0.821 2.369 0.824 2.701 0.925 2.382 0.916 3.013

SVM 0.985 0.227 0.863 2.003 0.867 2.321 0.923 2.096 0.858 2.894

FIGURE 10
Measured and Backus-upscaled well log curves in 14.2–14.7 kft depth interval. The colors are black for the measured data and red for the Backus-
upscaled data.
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During the upscaling process, the arithmetic mean was used for the
gamma-ray, water saturation, porosity, clay content, and bulk density.
The remaining elastic properties (Figure 10) were averaged from the
elastic moduli computed as harmonic mean. The Backus-upscaled well

data showed good agreement with the overall trends from the original
well log data (Figure 10). In particular, the upscaled clay content is still
consistent with the gamma-ray curve, even at the seismic scale. As
observed in Figure 10, the fine-scale variations in properties are not
captured during the upscaling process, which is reasonable when thewell
data are averaged. Nevertheless, this feature did not prevent identifying
the reservoir and non-reservoir zones at the seismic scale.

To investigate the applicability of rock physics andmachine learning
models at the seismic scale, the upscaled well data were used in rock
physics and machine learning analyses. Here we do not show step-by-
step processes for predicting elastic properties from the upscaled well
data as we demonstrated rock physics and machine learning techniques
in previous sections (same procedure). However, we present the results
obtained from these physics-driven and data-driven methods. Figure 11
demonstrates the results obtained from RPD (top) and ANN, FN, and
SVM machine learning models.

According to qualitative and quantitative results presented in
Figure 11 and Table 5, the prediction accuracy of ρb remained high
during rock physics and machine learning modeling with R of
0.999 and AAPE of less than 0.1% at the seismic scale. It is
interesting to note that rock physics and machine learning
models performed relatively better (higher R and lower AAPE) at
the seismic scale compared to the well log scale, as suggested by the
results presented in Tables 4 and 5. Such results, in addition to those
presented in Figure 11, suggest that ML prediction of elastic
properties seems to be scale-independent. However, the rock
physics-based estimation of rock properties still showed a
significant mismatch within the reservoir interval at the seismic
scale (Figure 11). In the discussion below, we investigate and provide
an explanation for such discrepancy, especially in the Vs and v
prediction when applying RPD.

4 Discussion

4.1 Prediction accuracy and data quality

Poisson’s ratio is an important quality indicator of the measured
sonic data in the well. Typically, the range of Poisson’s ratio is
0.10–0.20 for the gas sand (Knight et al., 1998). However, as
presented in Figure 3, the calculated Poisson’s ratio in the
reservoir section of the well varied between 0.20 and 0.40. By
conducting the quality control of the sonic data using Vp/Vs

ratio, it was found that the measured Vs was of poor quality as
the ratio was higher than 2, which is unreasonable for the sandstone
formations. Needless to say, that the poor quality of Vs data is a
common case during well logging operations. This data quality issue
urged us to ask: how to perform quality control (QC) on the Vs data
or how we can confirm that the poor-quality Vs was the main reason
behind the large discrepancy observed during the prediction of Vs

and v (using RPD) in the reservoir section of the well?
Earlier studies showed that RPD could be used to check the

consistency and quality of Vs data (Wollner et al., 2017). This was
done by using an approach that was detailed by Dvorkin et al.
(2014). First, the measured Vp data and the established constant-
cement model can be used to invert for a sonic-derived clay content.
Such clay content, when used as an input in the constant-cement
model, should accurately reproduce the measured Vp data. The

FIGURE 11
Backus-upscaled and predicted well log curves for 14.2–14.7 kft
depth interval. The colors are black for the measured data and red for
the machine learning models. The top figure is from rock physics
model, the rest are from machine learning models. Elastic
properties were predicted from constant-cement (rock physics), ANN,
FN, and SVM (machine learning) models at the seismic scale.
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hypothesis is that if this model, with Vp-derived clay content, can
accurately predict Vp, then it should also reproduce Vs. In this case,
any major discrepancy between the measured and predicted Vs

suggests an issue with the Vs data quality. This is because Vp and Vs

will not be physically consistent, where the latter is frequently of
lower quality and higher uncertainty.

Figure 12 demonstrates the results from RPD when Vp-derived
clay content was used as an input in the constant cement model. The
sonic-derived clay content followed similar trends of GR log and
GR-derived clay content. By this method, the exact match between
measured and predicted elastic properties was observed for the ρb,
Vp, and Ip. Of course, such a perfect match was expected, given that
the clay content was estimated based on Vp. However, the important
task here was to check whether such an approach will reproduce the
measured Vs and v. Figure 12 shows that this approach (red curves)
reproduced the measured Vs reasonably well except at the reservoir

interval (14.4 kft–14.5 kft), similar to the earlier approach that used
GR-derived clay content (blue curves). The significant discrepancy
in predicting v still persists even after using the Vp-derived clay
content. In particular, the predicted v shows values between 0.1 and
0.2 in the gas sand which are physically more reasonable than the
values obtained from the measured Vs. Such observations support
the argument that the Vs data within the reservoir zone is of poor
quality and that the measured Vs cannot be trusted in that depth
interval. Table 6 lists the accuracy of predicted elastic properties in
terms of R and AAPE values.

The above discussion suggests that while ML models
resulted in lower prediction errors, especially for Vs, such
approach fails to account for issues in the data without the
use of rock physics analysis. It is true that the use of ML models
for the prediction of elastic properties does not require the
calculation of clay content and water saturation, as GR and

TABLE 5 Quantitative performance of rock physics and machine learning models for predicting elastic properties at the seismic scale.

Rock physics and ML models
ρb (g/cc) Vp (km/s) Vs (km/s) Ip (km/s g/cc) v

R AAPE R AAPE R AAPE R AAPE R AAPE

Constant cement 0.999 0.017 0.723 2.816 0.617 9.683 0.901 2.823 0.865 9.656

ANN 1.000 0.000 0.962 0.983 0.952 1.223 0.983 0.983 0.982 1.076

FN 0.999 0.023 0.952 1.082 0.945 1.261 0.982 1.094 0.983 1.067

SVM 0.999 0.095 0.972 0.724 0.964 1.010 0.990 0.748 0.988 0.943

FIGURE 12
Measured and predicted well log curves in 14.2–14.7 kft depth interval: GR, saturation, clay content, bulk density, velocity (P-wave velocity on right
and S-wave velocity on left). The black curves are for the measured data, blue one for rock physics model with GR-derived clay content, and red ones for
the rock physics model with Vp-derived clay content. Elastic properties are predicted from the constant-cement model.

TABLE 6 Quantitative performance of the established rock physics model for predicted elastic properties in Figure 12.

Rock physics model
ρb (g/cc) Vp (km/s) Vs (km/s) Ip (km/s g/cc) v

R AAPE R AAPE R AAPE R AAPE R AAPE

Constant-cement 2 1.000 0.010 0.997 0.071 0.795 7.319 0.999 0.081 0.832 10.026
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resistivity data can be used directly. This perhaps is the main
advantage of ML approach over RPD, which requires the
calculation of petrophysical properties and has its own
associated uncertainty, as mentioned earlier. Nevertheless,
our results showed that the prior use of RPD to QC the data
is crucial to avoid training the ML models with poor-quality
data resulting in unrealistic predictions. Relying on ML
prediction without involving RPD can lead to improper
estimation of elastic properties despite the “apparent match”
with the measured data during the training and testing phases.
RPD, on the other hand, has the power not only to identify data
quality issues, but also to correct them.

4.2 Scale dependence

According to Figure 11 and Table 5, it is evident that ML
models produced an excellent agreement with the measured data
at both well log and seismic scales. This suggests that the ML
models are scale independent as the prediction accuracy of rock
properties remained high at the seismic scale. In other words, the
same ML models established and used at the well log scale can be
used to predict the elastic properties at the seismic scale through
Backus (1962) averaging. Such a conclusion also applies to the
RPD results as shown above (Figure 11) and suggested by earlier
work (Dvorkin & Wollner, 2017). Overall, the estimation of rock
properties at the seismic scale was slightly better than at the well
log scale for both RPD and ML (Tables 2, 4, and 5). This might be
explained by the smoother nature of the upscaled data
(Figure 11), in which small-scale variations within the well
log data were lost during the upscaling process. Thus, the
difference between rock physics and machine learning results
was reduced at the seismic scale, as observed in Figure 12 and
Table 5.

5 Conclusion

The physics behind any estimation or prediction is crucial for
validating developed physics-driven and data-driven models. The
deterministic method presented in this study, RPD, heavily relies on
the physics behind the prediction of rock properties. The well data from
GOM were used to estimate and compare the accuracy of predicted
elastic rock properties from rock physics andmachine learningmodels in
two different scale scenarios: the well log and seismic scales. The
mineralogy of the subsurface was assumed as a binary mixture of
quartz and clay minerals. The constant cement model was later
established to predict elastic rock properties. Based on presented
results from rock physics and machine learning methods, ML models
provided better prediction accuracy at the well log and seismic scales
compared with the RPD approach. The use of ML for elastic properties

prediction was also found to be scale independent, similar to the RPD, as
prediction accuracy remained high at the seismic scale.Moreover, theML
method did not require the calculation of petrophysical properties, such
as clay content and water saturation, with GR and resistivity data used
directly.However, themain limitation of theMLmethodwe found in this
study was that it could not capture poor-quality data or correct it as
opposed to the RPD method. The poor-quality Vs data resulted in
erroneous v values and predictions, even if they showed an excellent
agreement. Hence, QC using rock physics analysis has to be conducted
prior to applying ML method to eliminate such issues. Thus, this study
suggests the importance of incorporating rock physics analysis in
machine learning to check the quality of the training data and ensure
reasonable predictions.
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