
Efficient slope reliability analysis
based on representative slip
surfaces: a comparative study

Wen-Qing Zhu1,2†, Shao-He Zhang1,2, Yue-Hua Li1,2 and
Jian Liu2,3*
1Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment
Monitoring, Ministry of Education, School of Geosciences and Info-Physics, Central South University,
Changsha, China, 2State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of
Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China, 3University of Chinese Academy
of Sciences, Beijing, China

Slope reliability analysis can be conducted based on representative slip surfaces
(RSSs) more efficiently than the conventional analysis based onmany potential slip
surfaces (PSSs). Various methods for selecting RSSs are proposed to enhance the
efficiency of slope reliability analysis. Thesemethods, however, generally require a
complex calculation procedure (e.g., evaluation of reliability index for each PSS
and/or correlation coefficients among PSSs) that cannot adaptively single out the
RSSs, and the selected RSSs by these methods are commonly related to the
statistics of soil properties. This leads to the question of how to efficiently and
adaptively identify the RSSs of a slope for a subsequent reliability analysis with
many parametric studies. To answer this question, an adaptive K-means
clustering-based RSSs (AKCBR) selection method has been recently developed
that is able to select the RSSs adaptively and efficiently from many PSSs. The RSSs
identified by AKCBR do not vary with the variation of soil statistics, such as the
inherent spatial variability that is beneficial to slope reliability analysis involving
many parametric studies. As such, limitations of the available methods are tackled
in AKCBR. A comprehensive comparative study is conducted in this paper to
explore in detail the strength and weaknesses of the AKCBR against the available
methods. Four slope examples that represent four kinds of slope stability problems
are considered. Results show that AKCBR provides reliability results comparable
with the availablemethods in terms of probability of failure and themost dominant
failure modes, and it is generally more efficient. The AKCBR can adaptively identify
the RSSs of slopes belonging to different types, and the RSSs are statistically robust
against the statistics of soil properties, which is beneficial to reliability analysis
involving many parametric studies.
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1 Introduction

Slope reliability analysis has been a popular topic in geotechnical engineering since the
21st century because of, at least partially, the fast development of computer science (Ji and
Low, 2012; Phoon and Ching, 2014; Phoon and Retief, 2016; Jiang et al., 2018; Jiang et al.,
2020; Liu et al., 2021; Liu L.-L. et al., 2022; Huang et al., 2022; Liu and Wang, 2022).
Generally, in slope reliability analysis, statistics and probability theory are first used to
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quantify and simulate geotechnical uncertainties, such as the
inherent spatial variability (ISV) of soil properties (Jamshidi
Chenari and Alaie, 2015; Jiang S.-H. et al., 2022). Then,
reliability approaches, for example, the Monte Carlo simulation
(MCS) and the first-order reliability method (FORM), are utilized to
calculate the probability of failure (Pf) or the reliability index (β) of
a slope based on a conventional deterministic slope stability analysis
model; for example, the limit equilibrium method (LEM) and the
finite element method (FEM). Among the deterministic methods,
LEM is the one most used with probabilistic approaches for slope
reliability analysis because of its simplicity and wide applications in
conventional slope designs (Javankhoshdel et al., 2020; Mafi et al.,
2020). LEM, however, searches for the factor of safety (FS) of slopes
among a large number of potential slip surfaces (PSSs), which might
be time-consuming (Zhang et al., 2011). This time inefficiency
would become more serious in system slope reliability analysis,
especially when MCS is involved (Zhang et al., 2011; Liu and Cheng,
2016; Jiang Q. et al., 2022; Liu J. et al., 2022). Therefore, it is of
significance to enhance the computation efficiency of LEM-based
slope reliability analysis using a limited number of slip surfaces or
representative slip surfaces (RSSs), especially when ISV is
considered.

According to Zhang et al. (2011), the FSs for many of the PSSs are
somehow correlated because these slip surfaces share almost the same
uncertain soil properties. With this idea in mind, PSSs can be classified
into a finite number of groups. Slip surfaces in each group are correlated
with each other and can be represented by a specific one called the RSS.
The FSs of RSSs from different groups are generally uncorrelated or
weakly correlated. Therefore, if RSSs can be effectively identified, slope
reliability analysis can be conducted based on the RSSs rather than on
the PSSs, thus increasing the computation efficiency. Many efforts have
been made to identify the RSSs of slope in the literature. To the best of
our knowledge, the pioneer work was done by Zhang et al. (2011). In
their work, reliability index β is first calculated for all PSSs, which is
achieved by FORM (Low and Tang, 2007). Then, RSSs are iteratively
identified based on reliability index β and a threshold correlation
coefficient ρ0 between the FSs of two PSSs. The effectiveness of the
method has been illustrated and validated by three slope reliability
analysis examples without considering ISV. The influence of ρ0 on the
reliability results has also been fully examined.

To bypass the recursive determination of RSSs by Zhang et al.
(2011), Li et al. (2013) further proposed using an equivalent
reliability index β and the correlation coefficients between the FS
of the deterministic critical slip surface (CSS) and the FSs of other
slip surfaces to select the RSSs of a slope. However, both β and the
correlation coefficients between FSs of two slip surfaces are
calculated by approximate analytical methods, which is suitable
for slope examples with several random variables and might be
inefficient for slope reliability analysis involving multiple random
fields. Li et al. (2014) also used a procedure similar to that used by
Zhang et al. (2011) to recursively select the RSSs but employed a
different approach (i.e., THE mean value first-order second-
moment method) to evaluate the reliability index β. The effect of
ρ0 on the selection of RSSs has also been investigated, but there is still
no efficient guideline for the determination of ρ0. It should be noted
that this method has also been extended for risk assessment of slope
failure by the same authors very recently (Li and Chu, 2016). Chu
et al. (2015) used the correlation coefficient between two slip

surfaces, rather than between the FSs of two slip surfaces, to
select the RSSs based on the geometric dimensions of slip
surfaces. A threshold correlation coefficient value, however, is
needed in advance. Jiang et al. (2015) have taken the CSSs
corresponding to 1,000 realizations of random fields underlying
spatially varied soil properties as the RSSs. The effectiveness of the
method was verified by two slope examples with many parametric
studies, and the results showed that RSSs varied with ISV. Jiang et al.
(2017) used the Pearson correlation coefficient to measure the
correlation of FSs of the PSSs and divide the PSSs into different
groups. The RSSs were selected by the minimum FS among each
group of slip surfaces, but the number of RSSs, that is, the number of
groups of slip surfaces, was determined by a sensitivity study, which
might be inefficient. Furthermore, Ma et al. (2017) proposed a
method to identify the non-circular RSSs using the shear strength
reduction method, which facilitated to some extent reliability
analysis of slopes based on non-circular slip surfaces.

It can be seen from the aforementioned literature analysis that
the available RSSs methods suffer individually or simultaneously
from the following three limitations: 1) a complex procedure,
including but not limited to the evaluation of the reliability index
associated with each PSS and/or correlation coefficient between two
arbitrary PSSs, is generally required to single out RSSs; 2) the RSSs
cannot be adaptively selected because of the prerequisite of defining
a threshold correlation coefficient among the PSSs or the number of
RSS groups; and 3) the RSSs identified by these methods commonly
vary with the statistics of soil properties, such as ISV, which is not
convenient for situations where various parametric studies are
necessary. A clustering-based RSS method recently proposed by
Wang et al. (2020), however, can tackle these issues with ease. The
method is conceptually simple and effective and utilizes an adaptive
K-means clustering approach to identify the RSSs of slope. The RSSs
identified by the method are invariant for different statistics of soil
properties, enabling parametric studies that must often be efficiently
achieved in slope reliability analysis. However, the effectiveness of
the method was only applied to several simple slope examples, and
the method lacks rigorous theoretical support and might be sensitive
to the selection of initial cluster centers. In addition, different RSS
methods have their own merits and limits.

Therefore, this paper mainly aims to 1) further examine the
capability of the proposed K-means clustering method for RSS
identification of more general slope cases and 2) present a
comprehensive comparison of available methods of RSS identification
that has not been studied before. Details of these methods are presented
and the corresponding Matlab code is included in Supplementary
Material. Four slope examples, representing four different types of
problems with different conditions of soil spatial variability and slope
geometrical complexity, are analyzed.

2 Review of available methods for
identification of slope RSSs

2.1 Method I: RSSs identified by reliability
index and correlation coefficient

The first method for identifying RSSs was proposed by Zhang
et al. (2011) based on the observation that FSs of many PSSs are
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somewhat correlated. With this idea, the contribution of different
PSSs to the system failure probability of a slope can be different and
represented by some important slip surfaces or RSSs. For simplicity
purposes, the major steps of the method are summarized as follows:

Step 1: Calculate the reliability index β of each PSS using FORM
with the following equation:

β � min
g θ( )−1�0

����
ααT,

√
(1)

where g(θ) − 1 � 0 is the limit state function for a slip surface, θ is a
vector of random variables considered, and α is a vector of
uncorrelated reduced variables corresponding to θ.

Step 2: Find the slip surface corresponding to the smallest reliability
index and take it as an RSS.

Step 3: Calculate the correlation coefficients between the FS of the
RSS found in Step 2 and the FSs of other PSSs using the following
equation:

ρij �
ααT

βiβj
, (2)

where βi and βj are reliability indices for the ith and jth PSSs
calculated in Step 1.

Step 4: Exclude the slip surfaces that have correlation coefficients
with the RSS found in Step 2 larger than a threshold value ρ0 from
further consideration, as these PSSs are represented by the RSS
identified in Step 2.

Step 5: Repeat Steps 2–4 until all PSSs are excluded and
represented.

It should be noted that ρ0 has a significant influence on the
results of RSSs. A larger ρ0 results in a larger number of RSSs,
leading to more cost of computer resources, and vice versa. In the
original work by Zhang et al. (2011), ρ0 is determined by a
parametric study where several values of ρ0 are chosen to study
its influence on the Pf, although generally a value around 0.8 can
reach accurate estimations of the system Pf for the considered
slope examples. In addition, the ISV of soil properties is not
considered in this method.

2.2 Method II: RSSs identified by equivalent
reliability index and correlation coefficient

This method is proposed based onMethod I by Li et al. (2013) to
overcome the problem of Method I in recursively selecting RSSs. It
also uses the reliability index and correlation coefficient between two
PSSs to identify the RSSs. The differences between the two methods
lie in that Method II identifies all RSSs at one time, and a reference
slip surface is used to calculate the correlation coefficients. The
concrete procedures follow:

Step 1: Perform a deterministic stability analysis of a slope to obtain
the critical deterministic slip surface (CDSS) and take it as a
reference slip surface S0.

Step 2: Calculate the correlation coefficients between the FS of S0
and all PSSs using the following equation (Chowdhury and Xu, 1995;
Bhattacharya et al., 2003):

ρkl �
∑m

j�1hjkhjlσ
2
xj∑m

j�1h
2
jkσ

2
xj

( ) ∑m
j�1h

2
jlσ

2
xj

( )
hjk � zGk

zxj
hjl � zGl

zxj

zG

zxj
� G+ − G−

2σxj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (3)

where σxj is the standard deviation of random variable xj,Gk and Gl

are, respectively, the limit state function values corresponding to the
kth and lth slip surface, G+ and G− are limit state function values for
the variable xj greater than and less than the mean value by σxj,
respectively, and ρkl is the correlation coefficient between the FS of
the kth and lth slip surface.

Step 3: Evaluate the equivalent reliability index β of each PSS using
the following equation (Ang and Tang, 2007):

βk �
Gk μX( )�����������������������������������∑m

i�1
zGk
zxi
( )2σ2xj + ∑m

i�1∑m
j ≠ i

zGk
zxi
( ) zGk

zxj
( )χijσxiσxj√ , (4)

where the subscript k indicates the calculation is based on the kth
slip surface, χij is the correlation coefficient between random
variables xi and xj, and G(μX) is the limit state function value
when all random variables are set as their mean values.

Step 4: Sort the correlation coefficients obtained in Step 1 in
decreasing order and then divide the slip surfaces corresponding
to them into Nw (e.g., 10) groups.

Step 5: Find the slip surface with the minimum equivalent
reliability index in each group of slip surfaces and take that slip
surface as the RSS of each group.

It is worthwhile to point out that Li et al. (2013) named the
RSSs identified in Step 5 as candidate RSSs, and the final RSSs of
slope are selected by the number of failures of each candidate RSS
within an MCS analysis. The candidate RSSs, which have no
contributions to the probability of slope failure, are not
included in the final RSSs. In other words, slope reliability
analysis can only be performed based on the candidate RSSs
because the RSSs are the byproduct of reliability analysis.
Therefore, to have a consistent comparison with other methods,
herein the candidate RSSs identified in Step 5 are referred as the
RSSs of the method. It is also noted that although the ISV of soil
properties is properly considered in this method, the computation
cost of modeling the ISV might be very high in the case of
thousands of random field elements.

2.3 Method III: RSSs identified by CDSS
within the MCS framework

This method is conceptually simple. It is proposed by Jiang et al.
(2015) based on the observation that the CSSs for different
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realizations of random variables or random fields might be the same
PSS. Consider, for example, that an MCS with Np random field
realizations would result inNp CSSs. However, most of theNp CSSs
would be the same PSS (e.g., the CDSS obtained by considering soil
properties as spatial constants), which finally leads toNr (Np ≪Nr)
CSSs. Jiang et al. (2015) showed that reliability analysis performed
based onNr CSSs produces very similar results as that performed on
all PSSs. TheNr CSSs, therefore, are considered as the RSSs and can
be used for the subsequent slope reliability analysis. In general, the
identification of RSSs of the method consists of the following three
steps:

Step 1:GenerateNp (e.g., about 1,000) realizations of random fields
according to prescribed statistical information.

Step 2: Perform deterministic slope stability analysis with the Np

realizations of random fields to obtain the corresponding Np CSSs.

Step 3: Find the duplicates of theNp CSSs and take the unique CSSs
as the RSSs.

Compared with the aforementioned two methods, this method
does not need to calculate the reliability index for each PSS and
correlation coefficient between the FSs of the PSSs but requires some
effort in performing MCS with a small number of MCS samples
before conducting reliability analysis. Thus, the method is relatively
simple and can easily deal with reliability problems with anisotropic
ISV of soil properties. However, it is found that the RSSs identified
by the method are very sensitive to the soil statistics, such as the auto
correlation length of ISV. This is thus not convenient for slope
reliability analysis involving many parametric studies that are often
the case in practice.

2.4 Method IV: RSSs identified by FS and
Pearson correlation coefficient

Because the correlation coefficients between the FSs of two
arbitrary PSSs in Methods II and III are calculated by an
approximate approach that cannot consider the ISV of soil
properties and by FORM that is computationally expensive,
respectively, Jiang et al. (2017) proposed using the Pearson
correlation coefficient (Benesty et al., 2009) as an
improvement to measure the correlation between the FSs of
PSSs. With the Pearson correlation coefficient, Jiang et al.
(2017) proposed a method similar to Method I for identifying
the RSSs of a slope that also involves dividing the correlation
coefficients into different groups. However, the candidate RSS in
each group of the method herein is taken as the slip surface with
the smallest FS, rather than the smallest reliability index, among
the PSSs in each group, which is computationally simpler and
more efficient. For completeness, the major steps of the method
are briefly described as follows:

Step 1: Perform deterministic slope stability analysis with N PSSs
and select the CDSS as the first RSS.

Step 2: Calculate the correlation coefficients between the FSs of
the CDSS and the other PSSs using the Pearson correlation

coefficient that is estimated by the simulation method (Zheng
et al., 2016):

ρ1,i �
∑Nsim

j�1 FS1 Xj( ) − FSi[ ] FSi Xj( ) − FSi[ ]�������������������∑Nsim
j�1 FS1 Xj( ) − FS1[ ]2√ ������������������∑Nsim

j�1 FSi Xj( ) − FSi[ ]2√ , (5)

where Nsim is the number of MCS samples for the underlying
random variables and/or fields, FSi(Xj) is the FS of the ith slip
surface for the jth samples of random variables and/or fields Xj, and
FSi is the mean value of FSi.

Step 3: Sort theNp correlation coefficients in ascending order and
divide them into M groups based on the increment of
Δρ � (ρmax − ρmin)/M, which indicates that the corresponding
PSSs are sorted into M groups.

Step 4: Select the slip surface with the minimum FS within each
group as the RSS for each group, resulting in Np RSSs.

Note that, similar to Method I, the RSSs identified in Step 4 are
named as candidate RSSs in the work by Jiang et al. (2017), and the
final RSSs of slope are selected based on the contributions of each
candidate RSS to the system failure probability. However, slope
reliability analysis is performed based on the candidate RSSs because
the RSSs are the byproduct of reliability analysis. Again, to have a
consistent comparison with other methods, herein the candidate
RSSs identified in Step 4 are referred as the RSSs of the method. It is
also noted that although the ISV of soil properties is properly
considered in this method, the computation cost of modeling the
ISVmight be high in the case of thousands of random field elements.
In addition, both the simulation times for evaluating correlation
coefficients and the subdividing groups of the correlation
coefficients need to be determined by a preliminary parametric
study.

3 Adaptive K-means clustering-based
RSS identification method

Recently, Wang et al. (2020) proposed an adaptive method for
the automatic identification of the RSSs of slopes using the K-means
clustering method (AKCBR). The classical K-means clustering
method is used with a DUNN index (Dunn, 1974) by Wang
et al. (2020) to adaptively select the optimal number of clusters
of correlated slip surfaces from all PSSs. The method consists of five
steps:

Step 1: Select a suitable range for the K value, which is denoted by a
closed interval from Kmin to Kmax.

Step 2: Perform a deterministic slope stability analysis based on
mean values of shear strengths and record the FS value and sliding
volume associated with each PSS.

Step 3: Conduct a conventional K-means clustering process for
Kmin based on the sliding volumes of PSSs.

Step 4: Evaluate the DUNN value, DUNN(K), for the clustering
results obtained in Step 2 as
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DUNN K( ) � min
i�1,/,K

min
j�i+1,/,K

d Ci,Cj( )
max

p�1,/,K
diam Cp( )[ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

d Ci,Cj( ) � min
dx∈Ci ,dy∈Cj

d dx, dy( ){ }
diam Cp( ) � max

dx,dy∈Cp

d dx, dy( ){ }

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (6)

where Ci indicates the ith cluster, d(Ci,Cj) is the distance between
two clusters, calculated as the minimum Euclidean distance between
two observations in different clusters, and diam(Cp) is the diameter
of the pth cluster.

Step 5: Increase the value of K by one and repeat Steps 3 to 4 until K
reaches its maximum, that is, Kmax.

Step 6: Compare the DUNN indices for all K values between the
predefined range of K in Step 1, and the best K valueKb is selected as
the one that maximizes the DUNN index.

Step 7: Locate the slip surface with the minimum FS in each cluster
and select it as the RSS of each group.

Overall, the method does not need to predefine the value of K,
which consequently bypasses the prior determination of the number of
RSSs in available methods. Note that clustering is an unsupervised
machine learning approach, suggesting that there is no need to evaluate
the FS or the reliability index of PSSs during the identification of RSSs,
but only the common properties of the clustering objects are required.
Here, the sliding volume values of the PSSs (i.e., clustering objects) are
considered as the calculating index for the clustering process.

4 Slope reliability analysis based on
RSSs

4.1 Response surface method (RSM) based
on RSSs

Although it is not necessary to search for the FS among all PSSs
but only among the RSSs, direct calculation of the FS using LEM
thousands of times is still not a trivial task. To improve the
computation efficiency, a multiple response surface method that
has been demonstrated to be effective and efficient is adopted here
(Li et al., 2015; Li D.-Q. et al., 2016). The quadratic polynomial
without cross terms is taken to construct the RSM as

FSi X( ) � a1i +∑n

j�1bijxj +∑n

j�1cijx
2
j , i � 1, 2, .., Nr( ), (7)

where FSi(X) is the FS for the ith RSS,Nr is the number of RSSs, X is
the random variable vector, and a1i, bij, and cij are unknown coefficients
that can be calibrated using central composite design method.

4.2 Monte Carlo simulation for slope
reliability analysis based on RSS-based RSM
(RSS-RSM)

Based on the established RSMs, MCS is then performed for
reliability analysis. Given Nsim random field and/or variable
samples, the Pf of slope failure is calculated as

Pf � 1
Nsim

∑Nsim

j�1 min
i�1,2,/,Nr

FSi Xj( )[ ]< 1{ }, (8)

where I ·{ } is an indicator function that is equal to unity when
[ min
i�1,2,/,Nr

FSi(Xj)]< 1 and zero otherwise. The accuracy of Pf is
assessed by its coefficient of variation (COV) as

COVPf
�

��������
1 − Pf( )
PfNsim

.

√√
(9)

5 Illustrative examples

In the following four subsections, four slope examples extracted
from the literature are used to compare the effectiveness and
efficiency of the proposed K-means clustering method and other
methods. The four examples are characterized by different slope
geometries, soil spatial variability, and heterogeneity.

5.1 Example I: a layered slope without
considering ISV

In this subsection, the AKCBR is applied to a layered slope
without considering ISV. The slope has been widely studied in the
literature (Chowdhury and Xu, 1995; Zhang et al., 2011). Figure 1
shows the geometry of the slope, which is a fill embankment resting
on a clay layer. The statistics of soil properties for the two soil layers
are tabulated in Table 1 and are the same as those used by Zhang
et al. (2011). The shear strength parameters are subjected to normal
distributions, whereas the unit weights are considered constants.
The mean values of the cohesion c1 and friction angle φ1 for the
embankment layer and are 10 kPa and 12°, respectively, whereas the
mean value of the undrained strength of the clay layer cu2 is 40 kPa.
The COVs of c1 and φ1 of the fill embankment are, respectively,
0.2 and 0.25, whereas the COV of the cu2 of the clay foundation is 0.2.
The unit weights of the fill embankment and clay foundation are
18 kN/m3 and 20 kN/m3, respectively.

With the aforementioned mean parameters, the deterministic
slope stability analysis is performed using the Bishop’s simplified
method. A total of 4,250 PSSs are generated to cover the whole slope,
and the FS of the CSS is 1.131, which is close to the value of
1.148 reported by Chowdhury and Xu (1995). Note that the FSs and
the sliding volumes for the other PSSs are also calculated during the
deterministic analysis, which can be conveniently used for the
subsequent identification of RSSs. As mentioned before, a
predefined range for the K value is a prerequisite for the adaptive
K-means clustering method. From the previous study (Wang et al.,
2020), an empirical range of [3, 200] is adopted herein. Then, the
DUNN indices for different K values are obtained using the
suggested procedure in Section 3 and Figure 2. The DUNN
values are plotted against different K values. It can be seen from
the figure that the K value has a significant effect on the DUUN
index. As K is taken as 108, the DUNN index reaches the maximum,
which means that clustering all PSSs into 108 sub-clusters is the best.
Thereafter, the slip surface with the smallest FS in each of the
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108 clusters is taken as the RSS of that cluster. Overall, 108 RSSs are
finally identified and are also plotted in Figure 1. Note that the CSS
signified by the dashed line in Figure 1 is also included in the final set
of RSSs. To gain more insight into the effect of the clustering on
PSSs, Figure 3 plots three typical clusters of the PSSs for the slope
example. The figure shows that different clusters of slip surfaces
exhibit different failure modes, and the slip surfaces in the same
cluster present similar failure modes. For example, the slip surfaces
of the 11th cluster plotted in Figure 3A are mainly shallow failure

modes, whereas the slip surfaces in the 36th and 78th clusters tend to
be much deeper.

Response surfaces are then constructed based on the
previously identified RSSs using Pf, followed by the MCS
directly performed on the response surfaces to evaluate the Pf

of the slope. The Pf is estimated as 0.398 and is very close to the
value of 0.404 reported by Zhang et al. (2011), validating the
accuracy of the method. The efficiency of the AKCBR can be
approximately measured by a dimensionless nominal index Nss

that indicates the total times of the FS evaluation of a single slip
surface. Consider, for example, the deterministic slope stability
analysis of the slope using 4,250 PSSs. The Nss is equal to
4,250 because 4,250 evaluations of the FS are required for the
4,250 PSSs. The computation cost for the reliability analysis of
the AKCBR is mainly composed of 1) the time for identification
of the RSSs and 2) the time for the calibration of the RSS-RSM.
The first part can be equivalently evaluated using the actual
physical time for the RSS identification divided by the time
needed to calculate the FS of a single slip surface. For
example, it takes about 0.001 s to calculate the FS of a single
slip surface using a desktop computer with 16G RAM and an
Intel(R) Core(TM) i9-9900x and 59 s to select the RSSs, so the
Nss for the first part is approximately calculated as 59/
0.001=59,000. In addition, the time of constructing the RSM
and MCS with RSM is trivial and can be ignored. Therefore, the
Nss for the AKCBR is about 63,250. In contrast, the time
consumption of Method I (Zhang et al., 2011) is mainly for
the evaluation of the reliability index of the 4,250 PSSs based on
Eq. 1, and it takes about 80 s with the same computer. As such,
theNss for Method I is about 80,000, which is larger than that for
the AKCBR.

5.2 Example II: an undrained cohesive slope
considering 1-D ISV

This part applies the AKCBR for evaluating the reliability of
an undrained cohesive slope to consider the ISV of the undrained
shear strength cu in the vertical direction, which has also been
studied in the literature (Wang et al., 2011; Li et al., 2013). The
geometry of the slope is plotted in Figure 4, which has a slope

FIGURE 1
Slope geometry and schematics of RSSs for Example I.

TABLE 1 Statistics of soil properties for Example I.

Parameter Distribution Mean COV

c1 Normal 10 kPa 0.2

φ1 12° 0.25

cu2 40 kPa 0.2

γ1 Deterministic 18 kN/m3 -

γ2 20 kN/m3 -

FIGURE 2
Variation of DUNN with K for Example I.
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height of 10 m and a slope angle of 26.6°. To enable a convenient
and consistent comparison with previous studies, the mean of cu
is 40 kPa, and the coefficient of variation is 0.25 (Wang et al.,
2011; Li et al., 2013). The saturated unit weight γsat of the soil is
20 kN/m3, which is considered as a deterministic value in this
analysis. The undrained shear strength cu, however, varies

spatially in the vertical direction and has a mean μcu and
COVcu of 40 kPa and 0.25, respectively. The ISV of cu is
simulated by a stationary random field characterized by
40 random variables, which are the same as those used by Li
et al. (2013) and described by the single exponential decaying
correlation structure as

FIGURE 3
Typical clusters of PSSs for K=108 for the undrained cohesive slope of Example I. (A) The 11th cluster with 46 slip surfaces, (B) the 36th cluster with
30 slip surfaces, (C) the 78th cluster with 15 slip surfaces.

FIGURE 4
Geometry and RSSs of the undrained cohesive slope for Example II.
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Rij � exp −zi − zj
2λ

( ), (10)

where Rij denotes the correlation between the soil properties at the
depths zi and zj, and λ is the autocorrelation length. In theoretical
engineering, λ can be generally determined from a large quantity of
measurement data, which is, however, often not available in practice.
Therefore, different values of λ varying from 0.5 to +∞ are adopted
to consider the effect of SOF on slope reliability assessment.

First, the deterministic slope stability analysis model was
established using the aforementioned mean parameters, with
4,281 PSS covering the whole slope. The slope stability results are
schematically shown in Figure 4, where the CSS passes through the
bottom of the slope. The corresponding FS is 1.178, which is
identical to the FS reported by Wang et al. (2011). Then, the
4,281 slip surfaces are divided into different clusters using the
proposed adaptive K-means clustering method. The results show
that when K is set as 154, the DUNN index reaches the maximum,
signifying the optimal cluster number for the PSSs. Therefore, there
are finally 154 RSSs identified for this slope example. All the RSSs are
plotted in Figure 4, and the deterministic CSS is also included in
the RSSs.

To illustrate the accuracy of the AKCBR, various parametric
studies on the autocorrelation distances normalized by the slope
height are conducted. As can be seen from Figure 5, the Pf generally
increases as the normalized autocorrelation distance increases.
When λ

H increases from 0.05 to 1 (or λ increases from 0.5 to
10 m for H=10 m), the Pf significantly increases from 1.3% to
28%, showing that the ISV has a significant influence on slope
reliability. When λ

H> 0.5, the Pf becomes insensitive to the change of
λ as the spatial variety is nearly ignored. Figure 5 also includes the
results of Wang et al. (2011) (based on MCS) and Li et al. (2013)
(i.e., Method II), which agree well with the results from the current
study and validate the accuracy of AKCBR. It is, however, worth
noting that although the number of RSSs identified in this study is
larger than that selected by Method II (Li et al., 2013), the proposed

method still has eminent efficiency in reliability analysis. To
illustrate this point, the dimensionless nominal index Nss is
adopted again to compare the computation efficiency between
the two methods. A desktop with 16G RAM and the Intel (R)
Core(TM) i7-9700 k CPU requires about 0.001 s to evaluate the FS
of a single slip surface. The Nss here for the AKCBR is thus
approximately calculated as the summation of 1) the time for the
deterministic analysis (i.e., 4,281), 2) the time for the identification
of the RSSs (i.e., 73/0.001=73,000), and 3) the time for RSM
calibration (i.e., (40×2+1)×154=12,474), which is about 89,755. In
contrast, most of the computation cost for Method II is consumed by
the calculation of the equivalent reliability index for all PSSs, which
requires about 81 times the deterministic analysis, thus resulting in a
Nss of about 346,761. It is obvious that the computation cost for
Method II, even ignoring the subsequent reliability analysis, is
higher than AKCBR with full analysis.

5.3 Example III: a cohesive-frictional slope
considering 2-D ISV

This subsection takes a cohesive-frictional slope as an example
to further illustrate the applicability and effectiveness of the AKCBR
for reliability analysis considering 2-D ISV. The slope has been
studied in the literature (Cho, 2010; Jiang et al., 2015; Liu et al., 2017;
Liu et al., 2018), and the results from these available studies can be
easily referred to. A similar slope study case was performed in
Javankhoshdel et al. (2020). The cross-section of the slope is shown
in Figure 6A, where the slope height and slope angle are 10 m and

FIGURE 5
Results comparison considering spatial variability.

FIGURE 6
(A)Geometry of the cohesive-frictional slope for Example III with
7,436 PSSs, (B) RSSs identified for the cohesive-frictional slope for
Example III.
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45°, respectively. The total unit weight of the soil is 20 kN/m3. The
cohesion c and friction angle φ are considered spatially varied and
characterized by two cross-correlated 2-D lognormal stationary
random fields. The cross-correlation coefficient between c and φ

is −0.7. The mean values of c and φ are, respectively, 10 kPa and 30°.
The COV values of c and φ are 0.3 and 0.2, respectively. The
horizontal and vertical autocorrelation distances, θh and θv, are 20 m
and 2 m, respectively. All these parameters are consistent with those
used in the literature (Cho, 2010; Jiang et al., 2015; Liu et al., 2017;
Liu et al., 2018).

Similar to the last slope example, the geometry of the slope is
discretized into 1,210 random field elements with a side length of
0.5 m to consider the ISV of c and φ. The mid-point method is also
adopted here to model the cross-correlated random fields of c and φ
with the squared exponential autocorrelation function. Then, slope
stability analysis is performed to obtain the FS of the slope using
Bishop’s simplified method. The FS is calculated as 1.205, and the
associated CSS among 7,436 predefined PSSs is plotted in Figure 6A.
The results are the same as those reported by Jiang et al. (2015),
suggesting the accuracy of the slope stability analysis model.

Then, with the proposed adaptive K-means clustering method,
the 7,436 slip surfaces are divided into different clusters. The results
show that when K is set as 110, the DUNN index reaches the
maximum, signifying the optimal cluster number for the PSSs.
Therefore, there are finally 110 RSSs identified for this slope
example. All the RSSs are plotted in Figure 6B, and the
deterministic CSS is also one of the RSSs. With the RSSs,
reliability analysis is performed using the proposed RSS-RSM in
Section 4 to validate the effectiveness and efficiency of the adaptive
K-means clustering approach for RSS identification. The Pf based
on adaptive K-means-based RSS-RSM is 4.4 × 10−3, and the Pf

values corresponding to Method III and MCS are 4.9 × 10−3 and
3.9 × 10−3 (Cho, 2010; Jiang et al., 2015). This similarity validates the
accuracy of the AKCBR as well as the applicability for reliability
analysis considering 2-D ISV. Note that Wang et al. (2020)
previously analyzed the reliability of this example with the same
approach but using a different number of RSSs. The reason is two-
fold: 1) the number and locations of the PSSs here are different from

FIGURE 7
Effect of spatial variability on the failure probability of the slope in
Example III. (A) Effect of θv , (B) effect of θh . FIGURE 8

(A) Variation of Pf with the cross-correlation coefficient, (B)
variation of the number of RSSs with the cross-correlation coefficient.
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those used by Wang et al. (2020); 2) the initial clustering centers are
determined by an optimized method in MATLAB 2018b; they are
randomly selected in MATLAB 2014a. Nevertheless, the reliability
results from the two methods are very similar, indicating that the
two methods successfully identified the RSSs.

To gain more insight into the AKCBR, the effect of the
horizontal and vertical spatial variability on the reliability of the
slope is further checked by the AKCBR in order to illustrate its
effectiveness and efficiency against the variations of θh and θv. The
results are plotted in Figure 7. As a reference, the results from Liu
et al. (2018) and Li et al. (2015) are also plotted in this figure. Note
that, in the figure, only one parameter (i.e., θh or θv) is changed for
each case, while others are kept the same as previously defined. In
general, the Pf increases as the autocorrelation distances increase.
The results obtained from this study show a good consistency with
those from Liu et al. (2018) and Li et al. (2015). Such agreement
suggests that the AKCBR is accurate and robust against the variation
of ISV. Note that although Jiang et al. (2015) did not study the effect
of ISV on the reliability of this slope example using their method, it is
shown by a cohesive slope example application that their method is
also robust against the variation of ISV. The AKCBR, therefore, is
comparable with Method III in the accuracy of the reliability
evaluation for a 2-D spatially varied slope.

Jiang et al. (2015) also conducted a sensitivity study to
investigate the effect of cross-correlation on the reliability of the
slope. To keep a consistent comparison with Method III, the
proposed method is also applied to this example to examine the
influence of the cross-correlation coefficient. The results obtained by
this study and from Method III are plotted in Figure 8A. It is seen
from the figure that the Pf obtained by this study increases from
0.44% to 6.8% as ρcφ varies from −0.7 to 0, suggesting a significant
effect on Pf. Meanwhile, the results from Method III by Jiang et al.
(2015) almost overlap those from the current study by the proposed
adaptive K-means clustering-based RSS-RSM method, showing a
good agreement between the two methods.

The efficiency of the AKCBR can also be illustrated by the
dimensionless index Nss used for the last two examples. The
physical time for selecting the RSSs is about 69 s on a desktop
computer with 16G RAM and Intel(R) Core(TM) i9-9900x, and
2,421 runs of the slope stability analysis model are required to
calibrate the response surfaces of the 110 RSSs. This leads to the
Nss of about 4 × 105 for the AKCBR. In contrast, it requires about
an Nss of 7.4 × 106 to select the RSSs by Method III, where
1,000 LHS samples are generated to directly execute the slope
stability analysis model with 7,436 PSSs. This comparison thus
validates the efficiency of the AKCBR. In addition, note that the
RSSs identified by Jiang et al. (2015) are sensitive to the variation of
statistics of shear strengths (e.g., ISV and ρcφ), which, however, is
bypassed by the current study and will be further illustrated in the
later discussion section. For example, Figure 8B compares the
efficiency of the two methods in identifying the RSSs. It is observed
that the AKCBR is independent of the ρcφ, whereas the number of
RSSs identified by Method III shows an increasing trend toward
the increase of ρcφ. This further indicates the high efficiency of the
AKCBR.

5.4 Example IV: a layered cohesive slope
considering 2-D ISV

This part analyzes the reliability of a layered cohesive slope using
the AKCBR. The slope was also widely studied in the literature (Li D.
Q. et al., 2016; Jiang et al., 2017; Wang et al., 2020) for reliability
analysis. The geometry of the slope is schematically shown in
Figure 9A, which has a slope height of 24 m and a slope angle of
36.9°; the slope is composed of two clayey soil layers. The statistics of
the undrained shear strengths are the same as those used by Jiang
et al. (2017). The mean of cu of layer 1 is 80 kPa, and the
corresponding COV is 0.3. The mean of cu of layer 2 is 120 kPa,
and the corresponding COV is 0.3. The parameter distributions of
two layers of soil are both lognormal distributions. For the two layers

FIGURE 9
(A) Geometry of the layered cohesive slope for Example IV with
6,231 PSSs, (B) RSSs for the layered cohesive slope for Example IV.

TABLE 2 Reliability analysis results obtained by different methods for Example IV.

Method Probability of failure Source

Adaptive K-means-based RSS-RSM 5.27 × 10−4 This study

MCS 5.4 × 10−4 Li et al. (2016b)

Method IV 5.13 × 10−4 Jiang et al. (2017)

Subset simulation 4.86 × 10−4 Li et al. (2016b)
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the θh is 12 m, the θv is 1.2 m, and the unit weight is 19 kN/m3.
Following Jiang et al. (2017), the slope geometry is discretized into a
finite number (856) of random field elements, and the size of the

element is kept consistent with Jiang et al. (2017) for convenient
comparison. Deterministic slope stability analysis is then performed
with 6,231 PSSs using Bishop’s simplified method. The FS is

FIGURE 10
Comparison of RSSs selected by different methods. (A) Example I, (B) Example II, (C) Example III, (D) Example IV.
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calculated as 1.447, and the corresponding CSS passes through the
slope toe. These results are comparable with those reported by Jiang
et al. (2017).

With the AKCBR, 181 RSSs are identified, as schematically
shown in Figure 9B, where the CSS is also included. Note that Wang
et al. (2020) also previously analyzed the reliability of this example
with the same approach but using a different number of RSSs. The
reason is also two-fold and is the same as stated in the last example.
The Pf is subsequently estimated as 5.27×10−4 based on the RSS-
RSM, which is comparable with the value of 5.13×10−4 byMethod IV
(Jiang et al., 2017) and those from other methods, as shown in
Table 2. The consistency of the reliability results between different
methods thus validates the accuracy of the AKCBR. Note that,
however, theNss of 2 × 105 for the AKCBR, estimated as that in the
last example, is far less than that of 6 × 106 by Method IV. This
consequently validates the computation efficiency of AKCBR.

6 Discussion

The aforementioned analysis shows that the AKCBR can
enhance the efficiency of slope reliability analysis while
maintaining accuracy and robustness. However, it is also noted
that the number of RSSs identified by the AKCBR is generally larger

than that identified by available methods. The reason might be that
some trivial slip surfaces are included in the RSSs because of the
empirical axiom for RSS identification, whereas the available
methods can single out the key failure modes with more rigorous
statistical fundamentals. For example, Methods II and IV identify
the key failure modes of slopes with the contribution of each RSS to
slope reliability. Therefore, to gain more insight into the differences
between the AKCBR and other methods, this part further discusses
the capability of the AKCBR in localizing the key failure modes of
slopes from the perspectives of the locations of RSSs and the
contributions of RSSs to slope reliability.

Figure 10 plots the locations of the RSSs by the proposedmethod
and other methods. In the figure, the dotted lines represent the RSSs
selected by this method, and the solid lines signify the RSSs by other
methods. Generally, the RSSs selected by the AKCBR contain those
selected by other methods. This indicates that the AKCBR is more
conservative than other methods in determining the key failure
modes but presents more variability. Again, the reason is mainly that
the AKCBR relies only on the similarity of the shape and volume
between different slip surfaces. Nevertheless, the AKCBR does not
miss those key failure modes identified by other methods.

To quantify the contribution of each RSS to slope reliability,
Figure 11 first plots the histograms of the numbers of failure samples
for different RSSs selected by this method and other methods. Then,

FIGURE 11
Histograms of the number of failure samples for different RSSs for different examples. (A) Example I, (B) Example II, (C) Example III, (D) Example IV.
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Figure 12 further quantifies the contribution of each RSS by a Pareto
chart. Note that, in Figure 11, Nmax and NCSS indicate the maximum
number of failure samples for an RSS and the number of failure

samples of the CSS, respectively. It is observed from the histogram
that, although there are more than 100 RSSs selected for each
example, not all RSSs have a probability of failing. This shows

FIGURE 12
Pareto charts of the number of failure samples for different RSSs in different examples. (A) Example I, (B) Example II, (C) Example III, (D) Example IV.
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that the contributions of different RSSs to slope reliability are
different. For example, when ISV is not taken into consideration
(Figure 11A), the slope probably may fail along only several (about
four) of the RSSs with a large probability. This observation is also
quantified by the proportion of the number of failures to the overall
failures of an RSS, as shown in Figure 12A. It is seen from Figure 12A
that the CSS and another RSS contribute almost 90% to the slope
failure, with CSS taking up about 60%, and four failure modes can be
found. It conforms with the traditional opinion of slope stability
analysis that CSS is themost important failure mode of the slope. For
other cases, it is found that as the degree of ISV increases (i.e., from
Examples II to IV), more and more failure modes appear, and the
CSS is no longer the most important one for slope failure. For
example, the proportion of CSS contributing to the slope is the
largest when 1-D ISV is considered in Example II (see Figures 11B,
12B), but it becomes not the most important RSS when 2-D ISV is
considered in Example III (see Figures 11C,D, 12C,D). Therefore, it
is insufficient to evaluate the reliability of a whole slope system using
the CSS. These observations verify the available opinion that slope
failure is a system problem considering many PSSs, and the slip

surface with the minimum FS is not necessarily the slip surface with
the maximum probability of failure. Overall, the aforementioned
observations are consistent with those from other methods in the
literature (Zhang et al., 2011; Li et al., 2013; Jiang et al., 2015; Jiang
et al., 2017).

Figure 13 presents the RSSs that contribute to the slope failure,
where the solid lines represent RSSs selected by the proposed
method, and the dashed lines represent the RSSs selected by
other methods. Generally, the following observations can be
obtained: (1) there are more failure modes identified by the
proposed method than other methods; (2) the key failure modes
identified by the proposed method and other methods are nearly at
the same locations, being either the CSS or other RSSs; and (3) the
potential failure areas identified by the proposed method and other
methods almost overlap. These observations show that the proposed
method can provide comparable information on slope failure modes
with other methods.

7 Summary and conclusion

This paper applies a recently proposed method for identifying
the RSSs of slopes, offering an efficient slope reliability analysis
considering various situations. A comprehensive comparison
between the AKCBR and other methods is presented from the
perspective of computation accuracy and efficiency, as well as the
capability for identifying the key failure modes of slopes. The
fundamentals and procedures of the AKCBR and other methods
are briefly reviewed. Four different slopes with different degrees of
ISV are taken as illustrative examples to examine the effectiveness
of AKCBR and elaborate the merits and limitations of the AKCBR
against other methods. It is generally found that the number of
RSSs identified by the AKCBR is much larger than that obtained by
other methods because of the different axioms for different
methods. However, the distributions of the RSSs obtained by
different methods generally overlap, showing a good
consistency between these methods in slope failure area
detection. It is also observed that the AKCBR can identify
almost the same key failure modes of slopes as other methods
identify. For example, the CSS is identified by both the AKCBR and
Method I as the critical reliability slip surface (CRSS) when ISV is
ignored. When ISV is considered, the CSS is no longer the CRSS
with the AKCBR and other methods. However, the AKCBR
outweighs other methods in computation efficiency as the
method requires only one execution of the deterministic slope
model with an improved adaptive K-means clustering procedure.
By contrast, other methods need either complex calculations of
reliability indices for all PSSs or several random slope stability
analyses. Overall, the AKCBR can provide comparable reliability
results with other methods for different slope examples while
offering a certain efficiency advantage.

Although the method is more efficient than the compared four
methods, it is still necessary to clarify the limitations of the AKCBR
and the merits of other methods. First, for the AKCBR, the number
of RSSs is determined based on the number of clusters of PSSs, which
is realized by an adaptive K-means clustering analysis on the PSSs.
The clustering process, however, depends only on the number and
volumes of PSSs, regardless of the change in soil statistics. This,

FIGURE 13
Comparison of RSSs that contribute to slope failure for different
methods. (A) Example I, (B) Example II, (C) Example III, (D) Example IV.
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therefore, allows the method to be efficiently and conveniently
applied to reliability analysis involving many parametric studies,
especially for situations where the ISV is not clearly known by
engineers. Then, other methods, such as Method I and II, although a
complex calculation on reliability indices of all PSSs is required, are
statistically more rigorous than the AKCBR. Similar to Method IV,
the AKCBR is also considered an empirical or semi-empirical
method for RSS identification. Finally, it is worth noting that the
limit equilibrium method with circular failure mechanism
assumption (i.e., Bishop’s simplified method) is adopted in the
current study, so the application of the AKCBR to slope
reliability analysis with non-circular slip surfaces remains open
and requires further study.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

W-QZ carried out the data analysis and wrote the content, S-HZ
designed the study and wrote the content, Y-HL carried out the data
analysis, and JL carried out the data analysis and wrote the content.
All authors have read and approved the final manuscript. All authors
listed have made a substantial, direct, and intellectual contribution
to the work and approved it for publication.

Acknowledgments

The authors would like to thank Lei-Lei Liu from the Central
South University for shaping the idea of the presented work and
some useful suggestions.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/feart.2023.1100104/
full#supplementary-material

References

Ang, A. H. S., and Tang, W. H. (2007). Probability concepts in engineering: Emphasis
on applications to civil and enviromental engineering. Chichester, UK: Wiley.

Benesty, J., Chen, J., Huang, Y., and Cohen, I., 2009, Pearson correlation coefficient,
Berlin, Heidelberg, Springer Berlin Heidelberg, Noise Reduction in Speech Processing,
37–40.

Bhattacharya, G., Jana, D., Ojha, S., and Chakraborty, S. (2003), Direct search Minim.
Reliab. index earth slopes Comput. Geotechnics 30 (6), 455–462.

Cho, S. E. (2010). Probabilistic assessment of slope stability that considers the spatial
variability of soil properties. J. geotechnical geoenvironmental Eng. 136 (7), 975–984.
doi:10.1061/(asce)gt.1943-5606.0000309

Chowdhury, R. N., and Xu, D. W. (1995). Geotechnical system reliability of slopes.
Reliab. Eng. Syst. Saf. 47 (3), 141–151. doi:10.1016/0951-8320(94)00063-t

Chu, X., Li, L., and Wang, Y. (2015). Slope reliability analysis using length-based
representative slip surfaces. Arabian J. Geosciences 8 (11), 9065–9078. doi:10.1007/
s12517-015-1905-5

Dunn, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of
Cybernetics 4 (1), 95–104.

Huang, S.-Y., Zhang, S.-H., and Liu, L.-L. (2022). A new active learning Kriging
metamodel for structural system reliability analysis with multiple failure modes.
Reliability Engineering & System Safety 228.

Jamshidi Chenari, R., and Alaie, R. (2015). Effects of anisotropy in correlation
structure on the stability of an undrained clay slope. Georisk Assess. Manag. Risk
Eng. Syst. Geohazards 9 (2), 109–123. doi:10.1080/17499518.2015.1037844

Javankhoshdel, S., Cami, B., Chenari, R. J., and Dastpak, P. (2020). Probabilistic
analysis of slopes with linearly increasing undrained shear strength using RLEM
approach. Transp. Infrastruct. Geotechnol. 8 (1), 114–141. doi:10.1007/s40515-020-
00118-7

Ji, J., and Low, B. K. (2012). Stratified response surfaces for system probabilistic
evaluation of slopes. J. Geotechnical Geoenvironmental Eng. 138 (11), 1398–1406.
doi:10.1061/(asce)gt.1943-5606.0000711

Jiang, Q., Liu, J., Zheng, H., Wang, B., Guo, Z.-Z., Chen, T., et al. (2022a). Bayesian
estimation of rock mechanical parameter and stability analysis for a large underground

cavern. Int. J. Geomechanics 22 (8), 04022129. doi:10.1061/(asce)gm.1943-5622.
0002452

Jiang, S.-H., Huang, J., Qi, X.-H., and Zhou, C.-B. (2020). Efficient probabilistic back
analysis of spatially varying soil parameters for slope reliability assessment. Eng. Geol., 271.

Jiang, S.-H., Liu, X., Huang, J., and Zhou, C.-B. (2022b). Efficient reliability-based
design of slope angles in spatially variable soils with field data. Int. J. Numer. Anal.
Methods Geomechanics 46 (13), 2461–2490. doi:10.1002/nag.3414

Jiang, S.-H., Papaioannou, I., and Straub, D. (2018). Bayesian updating of slope
reliability in spatially variable soils with in-situmeasurements. Eng. Geol. 239, 310–320.
doi:10.1016/j.enggeo.2018.03.021

Jiang, S. H., Huang, J., Yao, C., and Yang, J. (2017). Quantitative risk assessment of
slope failure in 2-D spatially variable soils by limit equilibrium method. Appl. Math.
Model. 47, 710–725. doi:10.1016/j.apm.2017.03.048

Jiang, S. H., Li, D. Q., Cao, Z. J., Zhou, C. B., and Phoon, K. K. (2015). Efficient system
reliability analysis of slope stability in spatially variable soils using Monte Carlo
simulation. J. Geotechnical Geoenvironmental Eng. 141 (2), 04014096. doi:10.1061/
(asce)gt.1943-5606.0001227

Li, D.-Q., Jiang, S.-H., Cao, Z.-J., Zhou, W., Zhou, C.-B., and Zhang, L.-M. (2015). A
multiple response-surface method for slope reliability analysis considering spatial variability
of soil properties. Eng. Geol. 187, 60–72. doi:10.1016/j.enggeo.2014.12.003

Li, D.-Q., Zheng, D., Cao, Z.-J., Tang, X.-S., and Phoon, K.-K. (2016a). Response
surface methods for slope reliability analysis: Review and comparison. Eng. Geol. 203,
3–14. doi:10.1016/j.enggeo.2015.09.003

Li, D. Q., Qi, X. H., Cao, Z., Tang, X. S., Phoon, K. K., and Zhou, C. B. (2016b).
Evaluating slope stability uncertainty using coupled Markov chain. Comput.
Geotechnics 73, 72–82. doi:10.1016/j.compgeo.2015.11.021

Li, L., and Chu, X. (2016). Risk assessment of slope failure by representative slip
surfaces and response surface function. KSCE J. Civ. Eng. 20 (5), 1783–1792. doi:10.
1007/s12205-015-2243-6

Li, L., Wang, Y., Cao, Z., and Chu, X. (2013). Risk de-aggregation and system
reliability analysis of slope stability using representative slip surfaces. Comput.
Geotechnics 53, 95–105. doi:10.1016/j.compgeo.2013.05.004

Frontiers in Earth Science frontiersin.org15

Zhu et al. 10.3389/feart.2023.1100104

https://www.frontiersin.org/articles/10.3389/feart.2023.1100104/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2023.1100104/full#supplementary-material
https://doi.org/10.1061/(asce)gt.1943-5606.0000309
https://doi.org/10.1016/0951-8320(94)00063-t
https://doi.org/10.1007/s12517-015-1905-5
https://doi.org/10.1007/s12517-015-1905-5
https://doi.org/10.1080/17499518.2015.1037844
https://doi.org/10.1007/s40515-020-00118-7
https://doi.org/10.1007/s40515-020-00118-7
https://doi.org/10.1061/(asce)gt.1943-5606.0000711
https://doi.org/10.1061/(asce)gm.1943-5622.0002452
https://doi.org/10.1061/(asce)gm.1943-5622.0002452
https://doi.org/10.1002/nag.3414
https://doi.org/10.1016/j.enggeo.2018.03.021
https://doi.org/10.1016/j.apm.2017.03.048
https://doi.org/10.1061/(asce)gt.1943-5606.0001227
https://doi.org/10.1061/(asce)gt.1943-5606.0001227
https://doi.org/10.1016/j.enggeo.2014.12.003
https://doi.org/10.1016/j.enggeo.2015.09.003
https://doi.org/10.1016/j.compgeo.2015.11.021
https://doi.org/10.1007/s12205-015-2243-6
https://doi.org/10.1007/s12205-015-2243-6
https://doi.org/10.1016/j.compgeo.2013.05.004
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1100104


Li, L., Wang, Y., and Cao, Z. (2014). Probabilistic slope stability analysis by risk
aggregation. Eng. Geol. 176, 57–65. doi:10.1016/j.enggeo.2014.04.010

Liu, J., Jiang, Q., Chen, T., Yan, S., Ying, J., Xiong, X., et al. (2022a). Bayesian
estimation for probability distribution of rock’s elastic modulus based on compression
wave velocity and deformation warning for large underground cavern. Rock Mech. Rock
Eng. 55, 3749–3767. doi:10.1007/s00603-022-02801-2

Liu, L.-L., and Cheng, Y.-M. (2016). Efficient system reliability analysis of soil slopes
using multivariate adaptive regression splines-based Monte Carlo simulation. Comput.
Geotechnics 79, 41–54. doi:10.1016/j.compgeo.2016.05.001

Liu, L.-L., Cheng, Y.-M., and Zhang, S.-H. (2017). Conditional random field reliability
analysis of a cohesion-frictional slope. Comput. Geotechnics 82, 173–186. doi:10.1016/j.
compgeo.2016.10.014

Liu, L.-L., Deng, Z.-P., Zhang, S.-h., and Cheng, Y.-M. (2018). Simplified framework
for system reliability analysis of slopes in spatially variable soils. Eng. Geol. 239,
330–343. doi:10.1016/j.enggeo.2018.04.009

Liu, L.-L., and Wang, Y. (2022). Quantification of stratigraphic boundary uncertainty
from limited boreholes and its effect on slope stability analysis. Eng. Geol. 306, 106770.
doi:10.1016/j.enggeo.2022.106770

Liu, L.-L., Yang, C., and Wang, X.-M. (2021). Landslide susceptibility assessment
using feature selection-based machine learning models.Geomechanics Eng. 25 (1), 1–16.

Liu, L.-L., Zhang, P., Zhang, S.-H., Li, J.-Z., Huang, L., Cheng, Y.-M., et al. (2022b).
Efficient evaluation of run-out distance of slope failure under excavation. Eng. Geol. 306,
106751. doi:10.1016/j.enggeo.2022.106751

Low, B. K., and Tang, W. H. (2007). Efficient spreadsheet algorithm for first-order
reliability method. J. Eng. Mech. 133 (12), 1378–1387. doi:10.1061/(asce)0733-
9399(2007)133:12(1378)

Ma, J. Z., Zhang, J., Huang, H. W., Zhang, L. L., and Huang, J. S. (2017). Identification
of representative slip surfaces for reliability analysis of soil slopes based on shear
strength reduction. Comput. Geotechnics 85, 199–206. doi:10.1016/j.compgeo.2016.
12.033

Mafi, R., Javankhoshdel, S., Cami, B., Jamshidi Chenari, R., and Gandomi, A. H.
(2020). Surface altering optimisation in slope stability analysis with non-circular failure
for random limit equilibrium method. Georisk Assess. Manag. Risk Eng. Syst.
Geohazards 15 (4), 260–286. doi:10.1080/17499518.2020.1771739

Phoon, K. K., and Ching, J. (2014). Risk and reliability in geotechnical engineering.
Boca Raton: CRC Press.

Phoon, K. K., and Retief, J. V. (2016). Reliability of geotechnical structures in ISO2394.
London: Taylor & Francis.

Wang, B., Liu, L., Li, Y., and Jiang, Q. (2020). Reliability analysis of slopes
considering spatial variability of soil properties based on efficiently identified
representative slip surfaces. J. Rock Mech. Geotechnical Eng. 12, 642–655. doi:10.
1016/j.jrmge.2019.12.003

Wang, Y., Cao, Z., and Au, S.-K. (2011). Practical reliability analysis of slope stability
by advanced Monte Carlo simulations in a spreadsheet. Can. Geotechnical J. 48 (1),
162–172. doi:10.1139/t10-044

Zhang, J., Zhang, L. M., and Tang, W. H. (2011). New methods for system
reliability analysis of soil slopes. Can. Geotechnical J. 48 (7), 1138–1148. doi:10.
1139/t11-009

Zheng, D., Li, D.-Q., Cao, Z.-J., Tang, X.-S., and Phoon, K.-K. (2016). An analytical
method for quantifying the correlation among slope failure modes in spatially
variable soils. Bull. Eng. Geol. Environ. 76 (4), 1343–1352. doi:10.1007/s10064-
016-0923-1

Frontiers in Earth Science frontiersin.org16

Zhu et al. 10.3389/feart.2023.1100104

https://doi.org/10.1016/j.enggeo.2014.04.010
https://doi.org/10.1007/s00603-022-02801-2
https://doi.org/10.1016/j.compgeo.2016.05.001
https://doi.org/10.1016/j.compgeo.2016.10.014
https://doi.org/10.1016/j.compgeo.2016.10.014
https://doi.org/10.1016/j.enggeo.2018.04.009
https://doi.org/10.1016/j.enggeo.2022.106770
https://doi.org/10.1016/j.enggeo.2022.106751
https://doi.org/10.1061/(asce)0733-9399(2007)133:12(1378)
https://doi.org/10.1061/(asce)0733-9399(2007)133:12(1378)
https://doi.org/10.1016/j.compgeo.2016.12.033
https://doi.org/10.1016/j.compgeo.2016.12.033
https://doi.org/10.1080/17499518.2020.1771739
https://doi.org/10.1016/j.jrmge.2019.12.003
https://doi.org/10.1016/j.jrmge.2019.12.003
https://doi.org/10.1139/t10-044
https://doi.org/10.1139/t11-009
https://doi.org/10.1139/t11-009
https://doi.org/10.1007/s10064-016-0923-1
https://doi.org/10.1007/s10064-016-0923-1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1100104

	Efficient slope reliability analysis based on representative slip surfaces: a comparative study
	1 Introduction
	2 Review of available methods for identification of slope RSSs
	2.1 Method I: RSSs identified by reliability index and correlation coefficient
	2.2 Method II: RSSs identified by equivalent reliability index and correlation coefficient
	2.3 Method III: RSSs identified by CDSS within the MCS framework
	2.4 Method IV: RSSs identified by FS and Pearson correlation coefficient

	3 Adaptive K-means clustering-based RSS identification method
	4 Slope reliability analysis based on RSSs
	4.1 Response surface method (RSM) based on RSSs
	4.2 Monte Carlo simulation for slope reliability analysis based on RSS-based RSM (RSS-RSM)

	5 Illustrative examples
	5.1 Example I: a layered slope without considering ISV
	5.2 Example II: an undrained cohesive slope considering 1-D ISV
	5.3 Example III: a cohesive-frictional slope considering 2-D ISV
	5.4 Example IV: a layered cohesive slope considering 2-D ISV

	6 Discussion
	7 Summary and conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


