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Existing tunnel boring machine (TBM) construction presents certain
shortcomings. These include difficulty in comprehensive perception of
information, poor timelines of information transmission and storage systems,
significant effects of traditional data processing methods on the timeless of
intelligent decision-making, and poor applicability of decision-making models
and control strategies. In addition, the integration level of perception, decision-
making, and control should be further improved. Therefore, a cross-platform
deployable intelligent tunnelling robot systemwith closed-loop intelligent control
functions of a “comprehensive perception, dual-driven decision-making, and
composite intelligent control” is developed. Based on fieldbus, communication,
database, cloud computing, and advanced exploration technologies, a multi-
source information perception and integrated management platform based on a
two-layer architecture is built to achieve the comprehensive perception of
tunnelling information. In addition, an optimal decision-making method of the
particle swarm optimisation (PSO) algorithm is simultaneously proposed for the
minimumdecision-making of tunnelling specific energy for scientific analyses and
decision-making. A composite intelligent control strategy comprising multimodal
and expert experienced learning control strategies is designed to achieve the
control of conventional and unfavourable geological sections, respectively.
Engineering cases verified the effectiveness and reliability of the intelligent
tunnelling robot system. The research results not only provide new ideas and
technical means for achieving the less-manned, unmanned, and intelligent
tunnelling construction of deep-buried long tunnels but can also be promoted
owing to its universality.
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Introduction

The tunnel boring machine (TBM) has recently become a preferred tool for tunnel
construction, mainly for long tunnels with large sections, owing to its several advantages in
performance, such as the security, higher efficiency, environmental friendliness, and quality,
over the new Austrian tunnelling method (NATM) and drilling-blasting methods
(Armaghani et al., 2017; Li et al., 2022; Pan et al., 2022). However, the TBM is
extremely sensitive to geological changes and is excessively dependent on the operator
experience (Armetti et al., 2018). A manual operation relies on experience, and different
operators have varying skill levels, which creates quality control issues in addition to similar
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accidents repeatedly occurring (Mahdevari et al., 2014; Zhang et al.,
2022a). Specifically, when encountering stratum changes or complex
geological conditions, manual operations may cause jamming,
collapsing, and other significant consequences owing to the
inability to make effective adjustments in a timely manner.

Over the past years, several techniques have been continuously
proposed to solve the problems caused by completely relying on
human experience to control TBM construction. These techniques
can be summarised as advanced geological prospecting techniques,
intelligent guidance, intelligent support, intelligent tunnelling
techniques combined with sensing and fusion of information of
the rock and mechanical parameters, monitoring and early-warning
techniques, and modern information technologies (Mahmoodzadeh
et al., 2021; Liu W L et al., 2022). An important means to ensure a
safe and efficient TBM tunnel is based on geological analysis, which
is a fast and reliable detection method to determine the physical
characteristics of the earth, scientifically establishing an advanced
geological prospecting system (Deng, 2018). It is difficult to meet the
requirements of an efficient and safe TBM tunnelling process using
common geological prospecting methods that are suitable for
drilling-and-blasting construction, such as tunnel seismic
prediction (Dastanboo et al., 2020), tunnel geological prediction
(Li et al., 2014), tunnel reflection tomography (Du et al., 2022), and
tunnel seismic tomography (Ba et al., 2020). New geological
exploration technologies suitable for TBM and their application
to TBM systems are being researched. The new geological
exploration method is roughly divided into four categories: 1)
differences in the medium elastic wave impedance that are used
to detect geological structures, such as fault fractured zones and soft
intercalated layers (Allo et al., 2022); 2) the medium temperature
field, micro-seismic signal, dielectric differences, and polarisation
characteristics that used for advanced geological disaster forecasting
(Yu et al., 2017; Li et al., 2022); 3) intelligent classification of
surrounding rock conditions based on big data and artificial
intelligence (AI) technology (Liu Z B et al., 2021; Santos et al.,
2021); and 4) geological disaster forecasting based on big data and AI
(Mahdevari and Torabi, 2012; Sun et al., 2021).

Attitude control during TBM excavation is an important task for
the TBM operator, and the degree of consistency between the
excavation and design routes determines the construction quality
of the tunnel (Marcher et al., 2022). Therefore, the intelligent
guidance of TBM excavation is gaining popularity as a research
topic, which mainly considers the following three aspects: modelling
(Qiao et al., 2020), automatic control (Huang et al., 2022), and
intelligent control of the tunnelling posture (Zhang and Ma, 2018;
Garcia et al., 2021) A reliable design of tunnel support systems and
the reasonable selection of support timing are important
prerequisites to ensure the safety and long-term stability of
tunnel construction (Farrokh et al., 2011; Kampas et al., 2020).
Research regarding the intelligent support of tunnels includes the
following three aspects: intelligent matching and optimisation of
support parameters (Meschke et al., 2011), intelligent decision-
making of supporting timing (Sun et al., 2007), and intelligent
support structure (Liu et al., 2022c).

Owing to the lack of tunnelling evaluations and effective means
to make intelligent decisions, practical tasks mainly rely on human
experiences rather than scientific bases (Deng, 2018). Therefore,
intelligent tunnelling research focuses on the prediction of TBM

performance and intelligent decision-making of the TBM tunnelling
parameters (Harandizadeh et al., 2021; Xu et al., 2021; Liu Y R et al.,
2022). The prediction of TBM performance mainly includes the
tunnelling speed, construction speed, operation utilisation rate, and
tool wear of the TBM. More than 30 theoretical and empirical
models have been developed since the 1970s (Zhang et al., 2022a).
The CSMmodels proposed by the Colorado School of Mines include
the Sanio, dimensional, and improved CSM models, which are
theoretical prediction models (Goshtasbi et al., 2009; Pan et al.,
2021). Regarding the empirical models, Nelson, Norwegian Institute
of Technology (NTNU), QTEM, Alber, neuro-fuzzy, and Rock Mass
Excavability (RME) are commonly used (Hassanpour et al., 2011;
Hassanpour et al., 2016). The intelligent decision-making of the
TBM tunnelling parameters is divided into prediction optimisation
and decision-making. The former includes tunnelling parameter
prediction and optimisation (Li et al., 2019; Gong et al., 2021; Liu W
L et al., 2021). Regarding the intelligent prediction of TBM
tunnelling parameters, a data-driven model is established based
on the existing data of construction history to directly predict or
indirectly determine reasonable TBM tunnelling parameters and
then assist in adjusting and controlling these parameters (Nikakhtar
et al., 2022). The optimal intelligent decision-making of the TBM
tunnelling parameters is based on the different optimisation
objectives and decision-making criteria within a feasible range of
key control parameters. The optimisation objectives are divided into
excavation efficiency, economy, energy consumption, and the
excavation effect; the decision-making criteria can be single- or
multi-objective optimisation.

Although scholars have actively explored TBM intelligent
construction technology, the following problems remain: 1) Local
area perception is unable to meet the needs of a multi-scale,
comprehensive, and multi-level perception; it is difficult to
strongly support decision-making and control. 2) A seamless
integration between the basic automation control network and
the process and management control system is lacking. 3)
Insufficient real-time information retrieval, screening, and
transmission, in addition to the conventional tunnelling cycle
data extraction, processing, and analysis methods, make it
difficult to effectively support decision-making and control. 4)
The rapid expansion of data volume, dimension, and granularity
makes traditional storage systems unable to meet application
requirements. 5) A single mechanism or data-driven decision-
making model cannot resolve the adaptive dynamic control of
tunnelling parameters caused by rock mass state changes; in
addition, the cost of decision-making algorithm testing is high,
especially the safety risk. 6) It is difficult for the existing single
control strategy to meet the diverse requirements of working
conditions in conventional and unfavourable geological sections.
In addition, the integration level of perception, decision-making,
and control must be further improved.

Considering the aforementioned problems and based on
automatic control, AI, big data analysis, and other technologies,
as well as the closed-loop intelligent control concept of the
“perception-decision-control” (Li et al., 2022a; Li et al., 2022b),
the TBM construction of deep-buried long tunnels is researched in
this study to develop an intelligent tunnelling robot system, which
exhibits a comprehensive perception, dual-driven decision-making,
and compound intelligent control functions.
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Intelligent tunnelling robot system

Overall system architecture
The intelligent tunnelling robot system (Figure 1) includes three

parts: a comprehensive perception system, intelligent decision-
making system, and real-time control system. The comprehensive
perception system can achieve the comprehensive perception,
seamless integration, and real-time fusion management of
adverse geological, disastrous, and multi-source construction
information in complex environments. The intelligent decision-
making system considers the differences in the excavation targets
of TBM construction under different geological conditions,
adaptively selects the intelligent decision-making model, and
provides the optimal TBM tunnelling parameters. The real-time
control system receives the optimal tunnelling parameters and
controls the TBM to execute the tunnelling action according to
the multi-mode control strategy.

Comprehensive perception system

Data acquisition and transmission
The entire process information of TBM construction of large

buried deep and long tunnels is massive, multi-dimensional, multi-
granular, and strongly heterogeneous. Therefore, it is difficult to
obtain and effectively collect comprehensive data. Comprehensive
perception is a prerequisite for achieving intelligent decision-
making and control; a more refined and time-sensitive
information perception is more beneficial for TBM construction
decision-making and control. Considering the aforementioned
problems and the compatibility of TBM equipment manufactured
by different manufacturers, as well as the requirements for a simple
deployment of projects, the comprehensive perception system
architecture is a two-layer architecture, including a field device

layer and a field monitoring layer (Figure 2). The field device
layer is the direct object of data collection, and the types of
perceptual information include geological, advanced geological
exploration, host vibration monitoring, cutter status monitoring,
TBM guidance, PLC, rock-machine interaction, rock fragment
analysis, and other types of information. The host vibration
monitoring, cutter status monitoring, rock-machine interaction,
and TBM guidance information are all obtained from the TBM
host system and auxiliary equipment. The rock fragment analysis
information is provided jointly by the TBM host system, auxiliary
equipment, and continuous belt conveyor system. Geological
information originates from early geological explorations. The
advanced geological exploration system provides information
regarding geological hazards, such as rock bursts and water
inrush. Other types of information related to the field device
layer is provided by the TBM rear supporting system, such as the
roof bolter, concrete spraying system, and other relatively
independent supporting systems. PLC information is mainly
obtained by the master (slave) PLC controller of the field
monitoring layer located in the TBM main control room. The
communication connection between the field device layer and
field monitoring layer is achieved using a fieldbus. The PLC
controller of the field monitoring layer adopts a dual-machine
hot standby design of the master station and master station
(slave), which completes the dual-machine hot standby of the
CPU through PLC hardware. The two CPU modules achieve the
purpose of a hot standby through two redundant memory exchange
modules, which are connected by an optical fibre. The monitoring
and display module located in the field monitoring layer belongs to
the Class 2 master station of the fieldbus system. It has the
equipment to manage the configuration and diagnostic data of
the master station PLC controller and master (slave) PLC
controller, in addition to having the communication capabilities
for complete data reading and writing, system configuration,

FIGURE 1
Overall structure diagram of the intelligent tunnelling robot system.
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monitoring, fault diagnosis, programming, parameter setting, and
the online detection of each station, such as the operator monitoring,
operator interface, and compiler.

The advanced geological exploration system integrated into the
field device layer includes rock burst microseismic monitoring and

the advanced detection of water inrush. The former achieves an all-
weather, real-time, and seamless collection of microseismic signals,
automatic filtering and identification of microseismic signals,
automatic fine-positioning of microseismic sources, and a three-
dimensional dynamic display of the positioning information and

FIGURE 2
Comprehensive perception system architecture.

FIGURE 3
Data service functional structure diagram.
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disaster risk areas. The latter is achieved by the joint interpretation
and visualisation of the induced polarisation, seismic, and cross-hole
radar methods. The spatial position and distribution shape of the
unfavourable geological bodies are displayed based on data-driven
three-dimensional visualisation. This study adopts the network
communication interface to achieve the integration between the
systems; that is, real-time data network communication is
implemented in the standard tag length value format based on
the user datagram protocol network protocol. The specific unit data
is expressed in the JSON format, and the standard nested format is
used for multiple fields.

The data servicer built into the computer terminal provides data
management, data backup, and data communication services
(Figure 3). The server begins the background real-time service
program and provides an external connection interface. After the
client starts, it establishes a connection with the server through a
transmission control protocol. After the user verification is passed,
the real-time data are read from the real-time database to the local.
When the server has new data, it requests real-time data from the
server. The control operation triggered by the client is written into
the control data table after verification authority of the server is
passed. The server starts the background history service program,
provides an external connection interface, and receives historical
data reported by the intelligent decision-making system. The
communication module of the intelligent decision-making system
establishes a message queue to store the status messages sent to the
server. The background thread is started, and the real-time data in
the local database are periodically scanned and uploaded to the
server. Owing to the real-time requirements of the system, this
thread has the highest priority. The message returned by the server
indicates whether there is currently a control command. If there is a

thread, the operation triggered by the client is sent to the scheduling
system, and the execution result of the scheduling module is stored
in the message queue. The intelligent decision-making system
establishes a historical data reporting thread, connects to the
historical service, regularly checks whether the historical data is
consistent with that in the local database, and synchronises the local
historical data to the cloud server when inconsistent. Owing to the
large amount of historical data and low real-time requirements, the
priority of this thread is lower than that of the real-time library
thread.

Data storage
TBM construction data have the characteristics of spatiality,

real-time, multi-source heterogeneity, and massiveness. It is difficult
for a single relational database to satisfy the aforementioned data
storage requirements, and it is necessary to build a more scientific
and efficient integrated data storage system. As shown in Figure 3,
the database at the management level integrates multiple types of
databases, such as the relational database MySQL, non-relational
database MongoDB, cache database Redis, and distributed file
storage system HDFS (Yu et al., 2018). It achieves efficient
storage and retrieval of data through data-adaptive storage. The
semi-relational database MongoDB is responsible for storing two
types of data: semi-structured and unstructured data. It is
specifically used to store PLC data, file storage directories, user
behaviour logs, geological data, and advanced geological exploration
information of the TBM equipment. The distributed memory
database Redis is responsible for storing application scenario data
such as cache and highly read/write, mainly including TBM
construction monitoring data, cache data, and cloud service
module data to provide remote monitoring related data support.

FIGURE 4
TBM tunnelling data preprocessing and complete tunnelling cycle prediction.
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The distributed HDFS database is used for massive data storage and
is responsible for storing large file data (e.g., TBM excavation process
data, compressed files, and videos). The relational database MySQL
is mainly used to store structured data, which is responsible for
storing user registration information, TBM failure and maintenance
data, expert information, and highly sensitive and secure data.

Intelligent decision-making system

Data preprocessing
By analysing the tunnelling data, a complete TBM tunnelling

cycle can be divided into empty push, ascending, and stable sections.
These include valid and abnormal data, as well as that of certain
special tunnelling states (downtime section data). These data have a
negative impact on the model establishment of the TBM intelligent
decision-making system. Hence, to obtain accurate and effective
input data, reduce the influence of interference samples, and dig
deep into the excavation data with high quality, it is necessary to use
feature engineering methods to preprocess existing data, filter
abnormal data, and extract the main features. This lays the
foundation for the subsequent construction and training of data-
driven intelligent decision-making models using engineering data.

As shown in Figure 4, the preprocessing of tunnelling data
includes constructing datasets, parameter dimensionality reduction,
extracting tunnelling parameters, special value processing, outlier
value processing, and standardisation processing. The data include
stake number information, geological condition information, and
TBM tunnelling parameter data, such as the propulsion speed,
cutterhead torque, and cutterhead power. Meanwhile, the
geological data are divided according to the range of the stake
number, and each stake number corresponds to a set of geological
parameters. Thus, the construction method of the dataset matches
the geological data with the TBM tunnelling parameters through the
stake number. Through parameter dimensionality reduction, the
prediction error and learning cost caused by redundant information
are reduced, essential structural features are found, and data
visualisation is facilitated. Based on previous studies (Hou et al.,
2020; Zhang et al., 2022b), the Pearson correlation analysis was used
to identify the 100- and 99-dimensional input parameters of the
decision-making model. Based on the identification results, the key
parameters with a high correlation with the predicted parameters
were extracted from the tunnelling parameters of the complete
tunnelling cycle as the model input. Owing to the large amount
of tunnelling data in the shutdown section and the useless data of the
special tunnelling state, the method of constructing a binary state
discriminant function (Zhang et al., 2022b) is used to eliminate the
tunnelling data in the shutdown section. The discriminant function
is expressed as follows:

St � f n( )f v( )f F( )f T( ) (1)

f x( ) � 1 x ≠ 0( )
0 x � 0( ){ (2)

St � 1 Tunnelling( )
0 Shutdown( ){ (3)

where St is the state discriminant function, n is the cutterhead speed,
v is the propulsion speed, F is the total propulsion force, T is the

cutterhead torque, and x refers to one of the four key tunnelling
parameters indicated above. However, when any tunnelling
parameter is 0, the binary state discrimination function St is
equal to 0, and the data record is considered invalid for the
equipment and should be eliminated.

Outliers in the TBM tunnelling data were corrected using the
triple standard deviation method (Zhou et al., 2020). Traditional
studies regarding TBM tunnelling parameter prediction (Hou
et al., 2020) generally use the data of the ascending section to
predict the parameters of the stable section. However, this
requires a significant amount of time to efficiently identify
and extract the data of the ascending section and cannot fully
reflect the geological information. Therefore, in the
standardisation processing stage, the complete tunnelling cycle
data are selected to predict the TBM tunnelling parameters to
effectively reduce the data processing time and reflect the
complex geological conditions in the tunnelling process.
Considering the tunnelling data of a certain day as an
example, the TBM tunnelling data after abnormal value
processing are first read, and each piece of data is judged
based on the cutterhead torque. The first data with non-zero
cutterhead torque are recorded as P1. The next data are read line-
by-line and the second data with zero cutterhead torque is
determined and recorded as P2. It is then determined whether
the data between P1 and P2 are between 500 and 5,000 s. If it is
not within this range of time, the section of data is discarded; if it
is within the range, the P1 and P2 data are output to the specified
file, and a model file is generated until all the data is extracted.

Intelligent decision-making method driven by
physics and data

According to previous studies (Zhang et al., 2022a; Zhang et al.,
2022b), six key parameters were selected for the optimisation of
decision-making: the cutterhead speed, cutterhead torque,
cutterhead power, penetration, propulsion speed, and total
propulsion force. Most of these parameters describe the
relationship between them through the rock-mechanical
interaction model. The internationally recognised theoretical
model CSM (Liu et al., 2016) is selected to illustrate the
relationship between the aforementioned six parameters:

F � N*
Rt

1 + Ψcos−1
R − p

R
( )*C ����������

S

Φ
��
Rt

√ σc2σt
3

√
* cos

Φ
2

(4)

T � 0.3*D*N*
Rt

1 + Ψcos−1
R − p

R
( )*C ����������

S

Φ
��
Rt

√ σc2σt
3

√
* sin

Φ
2

(5)

W � T*RPM
5250

(6)

where R is the hob radius, t is the width of the tool tip, p is the
penetration, Φ is the contact angle between the rock and the hob,
Ψ is the constant of the pressure distribution function, C is a
constant (generally 2.12), σc is the uniaxial compressive strength
of the rock, σt is the tensile strength of the rock, S is the hob
spacing, N is the number of hobs on the cutterhead, D is the
cutterhead diameter of the TBM, and RPM is the cutterhead
speed.

The relationship between the cutterhead speed RPM,
penetration p, and propulsion speed v is as follows:
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v � RPM × p (7)
The equation above indicates that the control of the six key

parameters above can be directly or indirectly achieved only by
controlling the cutterhead and propulsion speeds. Accordingly,
the cutterhead and propulsion speeds can be selected as the main
tunnelling control parameters for decision-making control. To
improve the main performance indicators (e.g., the tunnelling
efficiency, energy consumption, and cost), the laws of large-
sample historical data and the physical and mechanical
characteristics of TBM tunnelling can be comprehensively
considered to clearly construct a mapping relationship model
with the performance indicators and optimise the objective
function. Thus, optimal decision-making can be achieved to
principally improve the scientific features and reliability.
Based on the aforementioned understanding and previous
research (Zhang Y. K. et al., 2022; Ma et al., 2022), this paper
proposes an intelligent decision-making method for TBM
tunnelling parameters based on physical laws and data
mining; that is, the optimal decision-making method of the
particle swarm optimisation (PSO) algorithm for the
minimum decision-making of tunnelling specific energy.
Multivariate information that affects the TBM tunnelling
performance is introduced, such as the parameters including
the lithology and cutterhead vibration signals, and a TBM rock-
machine mapping model is constructed by studying the rock-
breaking laws and large-sample data mining. Subsequently, the
main control parameters are used as constraints (e.g., the
cutterhead and propulsion speeds), and the minimum specific
energy of tunnelling is aimed for to achieve optimisation and
decision-making.

The TBM energy consumption is a critical parameter in the
process of TBM excavation, which determines the direct cost of the
project (Yang et al., 2021). Reducing the TBM energy consumption
during long-distance tunnel excavation is extremely significant for
reducing engineering costs. The TBM energy consumption is usually
described by the tunnelling specific energy Es, which can be
expressed as follows (Li et al., 2012):

Es � 2πnTt + Fvt

0.25πD2vt
(8)

Here, Es represents the tunnelling specific energy of the
cutterhead per unit time; D is the diameter of the cutterhead of
the TBM; n is the set cutterhead speed; t is the unit time; and T and F
are the predicted values of the cutterhead torque and total propulsive
force output by the prediction model, respectively. To meet the
complex geological conditions, cross-platform deployment of the
system, and scalability requirements of the prediction model library,
this study builds a tunnelling parameter prediction model library
based on Keras deep learning frameworks. These include, but are not
limited to, a recurrent neural network (RNN), long short-term
memory (LSTM), gate recurrent unit (GRU), bi-directional
recurrent neural network (Bi-RNN), Bi-LSTM, Bi-GRU, Bi-GRU-
ATT, and Bi-directional long short-term memory embedding
attention mechanism (Bi-LSTM+EMB_ATT). When v and n are
set under a certain lithology or surrounding rock grade, the
predictive model can output the corresponding cutterhead torque
and total propulsion force, which can be expressed as a function of

the cutterhead speed n and propulsion speed v. The cutterhead
torque and total thrust can be expressed as follows:

T � gT n, v( ) (9)
F � gF n, v( ) (10)

Substituting Eqs 9, 10 into Eq. 8, the specific energy decision
function of TBM tunnelling can be constructed as follows:

Es � 2πntgT n, v( ) + gF n, v( )vt
0.25πD2vt

(11)

The PSO algorithm is introduced, and the decision function
represented by Eq. 11 is used as the fitness function. When the
specific energy Es of TBM tunnelling has a smaller value, a better
fitness is obtained. The global optimal solution within the
solution range is the optimal combination of the tunnelling
parameters aimed for when the decision is the minimum
tunnelling specific energy. If the particle position is
xi � (xi,1, xi,2), by combining the aforementioned
(ni, vi) � (xi,1, xi,2), the functional expression for optimising

FIGURE 5
Flow chart of the optimal decision-making method.
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the tunnelling parameters of the specific energy minimum
decision-making PSO algorithm is as follows:

fitness function xi( ) � min
xi,1 ,xi,2

Es � min
xi,1 ,xi,2

2πxi,1tgT xi( ) + gF xi( )xi,2t

0.25πD2xi,2t

s.t. xi,1 ∈ xi,1min, xi,1max[ ], xi,2 ∈ xi,2min, xi,2max[ ] (12)

The PSO and tunnelling parameter prediction models are
combined to obtain the tunnelling specific energy as the fitness
function, minimum specific energy as the decision-making strategy,
and propulsion and cutterhead speeds as the optimisation goals. The
process of the PSO algorithm optimisation decision-making method
for the minimum tunnelling specific energy is shown in Figure 5.
Here, G is the number of iterations, and Gmax is the maximum
number of iterations.

Real-time control system

Real-time control system
Based on the comprehensive perception system, the real-time

control system adopts the mode of ‘centralized management,
centralized monitoring, and decentralized control’ to achieve the
interaction and control of information. The field equipment layer
executes the control commands of the TBM operator or remote

manager, drives the TBM subsystem and its auxiliary equipment
to perform various actions, and feeds back the real-time status
information to the field monitoring layer. The field monitoring
layer monitors the running status of the TBM subsystem and its
auxiliary equipment and interacts with the remote management layer
to control the commands and related data. The remote management
layer allows remote users to monitor on-site tunnelling operations in
real time and remotely control the TBM. As shown in Figure 2, the
TBM host system and auxiliary equipment, as well as the TBM rear
supporting system, use a large PLC as the control core to complete the
electrical control tasks; the PLCs communicate through the network
communication interface. Other relatively independent supporting
equipment use a small PLC to complete the control tasks of the
actuators of each independent supporting equipment, connect with
the field bus through the network communication interface, and
exchange data with the field monitoring layer through the data
conversion interface.

Composite intelligent control strategy
TBM composite intelligent control strategies include

multimodal control strategies for conventional geological
sections and expert experience learning control strategies for
unfavourable geological sections (Figure 6). Considering that
there are differences in the excavation goals of TBM

FIGURE 6
Technical framework and flow chart of the TBM composite intelligent control strategy.
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construction under different geological conditions, the method of
using the same control strategy in different working conditions
cannot meet the diverse needs of working conditions (Zhang and
Ma, 2018; Liu W L et al., 2022). This study adopts multimodal
control ideas and expert experience to solve the problem. The basic
method of multi-mode control in conventional geological sections
is to divide the complex working conditions into several sub-

intervals according to different lithology or surrounding rock
grades and then establish a local mathematical model in each
sub-interval. The internal logic is expressed as follows:

O � O1, O2, O3,/, On[ ]
U � U1, U2, U3,/, Un[ ]
Gr: ifO � Oi, thenU � Ui, i � 1, 2, 3,/, n

⎧⎪⎨⎪⎩ (13)

FIGURE 7
Intelligent tunnelling robot system for deep-buried long tunnels.

FIGURE 8
Results of the advanced detection of the water inrush and fault fracture zone.
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whereOi is the i-th working condition,Ui is the i-th control strategy,
and Gr is the rule.

Combined with the rock mass parameter prediction model
(Zhang and ma, 2018) and the clustering classification method
(Yu et al., 2018) constructed by the multivariate algorithm fusion
constructed in a previous study, the multi-modal control strategy
selects the appropriate physical and data dual-drive intelligent
decision-making model. With the conversion between different
decision-making models, the tunnelling parameters are adaptively
determined; the most suitable control strategy is selected according
to different working conditions, and the advantages of various
control strategies are introduced. The controller controls the
TBM subsystem to execute the excavation action according to the
tunnelling parameters to enable the control performance of the
intelligent tunnelling robot system in the conventional stratum to
meet the diverse requirements of the working conditions.

Combined with previous research (Zhang and Ma, 2018), the
control method of unfavourable geological sections adopts the
expert experience control strategy. That is, the excavation tasks
of unfavourable geological excavation sections are mainly completed
according to the experience of TBM operators.

Support is provided according to the suggestions given by the
system. The tunnelling is started after the excavation operation
conditions are satisfied, the cutterhead is started under the mode
of the escape torque, and the speed is slowly increased to the
given speed. If the torque is near 80% of the maximum value or
the slag output of the belt is in line with the expectations, then
tunnelling is proceeded at these cutterhead and propulsion
speeds; otherwise, adjustments are made. If the further
measured torque value is stable, the speed can be slowly
increased to a certain extent. If the measured torque value

significantly fluctuates or exceeds the limit value, the
tunnelling speed will be reduced, and the tunnelling operation
will be conducted after the torque is stabilised after adjustment.
The transitional section between conventional and unfavourable
geological sections (i.e., when the surrounding rock quality
transitions from good to poor) remains to be controlled
according to expert experience. First, the propulsion speed is
stopped, and the speed is reduced to keep the slag out. After the
torque is stable, the propulsion speed is slowly increased while
observing the change in the torque value. If the torque value
fluctuates within the set range, it can be regarded as a stable state.
After waiting for it to stabilise after a certain period of time, it
continues to increase to the original set value state for the
tunnelling operations.

Engineering cases

To construct and verify the effectiveness of the comprehensive
perception and adaptive decision-making functions, this study chose
the TBM3 bidding section of theWater Supply Project in the Central
City of Jilin Province as an engineering case. The total length of the
bidding section is 17.488 km, and the buried depth is 85–260 m. The
data of this project not only include the TBM tunnelling parameters
but also the preliminary survey and advanced geological exploration
information.

Moreover, to verify the effectiveness of the entire intelligent
tunnelling robot system developed, especially the composite
intelligent control function, the Water Diversion Project in
Xinjiang Province was selected as another engineering case. This
is a pressure-free tunnel. A circular section is constructed using the

FIGURE 9
Intelligent decision-making module.

Frontiers in Earth Science frontiersin.org10

Zhang et al. 10.3389/feart.2023.1135948

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1135948


TABLE 1 Comparison of the accuracy of intelligent decision-making algorithms in different rock mass states and the optimal tunnelling parameters with the minimum specific energy.

Geological
type

Surrounding rock
grade

Decision-making
algorithm

Relative error (%) Tunnelling specific
energy kJ/m3

Penetration
mm/r

Propulsion speed
mm/min

Total
thrust

Cutterhead
speed r/min

Cutterhead
torque

Cutterhead
power

/kN /kN·m /kW

Granite IV slightly worse PSO-RNN 90.5 54.5 3.4 12.7 14.7 12.2 2,109.4

PSO-LSTM 43.5 90.9 2.0 12.7 37.8 68.8 3,276.1

PSO-GRU 9.4 0.5 1.3 22.4 14.3 15.9 1,422.2

PSO-BiRNN 16.7 1.4 1.6 22.4 2.0 0.4 1744.6

PSO-BiLSTM 10 24.6 1.1 12.7 31.0 62 2,489.9

PSO-BiGRU 3.3 42.8 2.7 12.7 49.6 87.2 2,496.8

PSO-BiGRU-ATT 21.1 4.1 1.8 8.6 31.9 72.8 1954.1

PSO-BiLSTM-
EMB_ATT

7.5 17.2 0.3 8.6 23.9 51.4 2,115.9

Granite IV slightly better PSO-RNN 22.8 10.0 10.2 1.8 0.4 9.6 2,231.6

PSO-LSTM 34.3 7.4 1.7 10 8.6 9.1 2,646.1

PSO-GRU 47.1 0.5 13.7 9.1 14.8 14.3 2,115.8

PSO-BiRNN 19.0 10.7 9.1 11.3 38.7 38.8 2,565.3

PSO-BiLSTM 14.3 44.1 13.2 12.3 17.7 18.9 4,883.6

PSO-BiGRU 32.3 3.8 1.1 10 3.0 4.7 2,637.2

PSO-BiGRU-ATT 22.7 24.0 4.5 10 9.3 9.2 3,347.5

PSO-BiLSTM-
EMB_ATT

47.1 20.8 16.8 10 24.4 25.2 2,524.6

Granite IIIb PSO-RNN 54.5 18.5 0.5 4.0 6.4 2.2 1,441.1

PSO-LSTM 42.4 20.4 10.7 0 16.2 12.3 1887.6

PSO-GRU 30.9 22.9 6.1 3.8 6.9 9.1 2,326.2

PSO-BiRNN 50.9 3.9 11.1 9.1 9.7 8.3 2,329.8

PSO-BiLSTM 24 3.8 4.3 9.3 9.4 23.0 2,536.7

PSO-BiGRU 43.4 5.3 11.5 9.1 8.9 13.6 1823.2

PSO-BiGRU-ATT 52.2 18.2 2.1 5.8 5.0 11.7 1,669.3
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TBM method. Considering the TBM2 tender section as one of the
engineering examples, it has a stake number of 24 + 740~44 + 687 m
and a total length of 19.947 km. According to this example, the
perception, decision-making, and control functions, especially the
real-time control system, can be tested and verified.

System implementation and
verification

The intelligent tunnelling robot systemmainly includes functional
modules such as geological forecasts, geological profiles, intelligent
TBM tunnelling parameters, intelligent support, and remote
monitoring (Figure 7). The main interface of the robot system
summarises the common information of the rock mass,
equipment, support, intelligent decision-making, remote
monitoring, and real-time control, assisting operators in making
scientific decisions and ensuring a safe and efficient TBM
construction. The geological perception unit and intelligent
support composed of the geological forecast and geological section
are the mapping of the geological state. Geological prediction is a
module that displays the results of an advanced geological exploration
system. The two functional modules of the geological perception unit
and intelligent support provide strong support for an experienced
control of unfavourable geological sections. The TBM state perception
unit is built into the remote monitoring module, which maps the
equipment state. The intelligent tunnelling parameters achieve dual-
driven and independent decision-making of the tunnelling
parameters and the composite intelligent control function of
tunnelling with the remote monitoring module. The remote
monitoring module includes two functions: TBM equipment
information perception and monitoring and TBM control.

The geological perception unit is composed of a geological section
and geological forecast (Figure 7). The geological profile is digitally
imported into the preliminary engineering geological survey report,
and the geological profile information of the current excavation
section and the entire excavation project is dynamically and
intuitively displayed. The current digging position of the tunnel
face can be displayed in real time. Geological prediction is divided
into conventional and unfavourable geological segments. The
geological forecast of the conventional geological section presents
the real-time perception of the state of the rock mass at the face and
the statistical information regarding lithology; the unfavourable
geological section presents the advanced detection information of
unfavourable geological conditions, such as a rockburst and water
inrush (Figures 7, 8). The system obtains the forecast information data
provided by the advanced exploration system of adverse geology
through the interface in real time, displays adverse geological
conditions graphically and intuitively in real time, and provides
comprehensive evaluation and corresponding support suggestions
accordingly.

The intelligent decision-making module senses the tunnelling
information in real time, optimises the decision-making
tunnelling parameters according to the geological conditions,
and provides the optimal tunnelling parameters for a compound
intelligent control and automatic tunnelling. Details regarding
the intelligent decision-making module are shown in Figure 9. The
left side of the figure presents a comparison curve between the real-TA
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FIGURE 10
Main monitoring page and parameter setting interface.

FIGURE 11
Comparison between the measured and set values of the cutterhead speed. (A) Biotite quartz schist-surrounding rock grade IV; (B) Biotite quartz
schist-surrounding rock grade IIIb; (C) Granite porphyry-surrounding rock grade IV; (D) Granite porphyry-surrounding rock grade II.
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time perception value of the tunnelling parameters and the optimised
decision-making value. The table on the right side presents the optimal
recommended values, decision algorithm library, optimisation
algorithm, whether it is self-adaptive, and the monitoring diagnosis
and suggestions for the surrounding rock. The monitoring, diagnosis,
and suggestions of the surrounding rock enable the statistical analysis
of events such as rockbursts, water gushes, and fault fracture zones that
occur in unfavourable geological sections. If the self-adaptive function
is checked, the intelligent decision-making module can adapt to
different rock mass states based on the proposed optimal decision-
making method and provide the optimal tunnelling parameters. If the
PSO algorithm option is checked, the original eight decision-making
algorithms can be optimised by particle swarm optimization. Table 1
presents a comparison of the accuracy of intelligent decision-making
algorithms for the different rockmass states and the optimal tunnelling
parameters with the minimum specific energy. Under the granite IV
deviation at stake number 52,047.125, the tunnelling specific energy
corresponding to the PSO-GRU decision-making algorithm is
1,422.2 kJ/m3, which is the smallest specific energy compared to the
other seven algorithms. The tunnelling parameters predicted by it are
optimal. Under the granite IV preference at stake number 51,998.980,
the tunnelling specific energy corresponding to the PSO-GRU
decision-making algorithm is 2,115.8 kJ/m3, the tunnelling specific
energy is the smallest, and the tunnelling parameters predicted by it are
optimal. Under granite IIIb at stake number 51,987.859, the tunnelling
specific energy corresponding to the PSO-RNN decision-making

algorithm is 1,441.1 kJ/m3, the tunnelling specific energy is the
smallest, and the tunnelling parameters predicted by it are optimal.

The remote monitoring module mainly includes the main
monitoring page, parameter setting, and cutterhead drive; the
TBM status sensing unit is built into the remote monitoring
module. The main monitoring page, including the remote-control
function, is shown in Figure 10. The main monitoring page not only
monitors the core components, such as the TBM top shield, right
shield, right shoe, left shield, left shoe, cutterhead, propulsion
system, oil cylinder, left and right rear supports, and main beam
in real time but also the footage data in real time. The parameter
setting includes the temperature warning value, grease frequency,
speed, oil pressure, penetration warning, mileage, and other TBM
equipment status parameters, as well as the tunnelling target
parameters, in addition to adjusting the saddle frame. The cutter
head drive monitors key parameters such as the motor current and
torque of the cutter head drive system, in addition to the interlocking
conditions and running time of the cutter head drive. As shown in
the red box in Figure 10, remote control can be achieved through the
‘upper computer + lower computer’ mode.

Any control system with a decision-making algorithm must
undergo several experimental tests, verifications, and assessments
(Ge et al., 2022). However, the heavy excavation tasks, complex and
changeable geological conditions, and extremely high safety
requirements of deep-buried long tunnels make it difficult to
systematically conduct the testing, verification, and improvement

FIGURE 12
Comparison between the measured and set values of the propulsion speed. (A) Biotite quartz schist-surrounding rock grade IV; (B) Biotite quartz
schist-surrounding rock grade IIIb; (C) Granite porphyry-surrounding rock grade IV; (D) Granite porphyry-surrounding rock grade II.
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of the control system with a decision-making algorithm. Currently,
the method testing cost, especially the safety risk, is significantly high
owing to the many actual excavation inspections and perfect
methods. Furthermore, the tunnel ceased to exist after
excavation, and the improved control algorithm could not obtain
the same test conditions again, resulting in a failure to verify the
system improvement effect. Therefore, the decision-making level is
faced with major technical problems, including the control
algorithm completeness, robustness testing, and continuous
improvement and upgrading. Therefore, this study first relies on
the Water Supply Project in the Central City of the Jilin Province to
build an intelligent tunnelling robot system. The preliminary
verification of its perception, decision-making, and control
functions is conducted. Thereafter, a small number of on-site
excavation tests of the water diversion project in the Xinjiang
Province were used to verify the real-time control function.

A statistical analysis was conducted on the data of the cutterhead
and propulsion speeds, the results of which are shown in Figures 11,
12; Table 2. The relative error between the measured and set values
of the cutterhead speed of the biotite schist is small, and the average
relative error under the condition of surrounding rock IIIb is slightly
higher than that of surrounding rock IV. The relative error between
the measured and set values of the cutterhead speed under the
condition of the granite porphyry-surrounding rock grade II is
higher than that under the condition of the surrounding rock
grade IV. The relative error between the measured and set values
of the cutterhead speed of the granite porphyry was generally higher
than that of the biotite quartz schist. Compared to the cutterhead
speed, the relative error between the measured and set values of the
propulsion speed of the biotite quartz schist and granite porphyry
was significantly larger; the relative error was higher under the
granite porphyry than that of the biotite quartz schist. By
comparison, it was found that the relative error between the
measured and set values of the propulsion speed was an order of
magnitude higher than that of the cutterhead speed, and the relative
error was relatively large. The results demonstrate that the control
accuracy of the cutterhead speed is higher, and the effect of precise
control is apparently better than that of the propulsion speed.

Conclusion

Based on the closed-loop intelligent control concept of ‘perception-
decision-control’, an intelligent tunnelling robot system was developed,
verified by different projects. The following results were obtained.

(1) The multi-source information comprehensive perception and
integrated management platform of a fieldbus is constructed; an
integrated data storage system is formed based on the non-
relational database MongoDB, combined with MySQL, Redis,
HDFS, and other systems. This can effectively solve the problem
of a seamless integration between the basic automation control
network and the process andmanagement control system, improve
the timeliness of perceptual information transmission, enable the
storage system to meet the application requirements, and achieve a
comprehensive perception of TBM tunnelling information.

(2) The optimal decision-making method of the PSO algorithm for
minimum tunnelling specific energy that satisfies the complete
tunnelling cycle data and adaptive rock mass state is proposed;
subsequently a TBM intelligent decision-making system driven by
physical laws and data mining is constructed. This can effectively
improve the timeliness of intelligent decision-making, solve the
problem of poor matching between the tunnelling and rock mass
state parameters, and achieve the dual-driven decision-making of
tunnelling parameters.

(3) A multimodal and expert-experience composite intelligent control
strategy is designed for diverse working conditions. The verification
results of the decision-making algorithm of the control system
demonstrate that the average relative error between the measured
and set values of the cutterhead speed is between 0.1113% and
0.262%. The average relative error between the measured and set
values of the propulsion speed is between 14.352% and 24.650%,
which can meet the safe and efficient construction requirements of
TBM under complex geological conditions.

(4) An intelligent tunnelling robot system with closed-loop intelligent
control functions of ‘comprehensive perception, dual-driven
decision-making, and composite intelligent control’ that can be
deployed across platforms has been developed. Its effectiveness and

TABLE 2 Relative error between the measured and set values of the tunnelling parameters under different lithology and surrounding rock grades.

Tunnelling
parameters

Lithology Surrounding rock
grade

Minimum relative
error (%)

Maximum relative
error (%)

Mean relative
error (%)

Cutterhead speed (r/min) Biotite quartz
schist

IV 0.002 0.278 0.113

Biotite quartz
schist

IIIb 0.004 0.368 0.149

Granite porphyry IV 0.001 0.339 0.196

Granite porphyry II 0.161 0.391 0.262

Propulsion speed
(mm/min)

Biotite quartz
schist

IV 1.693 35.316 14.352

Biotite quartz
schist

IIIb 7.556 16.137 12.286

Granite porphyry IV 8.729 41.058 23.370

Granite porphyry II 16.826 32.604 24.650
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reliability were verified through engineering cases. This provides
new technical means for the construction of deep-buried long
tunnels, especially for the less-manned, unmanned, and intelligent
excavation construction of TBM in high-cold areas. Moreover, it
can be extended and applied to other types of tunnel engineering
and has a certain universality. Further research is required to
improve the performance of the intelligent tunnelling robot
system to meet the construction requirements of an uncertain
environment and to incorporate more factors for intelligent
decision-making (e.g., the equipment condition management,
maintenance, and spare parts receipt).
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