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Widely confirmed and applied, data-driven models are an important method for
watershed runoff predictions. Since decomposition methods such as time series
decomposition cannot automatically handle the decomposition process of date
changes and less consideration of influencing factors before decomposition,
resulting in insufficient correlation analysis between influencing factors and
forecast objects, we propose a method based on hydrological model
decomposition to generate time series state variables (broadening the range of
influencing factors to be considered). In this study, we constructed hydrological
models wherein rainfall and other hydrological elements are decomposed into
hydrological and hydrodynamic characteristic state variables to expand the range
of the prediction factors. A data-driven model was then built to perform runoff
predictions in the Han River Basin. The results showed that compared with the
single prediction model, the prediction results based on the coupling model were
superior, the performance evaluation grade of the coupling model was high, and
the coupling model had a higher stability.
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1 Introduction

As a non-engineering measure, hydrological forecasting holds great potential in
assessing forthcoming alterations in hydrological elements, thereby facilitating proficient
responses within the basin dispatching decision-making processes. Simultaneously,
hydrological forecasting assumes a progressively crucial position in the domains of flood
and drought disaster prevention, as well as the optimal distribution of water resources. Such
forecasting endeavors contribute significantly to enhancing the understanding of future
hydrological dynamics and aid in formulating proactive strategies for sustainable water
management.

Recently, with the impacts of global warming and climate change, factors influencing
watershed hydrological predictions have become increasingly complex. The ability to extract
effective influencing factors and improve the accuracy of model predictions are important
topics in current hydrological prediction research. For example, considering the impact of
flow redistribution on runoff generation and concentration processes, Yao Cheng (2021)

OPEN ACCESS

EDITED BY

Jun Niu,
China Agricultural University, China

REVIEWED BY

Yanlai Zhou,
Wuhan University, China
Wei-Bo Chen,
National Science and Technology Center
for Disaster Reduction (NCDR), Taiwan

*CORRESPONDENCE

Chao Wang,
wangchao@iwhr.com

RECEIVED 14 March 2023
ACCEPTED 22 June 2023
PUBLISHED 10 July 2023

CITATION

Ding G, Wang C, Lei X, Xue L, Wang H,
Zhang X, Song P, Jing Y, Yuan R and Xu K
(2023), Application of coupling
mechanism and data-driven models in
the Hanjiang river basin.
Front. Earth Sci. 11:1185953.
doi: 10.3389/feart.2023.1185953

COPYRIGHT

© 2023 Ding, Wang, Lei, Xue, Wang,
Zhang, Song, Jing, Yuan and Xu. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 10 July 2023
DOI 10.3389/feart.2023.1185953

https://www.frontiersin.org/articles/10.3389/feart.2023.1185953/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1185953/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1185953/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1185953&domain=pdf&date_stamp=2023-07-10
mailto:wangchao@iwhr.com
mailto:wangchao@iwhr.com
https://doi.org/10.3389/feart.2023.1185953
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1185953


used the Grid Xin’anjiang Model (GXM) for targeted quantitative
simulation; based on the quantitative relationships among the model
parameters and the underlying surface characteristics, they deduced
the spatial division in the model parameters. Their results showed
that the GXM can not only yield high-precision predictions of flood
processes in the outlet section of the basin, but it can also do this
without calibration. In other words, it allows high-precision
predictions of flood processes in nested sections of a basin.
Harris et al. (2008) examined the simulation effects that
TOPMODEL has on floods caused by small-scale satellite rainfall.
The comparison of four different model structures, i.e., NRCS, CN,
green Ampt, and common types, showed that TOPMODEL had a
better simulation effect; Koutroumanidis et al. (2009) used the
autoregressive comprehensive moving average (ARMA) model to
predict watershed flow, which showed that the model is
advantageous for river flow fitting and mesoscale predictions.
Zhao Wenbin et al. (2021) adopted the BP_AdaBoost and
Xin’anjiang models based on group modeling to predict basin
floods. They discussed the prediction accuracy of the different
models during three representative flood years in high-, normal-,
and low-water years. Gao Yueming et al. (2021) proposed the LSTM
depth neural network model for predictions of small reservoirs with
a lack of data and an air defense capacity for heavy rainstorm floods;
they analyzed the applicability of the LSTM depth neural network
model for hydrological predictions of small watersheds according to
their results. Yaseen et al. (2016) proposed the extreme machine
learning algorithm to predict monthly basinal runoff; they compared
and analyzed prediction results from the Elm, SVR, and GRNN
models. Ji Zhansheng et al. (2021) proposed a convolution neural
network model for short-term watershed predictions based on the
flood occurrence in a watershed. The results showed that
convolution neural network has good applicability in watershed
runoff prediction. Noori and Kalin (2016) proposed the coupled soil
and water assessment tool (SWAT) and artificial neural network
(ANN) model to predict the water quality of a basin; they compared
prediction results from the coupled and single models. With the
continuous development of deep learning, Xu GuoYan et al. (2019)
proposed a combined hydrological time-series prediction model
based on the convolutional neural network and Markov chain,
which suggests that the spatial correlation between stations with
multidimensional input will increase the complexity of data
reconstruction during feature extraction and reduce the
prediction accuracy because a single model only considers the
linear component of water level time-series without considering
nonlinear components; Zhao Qun et al. (2020) proposed a coupled
time-and-space prediction model by constructing a hydraulic
distance map, Euclidean distance map, and correlation
map. They proposed a graph convolution network (GCN) that
can learn the spatial characteristics and a recursive neural
network with a well-designed activation function that can capture
temporal characteristics for hydrological prediction research. The
results showed that the coupled model could effectively predict
runoff. Jiang Shijie et al. (2020) proposed a new idea of hybrid
physical-artificial intelligence approach in the context of the rapid
development of artificial intelligence, namely, a time-dynamic
geoscience model as a special recurrent neural layer in a deep
learning architecture, and showed that the hybrid model has
good prediction accuracy and robustness by modeling runoff in

different watersheds in the United States. Xu Zhanxing et al. (2022)
proposed a stepwise decomposition-integral prediction framework
considering boundary correction based on stepwise decomposition
sampling method and multi-input neural network in order to
explore the reasonable and effective application of time series
decomposition in runoff prediction, and the hybrid method has
higher reliability and prediction accuracy compared with a single
model.

In summary, the single hydrological forecast model has the
shortcomings of single choice of forecast factors and independent
application of mechanism and data-driven model characteristics in
the forecast study, i.e., the single hydrological model mainly adopts
the data of early rainfall, early water level and early runoff as forecast
factors in the forecast study, which seriously affects the forecast
effect in the forecast, especially in the medium- and long-term
forecast; the mechanism model can consider the basin flow
production, confluence and other important hydrological
processes but has poor ability to describe the complex basin
nonlinear relationships. The data-driven model can map complex
nonlinear relationships because of its neural system-like structure,
but the structure does not have the ability to consider the
hydrological processes in the basin. To address the above
shortcomings of the single model, this study initially proposes a
coupled mechanistic model and data-driven model for forecasting.
The model uses the mechanistic model (Swat model) to simulate the
actual basin, generates (in this study, decomposes) the state variables
that have a large impact on the basin, and constructs a data-driven
model based on the state variables, atmospheric circulation factors,
and other factors to carry out the study of runoff forecasting in the
Han River basin. It is demonstrated that the coupled model
proposed in this study has better forecasting effect and better
stability than a single model, and can play a more important role
in important decisions such as water allocation in the basin.

2 Methodology

2.1 Coupling model

To enhance the accuracy of hydrological forecasting, we propose
a novel coupling model (Figure 1) that integrates the mechanism
model and data-driven model. Specifically, we employ the widely
recognized SWAT model as the mechanism model in this study.
Being a distributed hydrological model, SWAT effectively leverages
land use and soil data to simulate watershed runoff dynamics (2.2.2).
The data-driven model consists of two prominent neural network
architectures: the back propagation (BP) neural network and the
Elman neural network. These models excel in capturing intricate
nonlinear relationships within the hydrological system. Notably, the
Elman neural network model, augmented with an additional
connection layer (Section 2.1), exhibits advantages over the BP
neural network. By coupling SWAT with diverse neural network
models, we can partially unravel the suitability of this coupling
approach for accurate predictions of watershed runoff.

Modeling steps for the coupling model.

(1) Data processing: we standardized the land use (remote sensing
monitoring data for the land use status in China in 2015) and
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soil data (extracted from the Chinese soil dataset in HWSD),
and combined DEM (www.gscloud.cn).

(2) SWAT modeling: with the above input conditions, we built the
SWAT model to simulate runoff in the study area and generate
output files.

(3) SWAT Cup calibration: we imported the SWAT output file into
SWAT Cup (2.1.4), modified the type and quantity of the basin
calibration parameters according to their impacts on runoff
(Table 1), and calibrated the basin. The final calibration
parameters were generated based on the upstream-to-
downstream components of the flow domain.

(4) Anti substitution: the final parameters calibrated by SWAT Cup
were inversely substituted into the parameter modification
process of SWAT modeling. The SWAT model was rerun to
obtain the state variables that had a significant impact on
watershed runoff (Table 2).

(5) Input data collation: the state variables and atmospheric
circulation factors obtained from the output of the SWAT
model were unified in a fixed format.

(6) Data-driven model construction:

Firstly, the number of input layers is set to 1, indicating the input
variables for the model. Similarly, the number of hidden layers is set
to 1, determining the intermediate processing layers of the model.
Lastly, the number of output layers is also set to 1, representing the
predicted output variable. Additionally, an exclusive component,
known as the take-up layer, is incorporated into the Elman
networks.

Furthermore, the model is subjected to a predetermined number
of network runs, specifically 10,000 runs in this study. This implies
that the model terminates either when the predicted result reaches
the optimal value within 10,000 runs or after 10,000 runs,
irrespective of the attained result. Such an approach ensures a
balance between convergence speed and accuracy during the
model training process.

Moreover, the output error threshold of the model is set at 20%.
This threshold serves as a criterion to trigger the back propagation

algorithm, where the node weights and thresholds are adjusted
iteratively to minimize the error. The model is then rerun until
the desired results are achieved, indicating the attainment of the
desired level of accuracy.

7) Model prediction effect and model performance evaluation:
as shown in the last step of the technical framework in Figure 1, we
used R2, MAPE, NSE, Bias, and other parameters for the model
prediction results and model performance evaluation indicators. A
comparison of the prediction results of the coupling model, SWAT
model, BP neural network model, and Elman neural network model
showed that the coupling model had a better prediction effect and
was stronger and more stable (three parts).

2.2 SWAT model

The SWATmodel (Arnold et al., 1998) was mainly developed in
three stages. In the first stage, the United States Department of
Agriculture (USAD) developed chemical runoff and erosion from
agricultural management systems (CREAMS) in the 1970s with
respect to the SWRRB model, which can simulate the impact of land
use on the loss of sediment and chemical substances produced by
agriculture. In the second stage, in the 1980s, to improve water
quality evaluations in the simulation process, the groundwater
loading effects on agricultural management systems (GLAMS)
model, which can mainly describe the impact of chemicals in
water on agricultural systems, was introduced to the SWRRB
model. At this point, the SWRRB model could evaluate and
analyze small watershed scale non-point source pollution under
complex agricultural management measures, but it was not reliable
for large-scale watershed simulations. In the third stage, in the 1990s,
according to actual demand, the SWRRB model was combined with
the roto (routing output to outlet) model, which can divide a basin
into several sub-basins and directly collect runoff and sediment at
the outlet of the entire basin, i.e., the SWAT model.

The SWAT model has been extensively modified and expanded,
i.e., hydrological response units, such as runoff generation,

FIGURE 1
Technical roadmap of the coupling model.
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TABLE 1 Calibration runoff parameters.

Parameter name Parameter definition Assignment method Min value Max value Calibration variables

CN2 runoff curve number r −25 25 Runoff, sediment

EPCO Vegetation transpiration compensation coefficient v 0 1 Runoff

SFTMP Snowfall temperature v 0 5 Runoff

REVAPMN Re-evaporation coefficient of shallow groundwater a −100 100 Runoff

CH_N2 Manning coefficient of main channel v 0 1 Runoff, sediment

HRU_SLP Average slope r −25 25 Runoff

GWQMN Shallow groundwater runoff coefficient a −1,000 1,000 Runoff

SMFMX Annual maximum snow melting speed v 0 10 Runoff

CANMX Maximum canopy water storage v 0 10 Runoff, sediment

SOL_ALB () Soil reflectance r −25 25 Runoff, sediment

SLSUBBSN Average slope length r −25 25 Runoff

TIMP Ice temperature hysteresis coefficient v 0 1 Runoff

SOL_Z () Soil depth r −25 25 Runoff

TLAPS Decreasing rate of temperature v 0 50 Runoff

SOL_AWC() Effective soil moisture content r −25 25 Runoff, sediment

ESCO Soil evaporation compensation coefficient v 0 1 Runoff

SOL_K () Saturated hydraulic conductivity of soil v 0 150 Runoff, sediment

CH_K2 Hydraulic conductivity of main channel v 0 150 Runoff, sediment

SURLAG Lag coefficient of surface runoff v 0 10 Runoff

ALPHA_BF Basic flow α coefficient v 0 1 Runoff, sediment

GW_DELAY Hysteresis coefficient of groundwater a −10 10 Runoff, sediment

SMTMP Min temperature of snowmelt r −25 25 Runoff

SMFMN Annual min snow melting speed v 0 10 Runoff

GW_REVAP Groundwater re-evaporation coefficient a −0.036 0.036 Runoff

BLAI Max potential page evaporation index v 0 1 Runoff

TABLE 2 Runoff impact state variables.

Serial number Variable name Definition

1 PRECIP Total precipitation of sub-watershed in time step (mm)

2 SNOWMELT Amount of ice and snow melt in time step (mm)

3 PET Potential evapotranspiration of sub-watershed in time step (mm)

4 ET Actual evapotranspiration of sub-watershed in time step (mm)

5 SW soil moisture content (mm) Water content of soil profile at the end of the period

6 PERC Infiltration volume of root zone in time step (mm) Time delay between water separation at the bottom of the root opening zone
and reaching the shallow aquifer. The value of this variable was then equal to the recharge of groundwater

7 SURQ Surface runoff flowing into the river in time steps (mm)

8 GW_Q Groundwater flow into the river in time step (mm) Water volume from shallow aquifer to reach in time step

9 WYLD Water yield (mm) Net water volume leaving the sub-watershed and entering the river section within a short period of time
(WYLD = SURQ + LATQ + GWQ—TLOSS—pond abstractions)

10 SYLD Sediment yield (ton/ha) Amount of sediment transported from the sub-basin to the river section within the time step
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infiltration, evaporation, and other hydrological processes have been
added. This model also facilitates the direct input of rainfall,
temperature, wind speed, and other meteorological data. It was
initially used to simulate the loss of sediment and agricultural
chemicals, but its functions in hydrological simulations have
gradually expanded to areas such as watershed runoff. SWAT
simulation is a distributed hydrological model that simulates the
movement of water, sediment, and nutrients in a basin on daily,
monthly, and annual scales based on GIS while relying on complex
and variable land use and soil types.

During runoff simulation of a watershed, the distributed
hydrological model includes two components: controlling the
input of water, sediment, and chemical substances, among others,
in the main river channel in each sub-watershed and determining
the movement of water from the river network to the outlet of the
watershed. The former mainly involves runoff generation and slope
confluence, whereas the latter mainly involves the river confluence.
The SWAT model follows the basic water balance equation in the
overall simulation process:

SWt � SW0 +∑t

i�1 Rday − Qsurf − Ea −Wseep − Qgw( ) (1)

where SWt represents the final moisture content of the soil, SW0

represents the initial water content of the soil, t represents time, Rday

is precipitation, Qsurf represents surface runoff, Ea represents the
evaporation capacity,Wseep represents the amount of water entering
the aeration zone in the soil profile, and Qgw is the water volume of
the underground return flow.

The specific modeling process for the SWATmodel is as follows.

1) Pre modeling preparation: before modeling, we prepared the
basin regional elevation data layer (DEM data), regional land use
data, soil type data, and meteorological data required for the
modeling process.

2) Automatic watershed division: we performed automatic division
of specific watersheds to form sub-watersheds and hydrological
response units. We then calculated the area of the different sub-
watersheds.

3) Hydrological response unit analysis: we matched the land use
data and soil type data prepared in step 1) with the divided
hydrological response unit in step 2) to simulate the environment
in the watershed during an actual situation. We analyzed the
slope classification in the basin.

4) Input meteorological data: we mainly used rainfall, temperature,
wind speed, and other data as input. The simulation data from
the SWAT model were used. At the same time, measured data
can also be prepared and imported according to the format
required by the model for watershed runoff simulation.

5) Operation and verification: we run the model to obtain the
results and verified these using the SWAT Cup software. The
parameters obtained after verification were input again into the
SWAT model to determine the simulation effect and optimal
parameter value.

The SWAT Cup software mentioned in step 5) in the SWAT
modeling process was mainly used to calibrate and test the data after
SWAT operation. The SWAT Cup software calibrates and tests the
traffic at designated stations by setting parameters, providing a series

of data useful for subsequent research, such as the simulated traffic,
Nash coefficient, and optimal parameters. Both the SWAT and
SWAT Cup versions used in this study are from 2012.

2.3 Data-driven model

2.3.1 BP neural network model
Rumelhart (1986) proposed the BP neural network, which has

subsequently developed rapidly. At present, this neural network has
been applied in various fields. Particularly, the application of the BP
neural networks in the hydrological industry has opened new
avenues for hydrological predictions. As a model simulating the
human neural network, the BP neural network has a multi-layer
network structure (including a three-layer network topology, i.e., the
input layer, hidden layer, and output layer) (Nong ZhenXue, 2018)
and multiple neurons, which can map the complex nonlinear
relationship among input data. The self-learning characteristic of
the BP neural network is that error is propagated forward and the
weights among the input layer and middle layer and middle layer
and output layer are corrected according to this error. Therefore, the
output result is closer to the observed value (the end of model
training was divided into two categories). The first category, within
the training times set by the model, had an output error within the
allowable error and the model terminated training. The second
category showed that the model exceeded the set training times, but
the error still exceeded the allowable error; thus, the model
terminated the training. The number of model training processes
should not be excessive; otherwise, the simulation results would be
overfitted (The number of model training events is generally set to
3,000–10,000). The BP neural network was set as follows: three-layer
network topology, two hidden layer nodes, 10,000 training
processes, and an allowable error within 20%.

2.3.2 Elman neural network model
The Elman neural network (Fan Jieqing, 2019) was first

proposed by J.L. Elman in 1990 to manage voice problems. The
Elman neural network is a special recurrent neural network. In
addition to the input layer, hidden layer, and output layer, the Elman
model also includes a special hidden layer (also known as a
correlation layer). The correlation layer and each hidden layer
node have a corresponding correlation layer node. Therefore, the
correlation layer can accept the feedback signal from the hidden
layer and take the feedback signal received at the previous time,
together with the current network input as the input for the hidden
layer, to locally adjust the connection weight between the hidden
layer and correlation layer of the model. This significantly reduces
the feedback process in the model and improves the operation
efficiency of the model. To ensure better model comparability, the
Elman neural network model was consistent with the BP neural
network model in terms of its parameter settings.

2.4 Model evaluation

In this study, four parameters, i.e., the determination coefficient
(R2) (Cristiano, 2019), average value for the absolute value of the
relative percentage error (MAPE), overall deviation rate (RBIAS)
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(Salas et al., 2000; Wang Jia, 2020) and Nash coefficient (NSE) (Nash
and Sutcliffe, 1970), were used as the evaluation indicators [Eqs. 2–5.
Among these, R2 was divided into linear regression and nonlinear
regression. The closer the linear regression value is to 1, the better
the simulation effect of the model. In contrast, the effect was poor. In
nonlinear regression, the value may be greater than 1. The smaller
the MAPE value, the better the prediction effect of the model;
otherwise, the prediction result is poor. The smaller the RBIAS
value, the better the prediction effect of the model. The NSE was
divided into three components, approaching 1, approaching 0, and
significantly less than 0, to evaluate the model. When the NSE
infinitely approaches 1, the simulation effect of the model is the best
and the model is the most reliable. When the NSE infinitely
approaches zero, the simulation result was close to the average
value of the measured value, i.e., the overall prediction result was
credible, but the error in the simulation process was large. When the
NSE was significantly less than zero, the simulation effect of the
model was poor, i.e., the model was not credible:

R2 � ∑n
i�1 Qsim,i − Qsimavg( ) Qobs,i − Qobsavg( )[ ]2

∑n
i�1 Qsim,i − Qsimavg( )2∑n

i�1 Qobs,i − Qobsavg( )2 (2)

MAPE � 1
n
∑n

i�1
Qsim,i − Qobs,i( )

Qobs,i
(3)

RBIAS � ∑n

i�1
Qsim,i − Qobs,i

Qobs,i
( ) (4)

NSE � 1 − ∑n
i�1 Qobs,i − Qsim,i( )2

∑n
i�1 Qobs,i − Qobsavg( )2 (5)

where n represents the number of runoff series, Qsim,i represents the
ith simulated runoff, Qsimavg represents the average value of all
simulated runoff values, Qobs,i represents the observed runoff of the
ith event, and Qobsavg represents the average value of the observed
runoff.

Referring to the model performance classification rating
proposed by Noori, N., Kalin et al. (2020), the following
modifications were made in this study:

Very good: NSE ≥0.70; RBIAS ≤0.25.
Good: 0.70 > NSE ≥0.50; 0.25 < RBIAS ≤0.50
Satisfactory: 0.50 > NSE ≥0.30; 0.50 < RBIAS ≤0.70.
Unsatisfactory: NSE <0.30; RBIAS >0.70.

3 Case study

3.1 Study area

The Hanjiang River Basin, also known as the Mianyang water in
ancient times, is located at 30°8′–34°11′N and 106°12′–114°14′E. The
Hanjiang River Basin is the largest tributary of the Yangtze River,
with a total length of 1,577 km, and spans six provinces: Hubei,
Shanxi, Henan, Sichuan, Chongqing, and Gansu. The economic and
social development of the Hanjiang River Basin is based on
transportation. The Hanjiang River Basin belongs to a
subtropical monsoon climate zone, with a humid climate and
abundant water sources, but the climatic distribution is uneven
throughout the year, mainly from May to October. Figure 2 shows
the location and map of the Hanjiang River Basin.

3.2 Model input

In this study, we primarily employed the SWAT mechanism
model, as well as the data-driven models of BP neural network and
Elman neural network. The SWAT model, serving as a mechanism-
based approach, enables the simulation of various hydrological
processes within the basin, including runoff generation and flow
concentration. On the other hand, the BP neural network and Elman
neural network models, as data-driven techniques, effectively handle
the intricate nonlinear relationships among the input conditions.
Consequently, the input conditions of the model can be categorized
into three distinct components, benefiting from the combined
strengths of these modeling approaches. Part I: The SWAT
model was employed to simulate vital hydrological processes,
encompassing runoff generation and fow concentration. The
inputs essential for constructing the SWAT model primarily
comprise high-resolution DEM data accurate to 30 m, land use
data depicted in Figure 3, and soil type data illustrated in Figure 4.
Among these, precipitation and other meteorological data were
mainly obtained from the China Meteorological assimilation
driving datasets for the SWAT model (CMADS) within the
SWAT model of the China Meteorological assimilation system
(CLDAS). The daily maximum temperature, daily minimum
temperature, wind speed, wind direction, sunshine, and other
meteorological conditions were derived from the world weather
database (CFSR).

Part II: The input conditions, also referred to as predictors,
were primarily utilized in the coupling model, which consisted of
two main aspects: 1) extracted from the SWAT simulation
results, which were modified and calibrated according to the
parameters required for the SWAT Cup calibration proposed by
Liu Lin et al. (2020); Ma Xinping et al. (2021); Zhang Chao
(2020),; Zhu ZhengRu et al. (2021). In this study, as part of the
input factors for the coupled model, 10 state variables were
carefully selected following the simulation decomposition of
the SWAT model. The names and definitions of these 10 state
variables are provided in Table 2, presenting a comprehensive
understanding of their significance in the analysis. 2) The input
condition was not only the input condition of a single data-driven
model but was also combined with (1) as the input condition of
the coupled model. The input conditions included
130 atmospheric circulation factors (consisting of
88 atmospheric circulation indices, 26 SST indices, and
16 other indices), which were monitored by the National
Climate Center of the China Meteorological Administration
(http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php).

To ensure the forecasting effectiveness of the coupled model,
both the BP and Elman neural networks were employed in this
study. The correlation between the forecast object and the predictors
was calculated, and based on this analysis, 20 predictors with higher
correlation were selected as the final input factors for the coupled
model. Figure 5 presents the month-by-month correlation plots,
showcasing the relationship between the predictors and the forecast
object.

The figure reveals that, compared to the period prior to the
expansion of the influencing factors, the addition of state variables as
influencing factors occurred in January, February, March, April,
August, September, November, and December. In the remaining
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FIGURE 2
Location and map of the study area in China.

FIGURE 3
Distribution of land use in the study area.
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months, factors such as atmospheric circulation and runoff were
consistently maintained as influencing factors. This observation
suggests that the state variables exhibit varying degrees of
influence during different months, thereby highlighting their
seasonality and dynamic nature within the coupled model.

Part III: in addition to collecting, sorting, and analyzing the
prediction factors, we also determined the observed runoff from
upstream to downstream of the Hanjiang River Basin. These
values were input in the third part of the model. We mainly
collected and sorted the monthly runoff data for the Danjiangkou

FIGURE 4
Distribution of soil types in the study area.

FIGURE 5
Correlation comparison of the monthly predictors between the coupled and single models: couple represent the coupled model for the SWAT and
BP or Elman neutral network models. Single represents a single BP and Elman neutral network model. Both the BP and Elman neutral network analyzed
the correlation between the runoff and atmospheric circulation factors, such that the selected factors were identical. In the figure WP is West Pacific
Pattern, EA/WR is East Atlantic-West Russia Pattern. AAO is Antarctics Oscillation, NAO is North Atlantic Oscillation, AO is Arctic Oscillation, SCA is
Scandinavia Pattern, PNA is Pacific/North America Pattern, NP is North Pacific Pattern.
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reservoir, Huangjiagang hydrological station, Huangzhuang
hydrological station, and Xiantao hydrological station from
2008 to 2013 as the input conditions for the model. Data from
the Danjiangkou reservoir, Huangjiagang hydrological station,
and Huangzhuang hydrological station were mainly collected to
calibrate the parameters of the runoff simulation in the Hanjiang
River Basin. We then extracted the state variables required by the
coupling model from its results. The data from Xiantao
hydrological station were used for the experiment on runoff
prediction in the study area.

4 Results and discussion

In order to demonstrate the superior applicability of the
coupling model, separate predictions were performed using the
BP neural network, Elman neural network models, and coupling
models (SWAT + BP and SWAT + Elman) to forecast monthly
runoff at the Xiantao station. The prediction results were then
evaluated and analyzed comprehensively, taking into account
both overall performance and month-to-month variations.

By conducting a thorough analysis of the prediction results, we
aimed to provide a comprehensive understanding of the
effectiveness and accuracy of each model, as well as to identify
any potential variations in performance on a monthly basis. This
approach allowed for a comprehensive evaluation and comparison
of the different models, providing valuable insights into their
respective strengths and limitations in predicting monthly runoff.

4.1 Analysis of overall runoff prediction
results

To effectively analyze the accuracy and performance of the
coupled models (SWAT + BP and SWAT + Elman) for runoff
prediction at the Xiantao hydrological station, we constructed a
runoff prediction diagram (Figure 6) for the individual BP neural
network, Elman neural network models, and prediction results for
the coupled model. We then calculated the evaluation parameter
values for the prediction results of each model, as listed in Table 3.
Based on the runoff prediction diagram of each model, the overall
prediction effect of the BP neural network and Elman neural
network was lower than that of coupling prediction model.
Especially the fitting effect between the runoff prediction curve
and observed runoff curve for the SWAT + Elman neural network
model in the coupling models.

The runoff prediction curve fitting chart only showed that the
prediction effect of the coupled model was overall superior. This
study introduced four parameters, i.e., the average of the absolute
value for the relative percentage error (MAPE), overall deviation rate
(RBIAS), and Nash coefficient (NSE), to evaluate the prediction
results and performance of each model. According to the prediction
results of each model for the runoff at the Xiantao hydrological
station, we calculated the evaluation parameter values of eachmodel,
as listed in Table 3.

As shown in Table 3, the RBIAS and MAPE of all models
remained low in the validation period of the rate period, which
indicates that the models have good predictions, while the NSE of

FIGURE 6
Fitting diagram for the runoff prediction curve and observed runoff curve of the four models at the Xiantao hydrological station.
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the single Elman and BP neural network models were 0.93 and 0.8 in
the rate period and 0.67 and −0.08 in the rate period, respectively,
Elman had poor but acceptable predictions in the validation period,
while the BP The prediction results of the neural network in the
validation period indicate that the model structure is unstable, while
the NSE of the coupledmodels SWAT+Elman and SWAT+BP in the
rate period are 0.96 and 0.81, but in the validation period are
0.71 and 0.96, respectively, from the NSE results of the rate
period and the validation period, the coupled models have a
certain but small improvement in the NSE in the rate period
compared with the single model. The NSE values of 0.71 and
0.96 for the coupled model in the validation period are much
larger than those of 0.67 and −0.08 for the single model,
indicating that the coupled model has better effectiveness,
stability and robustness in the hydrological forecasting of the basin.

4.2 Analysis of monthly model prediction
results

For the monthly runoff prediction results at the Xiantao
hydrological station, we used the determination coefficient to

perform a special evaluation. The closer the determination
coefficient is to 1, the better is the prediction result of the model
and the more stable is the performance of the model. Figure 7 shows
the monthly runoff prediction map of the four models at the Xiantao
hydrological station from January to December. The determination
coefficient values of the Elman neural network, BP neural network,
and coupling models (SWAT + Elman and SWAT + BP) are
displayed in the upper left corner of each monthly prediction
map. Based on Figure 7, the monthly prediction results for the
Elman neural network, BP neural network, and coupling model
tended to deteriorate with time; this was especially notable in
November and December.

By observing the determination coefficient values of each model
in Figure 7, we can conclude that the determination coefficients of
the Elman and BP neural networks were high from the beginning to
the end, resulting in a small space for improving the determination
coefficients of the coupled model. Although the determination
coefficient of the coupling model was low during individual
months, overall, the determination coefficient of the coupling
model was more stable, which also showed that the performance
of the coupling model was more stable and reliable during the runoff
prediction process.

TABLE 3 Evaluation parameter values for the prediction results of various models at the Xiantao hydrological station.

Results of calibration period Results of validation period

Xiantao |RBIAS| MAPE(%) NSE |RBIAS| MAPE(%) NSE

Elman 0.05 6.29 0.93 0.02 15.21 0.67

BP 0.16 11.46 0.8 0.16 15.28 −0.08

SWAT+Elman 0.06 6.52 0.96 0.03 13.04 0.71

SWAT+BP 0.16 12.7 0.81 0.18 25.36 0.96

FIGURE 7
Monthly runoff prediction results and R2 values at the Xiantao hydrological station. The closer the determination coefficient, R2, is to 1, the better the
prediction effect of the model and the more stable the model performance, and vice versa. In the figure, the y-axis represents the predicted flow and the
x-axis represent the observed flow.
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Building upon the analysis presented above, this study
introduces a novel concept and conducts a preliminary
investigation into the coupling model. However, it is important
to acknowledge that there is still a vast scope for future research and
development in this field. The coupling model holds significant
potential, and several avenues can be explored to advance its
application and understanding.

(1) In future research, how to embed important hydrological
processes such as flow production and sink into the data-
driven model as a layer of neural structure of the model,
i.e., to consider complex nonlinear relationships between
important hydrological processes and different factors
directly in the data-driven model to achieve deeper coupling.

(2) BP and Elman are more common data-driven models with
functions such as complex nonlinear mapping. In the future
research, Random Forest, Convolutional Neural Network, Long
Short Term Memory Model and even Graph Convolutional
Neural Network can replace these two models for coupling
research.

(3) In this study, the predictors were screened by the correlation
coefficient method (correlation analysis) when the input factors
were finally determined, and the overall and month-by-month
analysis of the prediction results was conducted. The analysis of
the cyclical and seasonal effects of the predictors on the
prediction results is lacking, and the authors will carry out
the analysis of the cyclical and seasonal effects of the predictors
on runoff to analyze the effects of the factors in more detail.

(4) There is a need to expand the application of the coupling model
to different geographic regions and hydrological contexts.
Testing the model’s performance in diverse environments
can provide valuable insights into its generalizability and
adaptability. Additionally, comparing the performance of the
coupling model with other existing models can help identify its
strengths and limitations.

(5) Exploring the potential integration of advanced technologies,
such as remote sensing data, machine learning algorithms, and
artificial intelligence, can further enhance the capabilities of the
coupling model. These technologies can offer valuable data
sources, improve predictive accuracy, and enable real-time
monitoring and decision-making in hydrological forecasting.

In conclusion, while this study presents an initial exploration of
the coupling model, it serves as a springboard for future research
endeavors. Advancing the coupling model through improved
accuracy, wider applicability, and integration of advanced
technologies will contribute to more effective hydrological
forecasting and decision-making processes.

5 Conclusion

In this study, we focused on evaluating the effectiveness of the
coupling model for runoff prediction in the Hanjiang River Basin. By
considering the prediction factors, we conducted a comprehensive
analysis of the prediction results for the individual Elman neural
network model, BP neural network model, and the coupled models
(SWAT + Elman and SWAT + BP) both in terms of overall

performance and on a monthly basis. The overall prediction
results indicate a good fit for all models, with slight deviations
observed in 2010 and 2012 as shown in Figure 6. To provide a clearer
assessment of the advantages of the coupled models, the RBIAS,
MAPE, and NSE indicators were employed to evaluate the
forecasting performance of the models. The RBIAS and MAPE
values of the models exhibited relatively small fluctuations and
maintained stability in both the calibration and validation
periods. In terms of NSE, the coupled models demonstrated
comparable performance to the single model during the
calibration period, while exhibiting higher stability in the
validation period. Moreover, the NSE of the coupled model
showed improvement compared to the calibration period,
indicating enhanced prediction effectiveness and stability in
forecasting.

Figure 7 presents the month-by-month prediction results,
indicating that the coupled model achieves an R2 value greater
than 0.7 in 70% of the months, greater than 0.8 in 67% of the
months, and greater than 0.9 in approximately 42% of the months,
approaching 50%. This suggests that the coupled model outperforms
the single model in terms of month-by-month prediction,
demonstrating superior performance and stability. Conversely,
the R2 values of the single models exhibit a relatively wide range.
Specifically, the Elman model spans from 0.01 to 1, while the BP
model spans from 0.0005 to 1. This variation indicates a lack of
stability in the prediction results of the single models.

Based on the investigation of runoff prediction and the analysis
of prediction results for the Hanjiang River Basin, the following
conclusions were drawn.

(1) The coupledmodel exhibited superior accuracy and reliability in
runoff predictions within the watershed, surpassing the
performance of single prediction models.

(2) The mechanism model plays a crucial role in improving the
accuracy of watershed runoff prediction by simulating essential
hydrological processes, including runoff generation and flow
concentration. Through the decomposition of meteorological
factors such as rainfall and the consideration of soil and
watershed base flow conditions, the mechanism model
generates state variables that greatly contribute to enhancing
the accuracy of watershed runoff predictions.

(3) Through the analysis of overall and month-by-month
forecasting effects, it has been demonstrated that the coupled
model exhibits superior forecasting capabilities and stability.
Furthermore, it demonstrates a high level of generalizability.
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