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In August 2019 Hurricane Dorian traveled through the Caribbean Sea and
Tropical Atlantic before devastating the Bahamas. The operational hurricane
forecasting models under-predicted the intensity evolution of Dorian prior
to the storm reaching its maximum strength. Research studies have shown
that a more realistic upper-ocean characterization in coupled atmosphere-
ocean models used to forecast hurricanes has the potential to lead to
more accurate hurricane intensity forecasts. In this work, we evaluated four
ocean products: the ocean component from one NOAA operational hurricane
forecasting model that used ocean initial conditions from climatology, the
ocean components from two NOAA experimental models using ocean initial
conditions from a data-assimilative operational ocean model, and one US
Navy data-assimilative operational ocean model for reference. The upper-
ocean metrics used to evaluate the models include mixed layer temperature,
mixed layer salinity, ocean heat content and depth-averaged temperature in
the top 100 m. The observations used are temperature and salinity profiles
from an array of six autonomous underwater gliders deployed in the Caribbean
region during the 2019 hurricane season. We found that, even though the
four models have good skill in predicting temperature and salinity over
the whole observed water column, skill significantly deteriorates for the
upper-ocean metrics. In particular, the models failed to capture the barrier
layer that was present during the passage of Hurricane Dorian through the
glider array. We also found that even small differences in the mixed layer
temperature along the storm track on the hurricane models evaluated, led
to noticeable differences in the total enthalpy fluxes delivered from the
ocean to the atmosphere throughout the storm’s synoptic history. These
findings highlight the need to improve the upper-ocean initial conditions and
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representation in coupled atmosphere-oceanmodels as part of the larger efforts
to improve the various modeling aspects that control the hurricane intensity
forecast.
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1 Introduction

In the last three decades there has been a 50%–70% reduction
in the forecast error of the storm track in operational Atlantic
hurricane models (https://www.nhc.noaa.gov/verification/verify5.
shtml). On the other hand, the error reduction in the intensity
forecast has been marginal, particularly for short (24–48 h) lead
forecast times (https://www.nhc.noaa.gov/verification/verify5.
shtml). There are several reasons why tropical cyclone intensity
forecasting has remained a challenge. This includes inaccuracies
in ocean initial conditions and the difficulty of correctly
representing the upper-ocean mass properties and processes
that feedback into the hurricane through air-sea heat and
momentum fluxes in coupled atmosphere-ocean models
(Chen et al., 2007; Zhang et al., 2008; Halliwell et al., 2011;
Jaimes et al., 2011).

The classical theory of tropical cyclones establishes that the
intensity of a storm, measured as the minimum central surface
pressure, is the result of the balance between the air-sea enthalpy
fluxes, energy loss due to frictional dissipation, and heat loss
to the surroundings (Emanuel, 1986). It is then clear that both
the atmospheric conditions as well as the oceanic conditions
are important in the genesis, development, and intensity changes
of tropical cyclones. In particular, it has been shown that the
upper-ocean thermal (Emanuel, 1999; Shay et al., 2000) and salinity
structures (Balaguru et al., 2012, 2020; Domingues et al., 2015;
Dong et al., 2017) play a key role in the intensification of tropical
cyclones. For example, it has been reported that a number of
tropical cyclones intensify when they travel over warm ocean
features (Leipper and Volgenau, 1972; Shay et al., 2000; Lin et al.,
2009; Le Hénaff et al., 2021) or over low salinity barrier layers
(Domingues et al., 2015), and that a reduced sea surface temperature
cooling of the ocean area under the storm inner-core is linked to
storm intensification (Cione and Uhlhorn, 2003).

Since 2011 the National Oceanic and Atmospheric
Administration, with the participation of other government,
academic, and private industry partners, is leading efforts to
conduct ocean observations from an array of underwater gliders
in support of hurricane research and forecast, in areas of the
North Atlantic Ocean, tropical Atlantic Ocean, the Gulf of Mexico,
and the Caribbean Sea, where tropical storms form and evolve
(e.g., Glenn et al., 2016; Miles et al., 2017, 2021; Domingues et al.,
2019). These efforts are complemented by the already in place
components of the sustained ocean observing system and of targeted
observations dedicated specifically to tropical cyclone research. The
use of data from these sustained and targeted observations has
been shown to reduce the error in intensity forecasts within various
experimental and operational schemes and models (Mainelli et al.,
2008; Dong et al., 2017; LeHenaff et al., 2021).

On 19August 2019,HurricaneDorian developed from a tropical
wave off the west coast of Africa and moved through the Caribbean
Sea gaining strength. On 28th August, it transitioned from a
tropical storm to a category 1 hurricane. Around this date, the
path of Dorian moved through a glider array (Figure 1) operated by
the NOAA Atlantic Oceanographic and Meteorological Laboratory
(AOML) and the Caribbean Regional Association of the integrated
Ocean Observing System (CARICOOS), in the Caribbean Sea off
Puerto Rico and the U.S. Virgin Islands. After traveling through
this glider array, Dorian continued moving northwestward and
made landfall in Great Abaco Island (Bahamas) on September 1st
as a category 5 hurricane, becoming the strongest hurricane on
record to make landfall in the Bahamas. None of the operational
hurricane forecast models captured the correct intensity evolution
during the 5 days prior to Dorian reaching its maximum strength
(Avila et al., 2020).

The goal of this manuscript is to present an assessment of
how different initialization strategies used in coupled atmosphere-
ocean hurricane models affected the representation of upper-ocean
thermal fields that are key for air-sea heat fluxes during Hurricane
Dorian. In order to accomplish this, we evaluated the upper-ocean
thermal structure simulated by three NOAA coupled atmosphere-
ocean hurricane models during the approach of Dorian to the
Bahamas. The data set used here contains 587 temperature and
salinity profiles from the array of underwater gliders present south of
Puerto Rico fromAugust 28 00UTC to September 02 06UTC, 2019.
We also evaluated the data-assimilative Navy operational Global
Ocean Forecasting System (GOFS 3.1) in order to provide a baseline
for the skill of several ocean metrics from a data-assimilative model
as compared to the free-running ocean component of the hurricane
forecasting models.

As part of the work, we assessed four upper-ocean metrics that
have been previously identified as being linked to the intensification
of tropical storms. The first two metrics are the mean temperature
and mean salinity within the surface mixed layer. The surface mixed
layer is the surface portion of the water column where turbulent
processes, such as wind-driven mixing, make water density nearly
uniform (de Ruijter, 1983). The disequilibrium between the air
surface temperature and the sea surface temperature, estimated
here as the mixed layer temperature, controls the magnitude and
direction of the air-sea sensible and latent heat fluxes (Malkus and
Riehl, 1960; Emanuel, 1986). The mixed layer salinity is important
since a low salinity mixed layer is often associated with the presence
of salinity-induced barrier layers. Barrier layers formwhen a surface
layer of fresh water dominates the upper layer density structure
over temperature changes, so that the depth of the isothermal layer
(the layer of quasi-constant temperature at the ocean surface) and
the depth of the mixed layer (the layer of quasi-constant density
at the ocean surface) differ. Barrier layers are often observed in
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FIGURE 1
(A) North Atlantic map showing the path of hurricane Dorian (red dots) and the glider trajectories between 20 August and 7 September 2019 (orange
lines). (B) Zoom in on the black rectangle in (A) showing the path and category (circles) of Hurricane Dorian and the glider trajectories.

the eastern Caribbean Sea, portions of the Tropical Atlantic, and
in the northern Gulf of Mexico. The surface layer of low salinity
waters in the Caribbean Sea and adjacent portions of the Tropical
Atlantic is the result of the spreading of the Amazon and/or Orinoco
river plumes (Hu et al., 2004). Data retrieved from the Optimally
Interpolated Sea Surface Salinity Global Dataset V2 (https://podaac.
jpl.nasa.gov/dataset/OISSS_L4_multimission_7day_v2) shows that
during the passage of Hurricane Dorian through the Caribbean,
the influence of the Amazon/Orinoco river plumes extended north,
affecting the sea surface salinity south and north of Puerto Rico,
with average salinity values of 34.5 and 35.5, respectively. Similarly,
barrier layers in the northern Gulf of Mexico are created by
the outflow of fresh waters from the Mississippi river. There
is evidence that when storms travel over barrier layers, these
layers can promote the intensification of tropical cyclones by
enhancing the vertical stability of the water column and, therefore,
reducing the storm-induced vertical mixing (Balaguru et al., 2012,
2020; Domingues et al., 2015; Rudzin et al., 2019). The third metric
analyzed in this work is the ocean heat content (OHC), defined
as the excess of heat in the surface ocean above the 26 degrees
isotherm (Whitaker, 1967; Leipper and Volgenau, 1972). The OHC
or Tropical Cyclone Heat Potential (TCHP) is a metric that has
been shown to be correlated with the intensification of major
hurricanes in the Atlantic Ocean (Mainelli et al., 2008). The fourth
metric is the depth-averaged temperature in the top 100 m (T100).
T100 was proposed as a metric that quantifies the resulting sea
surface temperature after the passage of a hurricane that fully
mixes the top 100 m, accounting for the effect of cold subsurface
water and the strength of vertical mixing on storm weakening
(Price, 2009).

This manuscript is organized as follows. The glider observations
and the hurricane forecasting models used here are described
in Section 2. The results of the model evaluation are reported
in Section 3. The implications and conclusions of our results for
coupled atmosphere-ocean models are presented in Section 4.

2 Methods

2.1 Observational data sources

A fleet of 54 underwater gliders was deployed in the Caribbean
Sea and tropical Atlantic, Gulf of Mexico, the South and Mid-
Atlantic Bight during the 2019 hurricane season as part of a
U.S. government, academic, and private industry wide effort to
carry out ocean observations in support of Atlantic hurricane
research and forecasts (Miles et al., 2021). Underwater gliders
are autonomous vehicles that use variable buoyancy to travel in
a sawtooth-like profile and are equipped to collect a variety of ocean
variables. This effort complemented other observations carried out
by profiling floats, surface drifters, eXpendable BathyThermographs
(XBTs), moorings, and other observational platforms. During
the passage of Hurricane Dorian through the Caribbean region,
six gliders operated by the NOAA/AOML and the CARIbbean
Coastal Ocean Observing System (CARICOOS), collected
temperature and salinity profiles along fixed predetermined
transects to 500 m depth with an approximate repeat interval of
2 h (Figure 1). The data from these six gliders are used in this
study as the main observational asset to evaluate the coupled
models outputs.
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2.2 Numerical data sources

Wefirst evaluated theUSNavyGlobalOceanForecasting System
(GOFS 3.1) (Metzger et al., 2017). GOFS 3.1 is based on the HYbrid
Coordinate Ocean Mode (HYCOM) coupled with the Los Alamos
Sea Ice Code (CICEv4) with a 3-dimensional variational (3DVar)
data assimilation algorithm implemented in the Navy Coupled
OceanDataAssimilation (NCODA).GOFS3.1 has 41 hybrid vertical
layers and a horizontal resolution of 0.08 of a degree in latitude
and longitude between 40 degrees South and 40 degrees North.
Poleward of 40 degrees North/South, the grid has a resolution of
0.08 degrees in longitude and 0.04 in latitude. It is forced by the
US Navy Global Environmental Model (NAVGEM; Hogan et al.,
2014). NCODA assimilates satellite altimeter data, satellite and in
situ sea surface temperature, in situ vertical temperature and salinity
from Argo floats, buoys, gliders, and XBTs (temperature only).
Details about the GOFS 3.1/NCODA system can be found in the
GOFS 3.1 validation test report (Metzger et al., 2017). The hindcast
output for GOFS 3.1 used here can be accessed at https://tds.hycom.
org/thredds/dodsC/GLBv0.08/expt93.0/ts3z.html.

In addition, three coupled atmosphere-ocean hurricane forecast
models were evaluated in this work:

(1) The Hurricane Weather and Forecasting model (HWRF)
coupled to the Message Passing Interface Princeton Ocean
Model—Tropical Cyclone (MPIPOM-TC), which was until
2022 one of the operational hurricane forecasting systems
ran by NOAA National Centers for Environmental Prediction
(NCEP) (Biswas et al., 2018). Hereafter, we will call this
coupled system HWRF2019-POM. The MPIPOM-TC of
HWRF2019-POMwas initialized from theGeneralizedDigital
Environmental Model (GDEM) monthly ocean temperature
and salinity climatology (Carnes, 2009; Teague et al., 1990)
and a feature-based modeling procedure (Yablonski and
Ginis, 2008), to sharpen thermal fronts using information
of remote sensed sea surface temperature and the Naval
Oceanographic Office (NAVO) frontal analysis (Rhodes et al.,
2001). The atmospheric component of HWRF2019-POM used
initial and boundary conditions from the Global Forecasting
System (GFS) v15.1 (GDAS/GFS v15.0.0, 2018). For this
configuration, MPIPOM-TC contains 40 terrain-following
vertical levels, with a vertical resolution that ranges between
2 and 20 m in the top 100 m of the water column. For the
North Atlantic domain, the grid extends from 7.5 to 45.0
degrees North and from −98.5 to −15.3 degrees West, with a
uniform horizontal resolution of 9.2 km in latitude and 10.5
in longitude. The vertical mixing parameterization used in
the upper ocean mixed layer is Mellor-Yamada 2.5 turbulence
closure model (Mellor and Yamada, 1982).

(2) An experimental coupled model, HWRF2020-POM, with the
same ocean component, vertical and horizontal resolution, and
model physics as HWRF2019-POM but initialized from the
HYCOM-based NOAA’s Real Time Ocean Forecasting System
(RTOFS) (Garraffo et al., 2020). During the 2019 hurricane
season, RTOFS was initialized daily from GOFS 3.1. But since
December 2020, it has used its own flow-dependent 3DVar
data-assimilative system with quality control, variational
analysis and diagnostics. This system was originally based

on the Navy Coupled Data Assimilation System (Cummings
and Smedstad, 2013), and includes assimilation of ADT SSH,
satellite SST, satellite SSS, satellite ice coverage, in situ SST, SSS,
and profiles.

(3) An experimental system, HWRF coupled to HYCOM,
HWRF2020-HYCOM, was also initialized from RTOFS
(Kim et al., 2014, 2022). The difference from HWRF2020-
POM is the model configuration, subgrid mixing physics
and a set of feedback forcing variables (Biswas et al., 2018).
HYCOM uses the same model configuration as the global
RTOFS. In the open ocean, the vertical coordinate is isopycnal
and transitions to z-levels in the weakly stratified upper-
ocean mixed layer. In shallow waters, the vertical coordinate
is terrain-following sigma and transitions to z-levels in the
upper mixed layer. In the configuration used, HYCOM has
41 hybrid vertical layers, with a vertical resolution ranging
between 2 and 20 m in the top 100 m of the water column.
For the North Atlantic domain, the grid extends from 1 to
45.7 degrees North and from −98.2 to −7.5 degrees West. The
horizontal resolution is of approximately 9 km in longitude and
ranges from 8.7 km to 6.1 km in latitude. HYCOM supports
several vertical mixing schemes. This configuration used the K
profile parameterization (KPP) (Large et al., 1994).

The models used in this analysis are summarized in Table 1.

2.3 Upper-ocean metrics

In this study we considered four upper-ocean metrics: mixed
layer temperature, mixed layer salinity, ocean heat content, and
average temperature in the upper 100 m.

The mixed layer depth (MLD) was estimated as the surface
portion of the water column within which changes of hydrographic
characteristics are smaller than a threshold value. We used two
definitions of the MLD, one based on a temperature criteria
with the threshold value of 0.2°C (Eq. 1), and the other based
on a density criteria with a threshold value 0.125 kg m−3 (Eq. 2)
(de Boyer Montégut et al., 2004).

T‐T10 ≤ 0.2oC (1)

ρ10‐ρ ≤ 0.125kgm
‐3 (2)

Where T10 and ρ10 are the water temperature and density at 10 m
depth, respectively. The choice of 10 m as a reference depth does
not affect the estimates of the mixed layer depth because this depth
is always within the low salinity layer that is often found at the
ocean surface in the study area. In general, there is no guarantee
that the temperature and density criteria cannot be satisfied for
depths deeper than the MLD. However, in our study area of
the 587 density profiles analyzed, the density criteria was never
satisfied below the MLD, implying that density was monotonically
increasing with depth. The average temperature and salinity within
the mixed layer are calculated as the average temperature and
salinity of the portion of the vertical profile that is within the
mixed layer.

The Ocean Heat Content (OHC) is defined as the depth-
integrated excess above 26°C between the sea surface and the
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TABLE 1 Summary of numerical models.

GOFS 3.1 HWRF2019-POM HWRF2020-POM HWRF2020-HYCOM

Analysis Forecast Forecast Forecast

Stage Operational Operational Experimental Experimental

Type
Coupled Coupled Coupled Coupled

Ocean-Ice Atmosphere-Ocean Atmosphere-Ocean Atmosphere-Ocean

Data Assimilation

3D-Var

N/A N/A N/A

Data assimilated: satellite
altimeter, satellite and in situ

sea surface temperature, in situ
vertical temperature and
salinity from Argo floats,
buoys, gliders, and XBTs

Ocean
N/A

GDEM Climatology and
Feature Mode

RTOFS RTOFS
Initial Conditions

Horizontal Resolution

40S<lat<40N 0.08o for lat and
lon

9.2 km for lat. 9.2 km for lat. ∼9.2 km for lon.

40S>lat>40N 0.04o for lat,
0.08o for lon

10.5 for lon. 10.5 for lon. 8.7 km–6.1 km for lat.

Vertical Grid 41 hybrid vertical layers 40 terrain-following vertical
levels

40 terrain-following vertical
levels

41 hybrid vertical layers

Vertical Mixing Schemes Mellor-Yamada 2.5 Mellor-Yamada 2.5 KPP

depth of the 26°C isotherm (Z26) (Whitaker, 1967; Leipper and
Volgenau, 1972):

OHC = Cp ρ0∫
0

z26
(T(z) − 26)dz, forT(z) > 26 (3)

Where Cp is the heat capacity of sea water, ρ0 is the mean density of
the water column down to Z26, and T(z) is temperature at different
depths in degrees Celsius.

The depth-averaged temperature in the top 100 m (T100)
is a metric that estimates the potential resulting SST after the
passage of a hurricane due to vertical mixing processes. A depth
of 100 m is chosen as a typical depth of complete vertical mixing
under a category 3 hurricane (Price, 2009; Domingues et al.,
2015). This metric is particularly informative in waters where
the OHC cannot be estimated, i.e., for temperatures lower
than 26°C, but still provides information on the subsurface
temperature structure. However, in regions where salinity
significantly contributes to the vertical stratification of the
upper water column, e.g., regions with barrier layers, T100
may not be a good approximation for the resulting SST due
to the storm-induced vertical mixing. In this case, a more
general metric should be used where the depth over which
the temperature is averaged, depends on the assumption that
the bulk Richardson number of the surface mixed layer is
less than 0.6 (Price, 2009).

2.4 Taylor diagrams and bias

In order to quantify the skill of the four models in reproducing
the upper-ocean thermal structure, we estimated the normalized
standard deviation and correlation between the observational and
the model data. We used all the available temperature and salinity
profiles from the six gliders located north and south of Puerto Rico
when Hurricane Dorian was transiting through that region, from
28 August to 2 September 2019 (Figure 1). In order to conduct
these comparisons, we found the corresponding grid points and
timestamps in the different models for the observed temperature
and salinity profiles, by linearly interpolating in space and time the
measurement locations and times onto the model’s grids and times.
For the hurricane forecasting models, we used the forecasting cycle
2019082800 that started at 00 UTC on 28 August, and included
the time when Hurricane Dorian transitioned from a Tropical
Storm to a Category 1 hurricane as it was passing through the
glider array. We want to point out that, because of a 2-day latency
between the last data assimilation and the state estimate in the
RTOFS system used in 2019, the ocean estimates from RTOFS,
which are used in the HWRF2020-POM and the HWRF2020-
HYCOM products, do not include observations past August 26
00 UTC in the considered cycle. This means that the coupled
models were not fed with recent observations at the time of the
passage of the hurricane. For GOFS 3.1, we used the aggregated
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analysis time series, which includes data assimilation throughout the
study period.

The normalized standard deviation and correlation for all the
different metrics can be visualized together by constructing a Taylor
diagram (Taylor, 2001), giving us a compact way to assess the skill of
each coupled atmosphere-ocean hurricane forecast model. The bias
and the bias percentage are:

Bias = Xmodel‐Xobs,and (4)

Bias% = (Xmodel‐Xobs)/Xobs× 100% (5)

Where Xobs is the observed mean value of a specific metric and
Xmodel is the mean value of the same metric obtained from the
outputs of the various models.

2.5 Cross track radius and sea surface heat
loss per unit area

The cross track radius (r) of a geographical point at a specific
time is defined as the distance from the center of the storm to that
specific point. The normalized cross track radius is defined as the
cross track radius divided by the radius of maximum winds (Rmax).

The sea surface heat loss per unit area (SSHL), is defined
as the enthalpy flux, i.e., the sum of the sensible and latent
heat flux, integrated over time (Shay and Uhlhorn, 2008;
Jaimes et al., 2015), Eq. 6,

SSHL(r/Rmax) = ∫
T

to
Q(t)dt (6)

where Q represents the enthalpy flux and dt is the time interval that
the storm travels along the stormpath. Sincewe are using theHWRF
output to estimate SSHL, dt is equal to 3 h, which is the time interval
between consecutive model outputs.

3 Results

3.1 Model evaluation

The temperature transects from the glider observations show
that the surface temperatures in the tropical Atlantic Ocean just
north of Puerto Rico at the end of August were close to 30°C and that
the Z26was approximately at 100 m depth (Figure 2A). A qualitative
comparison of the temperature field between the glider transect
SG665, GOFS 3.1, and the three coupled hurricane forecast models
(forecast cycle 2019082800) from 28 August to 2 September 2019,
shows that Z26 is approximately 100 m in the observations, and
around 10 m shallower for all the models (Figures 2B–E).

The glider observations also show that the MLD based on
the temperature criteria (Eq. 1) is about 25 m deeper than the
MLD based on the density criteria (Eq. 2) (Figures 2–4). Overall,
all four models exhibit the same pattern of a deeper MLD based
on the temperature criteria, although the MLDs differ from the
value obtained from the observations, and among the models. For
example, the mean value from 28 August to 2 September 2019 of
the MLD based on the density criteria is: 20.5 m for the glider

observations, 19.3 m for GOFS 3.1, 18.4 m for HWRF2019-POM,
24.4 m forHWRF2020-POM, and 27.9 m forHWRF2020-HYCOM.
Therefore, the current operational models appear limited in their
capacity to represent and, consequently, predict the mixed layer
thickness and its evolution.

The difference in the MLD estimates using the two different
criteria is caused by the presence of barrier layers. During the
passage of Hurricane Dorian close to the glider array, there was
a barrier layer north of Puerto Rico, with surface salinity values
of 35.5, consistent with the data retrieved from the Optimally
Interpolated Sea Surface Salinity Global Dataset V2, as it is shown
in the salinity transect from glider SG665 (Figure 3A) and salinity
vertical profile (Figure 4B). As a consequence, salinity rather than
temperature controlled the vertical stratification at the surface in
that portion of the Tropical Atlantic. For this reason, we will use
the estimate of the surface mixed layer depth based on the density
criteria from now on in our analysis.

Despite the general agreement in the Z26, there are differences
of about 0.9°C to 0.1°C between the observed and the model-
derived mixed layer temperature (MLT) (Figure 5A). HWRF2019-
POM, initialized fromclimatology, is∼1°C colder than observations.
HWRF2020-POM and HWRF 2020- HYCOM, both initialized
from RTOFS, have a similar temperature of 29.3°C as the
observations during the first 24 h, but beyond this point the mixed
layer temperature gets progressively colder. GOFS 3.1, the data
assimilative model, starts colder than the glider temperature but it
approaches the observed temperature values at 12Z on August 30.

The time series of the mixed layer salinity (Figure 5B) shows
that around the time of the passage of Hurricane Dorian through
the glider array, none of the models captured the lower salinity that
characterized the surface layer at that time. Additionally, the vertical
structure of salinity in the different models has a surface layer of low
salinity that is deeper and less sharp than the observations reveal.
The first key result shown here is that the models failed to capture
the upper-ocean salinity values and the vertical structure of the
associated barrier layer during this period (Figures 3B–E, 4B, 5B).

Before the passage of Dorian, the OHC observed by the glider
SG665 (located north of Puerto Rico) is ∼85 kJ cm−2, well above
60 kJ cm−2 (Figure 5C), which is a statistically-determined threshold
shown to favor storm intensification in the Atlantic (Mainelli et al.,
2008). The OHC in HWRF2019-POM during that same time-frame
is ∼60 kJ cm−2, which is well below the observed value. The other
models exhibit an OHC closer to the measured OHC, although
HWRF2020-HYCOM is consistently lower than the glider estimate.
In agreement with the results for the OHC, T100 from HWRF2019-
POM is the lowest of all the models, while GOFS3.1 exhibits
values between 27.8°C and 28.1°C, being closer to the observations
(Figure 5D).

We obtained the skill of the models by obtaining the normalized
Taylor diagram and calculating the bias between the glider
observations and the different models. The normalized Taylor
diagram shows that all the models have a good skill in the
temperature (Temp) and salinity (Salt) averaged over the entire
observed water column, i.e., down to 500 m (Figure 6A). However,
themodels’ skill substantially decreases for the upper-oceanmetrics.
A second key result is that the four metrics relevant for the
air-sea heat fluxes: mixed layer temperature (MLT), mixed layer
salinity (MLS), ocean heat content (OHC) and depth average
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FIGURE 2
(A) Temperature transect for glider SG665 from 29 August to 2 September. (B–E) The same along-track transect as for SG665 but interpolated onto the
respective model grid and timestamp. The cyan and green lines show the mixed layer depths based on the temperature criteria (Eq. 1, “MLD dT” in the
legend) and the density criteria (Eq. 2, “MLD drho” in the legend), respectively. The black contour in figures (A–E) shows the 26°C isotherm. The dashed
vertical line in all figures shows the time when Hurricane Dorian was the closest to glider SG665. For this figure we used the forecast cycle
2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1.
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FIGURE 3
(A) Salinity transect for glider SG665 from August 29 to September 2. (B–E) The same along-track transect as for SG665 but interpolated onto the
respective model grid and timestamp. The blue and green lines show the mixed layer depths based on the temperature criteria (Eq. 1, “MLD dT” in the
legend) and the density criteria (Eq. 2, “MLD drho” in the legend). The dashed vertical line in all figures shows the time when Hurricane Dorian was the
closest to glider SG665. For this figure we used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time
series for GOFS 3.1.
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FIGURE 4
Vertical profiles of (A) temperature, and (B) salinity, for glider SG665 (blue), GOFS 3.1 (red), HWRF2019-POM (IC clim.) (purple), HWRF2020-POM (IC
RTOFS) (green) and HWRF2020-HYCOM (IC RTOFS) (orange) at the time when Hurricane Dorian was the closest to glider SG665. For this figure we
used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1. The dashed lines show
the mixed layer depth based on (A) the temperature criteria and on (B) the density criteria, in both for glider SG665.

temperature in the top 100 m (T100), are not well represented in
the different models. In particular, HWRF2019-POM, initialized
from climatology has the lowest skill for the upper-ocean metrics
(Figure 6B), while HWRF2020-HYCOM, initialized from RTOFS,
and GOFS 3.1, the data assimilative model, have the highest skill for
the same metrics.

The bias (Table 2) for the MLT shows that all the models
are colder than observations within the ocean surface mixed
layer, with HWRF2019-POM initialized from climatology being
the coldest. We see a similar pattern for the OHC. HWRF2019-
POM presents a 22% (−18.8 kJ cm−2) deficit in OHC with respect
to the observations, while data assimilative model GOFS 3.1
has only a deficit of 3.6% (−3.1 kJ cm−2). Among the coupled
hurricane forecast models, HWRF2020-HYCOM has the lowest
MLT and OHC bias. The bias for the MLS shows that all the
models tend to predict higher salinity values in the mixed layer.
A key third result obtained here is that the model with the

lowest MLS is GOFS 3.1, demonstrating the benefits of ocean
data assimilation to correct the biases not only in temperature but
also in salinity.

3.2 Mixed layer temperature and sea
surface heat loss

We estimated the mixed layer temperature (MLT) and sea
surface heat loss (SSHL) at three different times along Dorian’s
forecasted track (Figure 7): At 18 h forecast lead time, T1, Dorian’s
intensity is close to category 1 in all models, At 66 h lead time, T2,
the intensity of the different models differ by at least 1 category, and
at 84 h lead time, T3, all the models are predicting approximately a
category 4 hurricane.

For all the models the spatial structure of MLT around the
eye of the storm shows significant variability (Figure 8). Most
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FIGURE 5
Time series of (A) mixed layer temperature (MLT), (B) mixed layer salinity, (C) ocean heat content (OHC) and (D) depth-averaged temperature in the top
100 m (T100) for glider SG665 (blue), GOFS 3.1 (red), HWRF2019-POM (IC clim.) (purple), HWRF2020-POM (IC RTOFS) (green) and HWRF2020-HYCOM
(IC RTOFS) (orange). The dashed vertical line in all figures shows the time when Hurricane Dorian was the closest to glider SG665. For this figure we
used the forecast cycle 2019082800 for the hurricane forecasting models and the aggregated analysis time series for GOFS 3.1.

notably, there is a clear cold wake on the southeast quadrant at T3,
when the storm becomes a major hurricane. The mean MLT as a
function of the normalized cross track radius shows that the MLT

of HWRF2019-POM (IC Clim) is consistently colder than the MLT
of the other two models at the three different times for all the radius
(Figure 8 right column). HWRF2020-HYCOM (IC RTOFS) has the
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FIGURE 6
Normalized Taylor diagram showing the skill of the four models evaluated: GOFS 3.1, HWRF2019-POM (IC clim.), HWRF2020-POM (IC RTOFS) and
HWRF2020-HYCOM (IC RTOFS). In (A) the skill is grouped by different quantities, namely, temperature (Temp) and salinity (Salt) over the full depth
covered by the glider profiles, mixed layer temperature (MLT) and mixed layer salinity (MLS) using the density criteria (Eq. 2), ocean heat content (OHC)
(Eq. 3) and depth average temperature in the top 100 m (T100). In (B) the skills for the three thermal upper-ocean metrics, i.e., MLT, OHC, and T100, are
grouped according to the different models. For this figure we used the forecast cycle 2019082800 for the hurricane forecasting models and the
aggregated analysis time series for GOFS 3.1 from 28 August to 2 September 2019.

highest mean MLT at T1 but it is comparable to HWRF2020-POM
(IC RTOFS) at T2 and T3.

The SSHL per unit area is largest at the radius of maximum
winds (eye wall region) in all cases (Figure 9), however there are
marked spatial differences among the models. For instance on T3,
SSHL values larger than 0.7 kJ/cm2 are concentrated to a radius less
than 2Rmax in HWRF2019-POM, while these values extent up to
4Rmax in the other two models, showing that the largest energy
input from the ocean is found in a larger area in HWRF2020-POM
and HWRF2020-HYCOM. Consistently HWRF2020-HYCOM is
the model with the highest mean SSHL values for radii less than
4Rmax and HWRF2019-POM is the model with the lowest values
for all radii for the three different times (Figure 9 right column).

Another quantity that reflects the differences in the spatial
variability of SSHL is the area integrated SSHL, which provides
information about the potential cumulative effect of an improved
representation of air-sea fluxes along the hurricane track (Figure 10).
This quantity is larger in HWRF2020-HYCOM for almost all lead
times and as a consequence, the accumulated thermal energy input
from the ocean to the atmosphere during the first 84 h is larger
in HWRF2020-HYCOM by 17% compared to HWRF2019-POM.
The same quantity is 12% higher in HWRF2020-POM than in
HWRF2019-POM. Along with this result, we found that the MLT
along the storm track for HWRF2019-POM is the coldest, about 0.5
degrees colder than HWRF2020-HYCOM (Figure 8, right column),
for all forecast lead times. This implies that even a modest difference
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FIGURE 7
(A) Best track (black line) and Forecasted tracks, (B) observed (black line) and forecast intensity, and (C) Absolute relative intensity error for the three
coupled hurricane forecasting models evaluated: HWRF2019-POM (IC Clim.) in purple, HWRF2020-POM (IC RTOFS) in green, and HWRF2020-HYCOM
(IC RTOFS) in yellow. The forecast cycle used here is cycle 2019082800. The forecasted lead times highlighted in the figures are the 18 h (T1), 66 h (T2),
and the 84 h (T3) lead times.

FIGURE 8
Mixed layer temperature (MLT) for three different forecast lead times for cycle 2019082800: 18 h (T1), 66 h (T2), and 84 h (T3) (shown in Figure 5) and
for three hurricane forecasted models: HWRF2019-POM (IC Clim.), HWRF2020-POM (IC RTOFS), and HWRF2020-HYCOM (IC RTOFS). The circles are
centered at the storm eye and show from 1 radius to 8 radius of maximum winds. The green start shows the location of the maximum winds. The last
column shows the mean (markers) and the spread around the mean (shades) as a function of the normalized radius r/Rmax. For the calculation of the
mean, the MLT field was grouped in bins of 0.5 normalized radius.
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TABLE 2 Bias (Eq. 4) and bias percentage (Eq. 5) between the observations and the different models for the mixed layer temperature (MLT), mixed layer
salinity (MLS), ocean heat content (OHC) and depth average temperature in the top 100 m (T100).

GOFS 3.1 HWRF2019-POM
(IC Clim)

HWRF2020-POM
(IC RTOFS)

HWRF2020-
HYCOM (IC
RTOFS)

Bias  Bias% Bias  Bias% Bias  Bias% Bias  Bias%

MLT (°C) −0.11  –0.40% −0.88  –3.0% −0.27  –0.94% −0.18  –0.62%

MLS 0.05  0.15% 0.4  1.17% 0.06  0.20% 0.2  0.57%

OHC (kj/cm2) −3.10  –3.6% −18.8  –22% −14.6  –17% −7.8  –8.7%

T100 (°C) 0.4  1.4% −0.12  –0.46% 0.13  0.49% 0.35  1.2%

FIGURE 9
Sea surface heat loss (SSHL) per unit area for three different forecast lead times: 18 h (T1), 66 h (T2), and 84 h (T3) (shown in Figure 5) and for three
hurricane forecasted models: HWRF2019-POM (IC Clim.), HWRF2020-POM (IC RTOFS), and HWRF2020-HYCOM (IC RTOFS). The circles are centered
at the storm eye and show from 1 radius to 8 radius of maximum winds. The green start shows the location of the maximum winds. The last column
shows the mean sea surface heat loss per unit area (markers) and the spread around the mean (shades) as a function of the normalized radius r/Rmax.
For the calculation of the mean, the SSHL field was grouped in bins of 0.5 normalized radius. The figures correspond to the forecast cycle 2019082800.

of about −0.5 degrees in the MLT can cause a cumulative decrease
in the estimated total energy delivered from the ocean to the
atmosphere of about 17% in a forecast cycle.

4 Discussion and conclusion

Of the three coupled hurricane forecasting models evaluated,
the model for which the ocean component was initialized from
climatology, HWRF2019-POM, is the model with the largest MLT

and OHC bias of −0.9°C and −18.8 kJ cm−2, respectively, at the
location and time of the glider observations during the passage of
Hurricane Dorian North of Puerto Rico. In addition, this model is
the hurricane forecasting model in which the ocean component has
the lowest skill for the four metrics relevant to the air-sea heat fluxes
assessed here.

Conversely, HWRF2020-HYCOM, initialized from RTOFS, is
the hurricane forecasting model in which the ocean component
has the highest skill for the four upper-ocean metrics and is the
closest in skill to the data assimilative model GOFS 3.1. This
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FIGURE 10
Area integrated sea surface heat loss as a function of forecast lead time. The area of integration is ± 2 degrees of longitude and latitude around the
storm eye. The total energy delivered from the ocean to the atmosphere, which is the area under the curve, between 6 h and 84 h lead time for each
model is shown in the legend of the figure.

gives us confidence that of the three air-sea coupled hurricane
forecasting models evaluated, HWRF2020-HYCOM is the one that
best represents the upper-ocean fields.

Nonetheless, HWRF2020-HYCOM and GOFS 3.1 do not excel
in the upper-ocean metrics skills in spite of having a good skill to
represent the temperature and salinity of the entire observed water
column (down to 500 m). In particular, the salinity in the upper
mixed layer was not properly represented. In this study, none of the
models captured the salinity and depth of the barrier layer at the
location of the glider array.

The barrier layer in the Caribbean Sea and tropical North
Atlantic is caused by the spreading of the Amazon andOrinoco river
plumes.The barrier layer spatial and vertical extend is controlled not
only by the seasonal variability but also by the interannual variability
of the river discharge (Hu et al., 2004), which cannot be captured by
the ocean models studied here because only a monthly climatology
river discharge was provided as input. This explains why salinity
is rather ill-simulated and highlights the need to better take into
account real-time river runoff, rather than monthly climatology, in
ocean models, in addition to assimilate high quality in situ salinity.

Another aspect that needs improvement is the representation
of vertical mixing processes in the surface boundary layer, which
will lead to a better representation of the SST response during
tropical cyclones. The traditional vertical mixing schemes, e.g., KPP
mixing scheme, underpredict the vertical mixing in global models
when compared to large eddy simulations. There exists vertical
mixing parameterizations that include the effects of Langmuir
turbulence that have shown to enhance vertical mixing when
compared to the non-Langmuir schemes, but there are still large

discrepancies on the estimate of the mixed layer depth among
those (Li et al., 2019). Under hurricane wind conditions, there is
evidence that including Langmuir turbulence can improve the SST
evolution (Li et al., 2019; Zhou et al., 2023). In addition, Kim et al.
(2022) demonstrates that the skill of 3-way coupled simulations
for Hurricane Laura is improved over 2-way coupled forecasts, by
explicitly including the Langmuir turbulence to theKPPmixingwith
HYCOM. This suggests that future hurricane forecast systems can
improve the forecast skills by including a 3-way atmosphere-ocean-
wave coupling.

Along hurricane Dorian’s forecasted track, the MLT in
HWRF2019-POM is about −0.5 degrees colder than the MLT in
HWRF2020-HYCOM. Accordingly, the area integrated and time
integrated SSHL in HWRF2020-HYCOM is 17% higher than the
SSHL in HWRF2019-POM during the first 84 h of the forecast
cycle. This result indicates that even differences of several tenths of
a degree in the MLT in hurricane forecasting models, can lead to
substantial differences in the total enthalpy fluxes delivered from the
ocean to the atmosphere throughout the storm’s synoptic history.

The upper-ocean fields assessed in this work, which are relevant
to the air-sea heat fluxes, were not accurately represented in the three
coupled atmosphere-ocean hurricane forecasting models evaluated
here, and need to be better captured on future models currently
under development. In particular, a more accurate representation
of barrier layers could improve the model forecast skill during
storms. This work also shows that large biases in the upper-ocean
conditions can be introduced if the ocean model is initialized with
climatological temperature and salinity fields. Therefore, there is a
critical need to improve the upper-ocean initial conditions leading to
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better ocean representation in coupled atmosphere-oceanmodels, as
part of the larger effort to improve the different aspects that control
the hurricane intensity forecast.

In addition, this study demonstrates a methodology to assess
a model skill of the upper-ocean conditions that contribute to the
TC intensity forecast, and it makes the case that the upper-ocean
profile observations of temperature and salinity are a very valuable
asset to help improve, through data assimilation techniques, the
ocean representation, particularly of barrier layers and of ocean heat
content, which have been linked to hurricane intensity changes.
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