
March 2017  |  Volume 2  |  Article 41

Original Research
published: 06 March 2017

doi: 10.3389/feduc.2017.00004

Frontiers in Education  |  www.frontiersin.org

Edited by:
Jesus de la Fuente,

University of Almería, Spain

Reviewed by:
Dor Abrahamson,

University of California Berkeley, USA
Nicole D. Anderson,

MacEwan University, Canada

*Correspondence:
Jonathan G. Tullis

tullis@email.arizona.edu

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Education

Received: 19 December 2016
Accepted: 13 February 2017

Published: 06 March 2017

Citation:
Tullis JG and Goldstone RL (2017)
Instruction in Computer Modeling
Can Support Broad Application of

Complex Systems Knowledge.
Front. Educ. 2:4.

doi: 10.3389/feduc.2017.00004

instruction in computer Modeling
can support Broad application of
complex systems Knowledge
Jonathan G. Tullis1* and Robert L. Goldstone2

1 Department of Educational Psychology, University of Arizona, Tucson, AZ, USA, 2 Department of Psychological and Brain
Sciences, Indiana University, Bloomington, IN, USA

Learners often struggle to grasp the important, central principles of complex systems,
which describe how interactions between individual agents can produce complex, aggre-
gate-level patterns. Learners have even more difficulty transferring their understanding
of these principles across superficially dissimilar instantiations of the principles. Here, we
provide evidence that teaching high school students an agent-based modeling language
can enable students to apply complex system principles across superficially different
domains. We measured student performance on a complex systems assessment before
and after 1 week training in how to program models using NetLogo (Wilensky, 1999a).
Instruction in NetLogo helped two classes of high school students apply complex sys-
tems principles to a broad array of phenomena not previously encountered. We argue
that teaching an agent-based computational modeling language effectively combines
the benefits of explicitly defining the abstract principles underlying agent-level interac-
tions with the advantages of concretely grounding knowledge through interactions with
agent-based models.

Keywords: complex systems, programming, transfer, agent-based modeling, computational thinking

Providing learners with knowledge that they can apply in new situations and use to solve novel
problems is a central goal of education. However, learners often fail to apply well-known knowledge
to unfamiliar problems. Transfer of knowledge, whereby learners apply knowledge learned in one
domain to a superficially different, novel domain, may be especially difficult for complex systems
understanding because different instantiations of complex systems often share few, if any, superficial
features. Here, we propose that instruction in an agent-based computer programming language can
create complex systems knowledge that is transportable among superficially distant domains. First,
we address why learning complex systems principles is both important and difficult. Then, we discuss
why transferring learned complex systems knowledge is especially challenging. Finally, we outline
eight pedagogical principles that should promote the far transfer of complex systems knowledge and
discuss our implementation of these principles within a weeklong computer programming interven-
tion in a local high school.

COMPLEX SYSTEMS PRINCIPLES ARE IMPORTANT, BUT
DIFFICULT TO LEARN

Understanding complex systems has become increasingly important in many fields. Complex
systems are systems made up of many independent units (aka “agents”) whose interaction produce
higher order emergent behavior [for more details, see Goldstone and Wilensky (2008)]. Complex

http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2017.00004&domain=pdf&date_stamp=2017-03-06
http://www.frontiersin.org/education
http://www.frontiersin.org/education/archive
http://www.frontiersin.org/education/editorialboard
http://www.frontiersin.org/education/editorialboard
https://doi.org/10.3389/feduc.2017.00004
http://www.frontiersin.org/education
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:tullis@email.arizona.edu
https://doi.org/10.3389/feduc.2017.00004
http://www.frontiersin.org/Journal/10.3389/feduc.2017.00004/abstract
http://www.frontiersin.org/Journal/10.3389/feduc.2017.00004/abstract
http://www.frontiersin.org/Journal/10.3389/feduc.2017.00004/abstract
http://loop.frontiersin.org/people/162246
http://loop.frontiersin.org/people/19550

2

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

systems approaches, which enable researchers to study phe-
nomena that have multiple causes and consequences and have
structure at many different temporal, spatial, and organizational
levels, have had a large impact on the fields of math and science
(e.g., Deneubourg et al., 1986; Forrest, 1991; Dawkins, 1996;
Epstein and Axtell, 1996) and are having an increasing impact on
engineering, medicine, finance, law, and management (Jacobson
and Wilensky, 2006). Despite the widespread influence of com-
plex systems approaches in science and engineering, the tools
and perspectives of complex systems have had significantly less
influence in STEM curriculum (Jacobson and Wilensky, 2006).

Incorporating complex systems principles into the STEM
curriculum is pedagogically promising for three major reasons:
(1) the same complex systems principle frequently arises across
superficially distant areas in different guises (e.g., positive
feedback loops in microphone feedback and in the popularity
of TV shows), (2) different instantiations of the same principle
frequently behave very similarly [e.g., Navier–Stokes equations
can be used to describe and predict wind flow patterns around
an air foil, water in a damn, or crowds of people fleeing a burning
building (Hughes, 2003)], and (3) complex systems principles are
not obvious categories that students will usually learn on their
own (e.g., positive feedback loops are not conspicuous). Students
will learn the concepts of dogs, tables, and pencils on their own,
but may not ever think about water flow in toilet tanks and ther-
moregulatory feathers on a bird as both being instantiations of
negative feedback systems.

Successfully teaching complex systems has proven to be
very difficult. Learners struggle to grasp complex systems
ideas, such as those involved in equilibrium in chemistry and
evolution in biology (Bishop and Anderson, 1990; Wilensky
and Resnick, 1999; Penner, 2000, 2001; Charles, 2002, 2003;
Stieff and Wilensky, 2003), because learners typically employ
a centralized schema (i.e., a cognitive framework that helps to
interpret, understand, and explain information). Learners with
well-developed centralized and “clockwork” mindsets assume
systematic control whenever they see patterns in the world and
favor explanations that rely upon leaders, rules, and prearranged
structures (Resnick, 1994; Resnick and Wilensky, 1998; Jacobson,
2001). Clockwork mindsets favor reductive understandings (e.g.,
stepwise sequences), centralized control, completely predictable
agent actions, single causes, static ontologies, and small actions
only causing small effects (Jacobson, 2001). Learners harbor
resistance to the counterintuitive concepts of complex systems
like emergence, self-organization, and probabilistic outcomes
(Feltovich et al., 1989; Resnick, 1994, 1996; Wilensky, 1997;
Wilensky and Resnick, 1999; Chi, 2005). Learners believe that a
distinct leader must direct agents to create complex aggregate pat-
terns (i.e., leader centralization) or that some outside event must
start the events’ unfolding (i.e., seed centralization), rather than
appreciate how complex patterns can arise from simple simulta-
neous interactions among agents (Resnick, 1996). For instance,
flocking formations emerge from simple rules and interactions
among birds (i.e., stay close to other birds, fly in the same direction
as other birds, and stay a certain distance away from other birds),
yet learners are likely to endorse the idea that an alpha goose
must lead the rest. Further, learners resist seeing randomness as

conducive to order and pattern (Goldstone and Wilensky, 2008).
Learners may not fully endorse self-organization and decen-
tralization because they cannot mentally model complex systems.
Limited working memory spans may prohibit mental simulations
involving hundreds of agent-level interactions simultaneously
(Narayanan and Hegarty, 1998). Similarly, learners struggle to
correctly connect the agent-level rules to the aggregate pattern
(Wilensky and Resnick, 1999; Penner, 2000). Learners’ reasoning
often “slips” between levels, as they simplify complex systems by
viewing micro- and macrolevels as similar rather than distinct.
Alternatively, learners may employ “mid-level constructions,”
whereby small groups are treated as homogeneous entities or a
small number of individuals are described as interacting within
small groups, rather than complex patterns emerging from inter-
actions across all of the individual agents (Levy and Wilensky,
2008). Learners, therefore, often make incorrect inter-level causal
explanations (or confuse how levels are causally related) because
ascribing aggregate-level patterns to agent-level interactions is
complex, multiple levels may compete for limited attention, and
considering multiple levels simultaneously may require a larger
working memory than most learners have (Hmelo-Silver and
Pfeffer, 2004; Chi, 2005).

Research suggests design principles that improve complex
systems teaching. First, learners benefit from experiencing
complex systems (Jacobson and Wilensky, 2006). For example,
role-playing particles in a simulation of diffusion can develop
improved complex systems schema (Resnick and Wilensky, 1998;
Colella, 2000). Similarly, students acting out honey bee behavior
show improvements in complex systems reasoning (Danish,
2014). Students can also learn about complex systems by using
agent-based computer models that show numerous distinct
agents moving and interacting to result in a system that globally
changes over time (Epstein and Axtell, 1996; Wilensky, 2001;
Goldstone and Janssen, 2005; Railsback et al., 2006; Epstein, 2007;
Miller and Page, 2007). Agent-based models perceptually ground
learners’ understanding by visually displaying results so that
learners can track the evolution of systems in time. These con-
crete representations often support learning and can even bolster
abstract understanding (i.e., not tied to the physical instantiation
or context of the original representation) when designed appro-
priately (Goldstone and Barsalou, 1998; Barsalou, 1999; Cheng,
2002). Concrete representations are grounded in perceptual and/
or motor experiences and have identifiable correspondences
between their form and referents, while abstract representations
may not be tied to specific perceptual experiences.

Grounding in perception and action is at the core of our
resolution to the discrepancy between fast scientific and slow
neuro-evolutionary progress. Learners solve new cognitive tasks
by reusing brain and cognitive functions that evolved for other
purposes. One of the exciting prospects of teaching complex
systems using NetLogo is that difficult concepts that would other-
wise be taught using opaque formalisms can be taught in (some-
times literally) graspable ways by taking advantage of adaptive
perceptual systems. In this context, we consider formalisms from
math and logic to be more abstract than simulations in which
system components are represented by visual objects. Formalisms
are more abstract because their representational forms have a

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

3

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

more arbitrary, less perceptually direct connection to the system
elements that they are intended to model. However, we consider
a particular mental representation to be neither abstract nor
concrete in itself; rather, it depends on how the learner construes
their representation. NeLogo models may give students an effec-
tive new vocabulary for interpreting situations and help students
to interpret scenarios in new ways. Even though the situations are
“concrete” in the sense that they are made up of colored shapes
with particular sizes and locations, learners armed with NetLogo
primitives can see them as less tied to their perceptual qualities.

The concrete, visual representations of the individual agents in
a simulation encourage learners to analyze both the agent-level
and aggregate behavior. Whereas equations that describe the
macroscopic behavior often obscure agent-level interactions,
agent-based modeling forms a bridge between agent-based and
aggregate levels that learners can use to develop a deeper under-
standing of complex system concepts (Resnick, 1994; Wilensky
and Resnick, 1999; Klopfer et al., 2005; Blikstein and Wilensky,
2009; Levy and Wilensky, 2009; Sengupta and Wilensky, 2009).
Further, dynamic manipulation of agent-based models promotes
hands-on, active exploration of agent-based interactions and
fosters deep, multilevel explanations of complex phenomena
(Papert, 1991; National Research Council, 1999). Manipulating
agent-based models allows learners to form hypotheses about the
impact of variables on individual and aggregate-level patterns,
test their hypotheses, and revise their understanding (Cooper
et al., 2010).

A second principle for instruction that improves understanding
is to make the complex systems framework explicit. Even though
some learning environments address complex systems by build-
ing and exploring models without the explicit teaching of “com-
plexity” (Wilensky and Resnick, 1999; Sengupta and Wilensky,
2009), some research suggests that making the complex systems
framework explicit helps learning. For example, instruction
that directly stresses how emergence differs from centralization
improves complex system understanding and remedies students’
lack of a general schema for emergent phenomena (Chi, 2005).
Stressing how emergence differs from a directed, narrative story
schema allows students to develop a new schema and connect
it to existing knowledge (Bereiter, 1985). Making the emergence
framework explicit has enhanced students’ abilities to apply this
knowledge broadly (Chi, 2005).

Third, training students to analyze both the “agent-based”
level (where students think about the behavior of individual
agents) and the “aggregate” level (where students reason about
the properties and rates of change of the macrolevel structures)
supports complex system knowledge (Levy and Wilensky, 2009;
Berland and Wilensky, 2015). Training in analysis of these two
distinct levels supports deeper understanding of the meaning that
emerges from their specific and causal relationships and promotes
learning of scientific phenomena quickly and effectively (Levy
and Wilensky, 2008). For example, training in the microscopic
interactions that happen between molecules and how those
interactions correspond to macroscopic physical changes results
in better complex systems knowledge (Levy and Wilensky, 2008).

A different approach to teaching complex systems emphasizes
analyzing the structural, behavioral, and functional aspects of the

different agents. Breaking down complex systems into structural,
behavioral, and functional components may make the implicit
functions and behaviors of a system explicit and may instantiate
a schema that can be used to understand a variety of complex sys-
tems (Hmelo-Silver and Pfeffer, 2004). In fact, experts are much
better at breaking apart complex systems into the structures,
behaviors, and functions of the interacting individual agents than
are novices (Hmelo-Silver et al., 2007).

TRANSFERRING COMPLEX SYSTEMS
PRINCIPLES IS PARTICULARLY
DIFFICULT

Students are usually taught material in the classroom setting
with the hope that they will apply the newly learned principles to
novel, real-world situations (Reeves and Weisberg, 1994; Barnett
and Ceci, 2002). However, transfer, especially involving complex
systems knowledge, has proven difficult to achieve. New knowl-
edge of complex systems can be very fragile and revert to non-
complex ways of thinking when applied to novel situations (e.g.,
Day et al., 2010; Day and Goldstone, 2011). Across many different
paradigms, learners fail to spontaneously transfer knowledge
to new situations (Gick and Holyoak, 1980, 1983; Detterman,
1993). Advocates of “situated learning” argue that knowledge is
grounded in the concrete, contextualized situation in which it was
learned, and decontextualizing this knowledge in order to apply
it across situations is impossible (Lave, 1988; Brown et al., 1989).

Superficial similarity often drives reminding, such that learn-
ers are highly influenced by a previous solution of a problem if
it involves the same superficial “cover story” (e.g., both problems
involve race cars) (Ross, 1984, 1987; Tullis et al., 2014). When
surface features differ across events, even if the deep structure is
similar, learners fail to notice the applicability of a prior experi-
ence in new contexts (Hayes and Simon, 1977; Gick and Holyoak,
1980, 1983; Spencer and Weisberg, 1986). If learners notice the
structural similarity between situations, or are told to use the
prior situation to help solve the novel problem, most learners cor-
rectly apply their knowledge to solve the new problem (Gick and
Holyoak, 1980, 1983). Transfer, then, seems to be most impeded
by a lack of “noticing” the applicability of prior knowledge in new
situations (Lobato, 2012).

Transferring complex systems knowledge appropriately may
prove to be particularly difficult, as complex systems phenomena
rarely share superficial features. For instance, similar complex
systems models have been recruited to explain predator-prey
dynamics and business cycles, and these two situations share
few superficial features (Ball, 1999). When the phenomena
share few superficial features, students are unlikely to notice the
underlying structural principles that connect complex systems.
Consequently, transferring across complex systems phenomena
has proven very difficult (Wilensky, 1996).

Research provides hints about what does and does not foster
appropriate transfer. For example, learning pure abstract and
logical formalisms does not consistently foster far transfer.
General formalisms provided by algebra and logic might be
expected to be powerful because they can be applied across an

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

TABLE 1 | Summary of the programming mechanics and corresponding
cognitive benefits of teaching an agent-based model.

Features that describe
construction of agent-
based models

Cognitive benefit

Integrates coding with
modeling

The combination of abstractness and
concreteness supports transfer

Decomposes goals into line-
by-line commands

Problem decomposition skills are practiced and
basic underlying structure is uncovered

Codes only agents and their
interactions

Learners separate microlevel rules from
macrolevel outcomes

Facilitates parametric
variation by reducing
cognitive load

Learners easily identify agent-level causes of
different aggregate outcomes

Requires creation of an
external artifact

Learners are more active and engaged

Provides new languages and
methods of thinking

Development of new cognitive tools change how
learners perceive complex systems

Eliminates irrelevant
dimensions

Focused models showcase core components of
systems while minimizing superficial features

Fosters comparisons
between models

Learners experience multiple, superficially distinct
models, which fosters abstraction of deep
structure

4

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

infinite number of situations; however, the connection between
specific scenarios and equations is typically difficult for students
to notice (Ross, 1987, 1989). Therefore, students who learn
abstract formalisms often fail to consistently apply their knowl-
edge to new situations.

However, student interactions with physical elements during
modeling has produced transferable knowledge, especially when
the models are relatively idealized (Goldstone and Sakamoto,
2003; Goldstone and Wilensky, 2008). For example, students who
learned about “competitive specialization” in a situation involving
abstract ants and food transferred that knowledge to a situation
involving neurons learning to differentially respond to patterns
(Goldstone and Son, 2005). Similarly, student participation in
classroom simulations involving complex systems has shown
some ability to create transferrable knowledge (Wilensky and
Abrahamson, 2006). When learners view events as manifestations
of general principles, this learning prepares them to see future
events in terms of the same basic principles and they can apply
their knowledge to the new events (Goldstone and Sakamoto,
2003; Goldstone and Son, 2005). Further, providing multiple,
different cases of the same principle can allow learners to identify
the deep principles involved, view the events as manifestations of
general principles (Bransford and Schwartz, 1999), and mentally
discard the superficial characteristics (Gick and Holyoak, 1980,
1983; Gentner, 2005).

Transfer can be enhanced through training that alters stu-
dents’ perceptions of novel situations. Through well-designed
experiences, the perceived similarity between instances
can be adapted so that formerly dissimilar situations seem
similar (Goldstone and Wilensky, 2008; Goldstone et al., 2011).
Subjective similarities between situations are malleable rather
than fixed. Experience and training can give learners new tools
to interpret novel situations and ultimately shift their percep-
tions of similarity. Transfer can best happen when students’ psy-
chological spaces become tailored so that superficially dissimilar
situations that instantiate the same complex systems principle
become more closely related. For example, prompts can help
students see abstract commonalities between situations that
they would have otherwise missed (Gentner, 2003). Likewise,
experience sorting objects into task or culturally relevant cat-
egories changes learners’ assessments of similarities (Goldstone,
1994; Livingston et al., 1998; Roberson et al., 2000). Further,
long-term experience shifts judgments of similarities among
problems, as experts shift from relying upon superficialities to
structural components (Chi et al., 1981).

PROGRAMMING SHOULD PROMOTE
COMPLEX SYSTEMS TRANSFER

Programming and computational modeling have been used as
effective tools for learning difficult science and math concepts
(diSessa, 2000; Sherin, 2001; Wilensky and Abrahamson, 2006;
Kynigos, 2007; Guzdial, 2008; Blikstein and Wilensky, 2009).
Here, we examine whether high school students can acquire
complex systems knowledge through computer programming
training and apply it to domains far beyond those involved in

training. Because spontaneous far transfer has been difficult to
achieve and transfer as a central goal of education, pedagogical
methods that demonstrate far transfer are of great importance
to the learning sciences research community (Jacobson and
Wilensky, 2006).

Teaching an agent-based modeling computer programming
language may both impart complex systems knowledge and foster
transferable knowledge across superficially distant instantiations
of complex systems for several reasons, which are summarized
in Table 1. First, programming an agent-based model combines
abstraction with concrete grounding (i.e., it combines formal
logical rules with perceptual, physical representations); this com-
bination has been shown to help foster far transfer. Programming
necessitates abstraction, as programmers must abstractly define
variables and routines before a simulation can run. However,
learners also must interact with the concrete representation of
the system in order to build up, debug, and explore the program.
Interactions with the spatiotemporal visual representations
can ground learners’ knowledge. Programming an agent-based
model, then, combines the formal abstractions of programming
with the physical, concrete instantiation of modeling in order
to produce transportable knowledge. For example, when learn-
ers are programming a complex systems representation of the
Ising model of ferromagnetism in statistical mechanics, they
must first code the abstract rules that govern the interactions
among neighboring atoms. In an Ising model, each atom has a
directional magnetic spin (i.e., clockwise or counterclockwise)
that is influenced by the direction of the magnetic spins of the
atoms around it. In NetLogo, the two basic rules in an Ising model
are as follows: (1) each patch (which represents a single atom)
starts with a random state of blue or yellow (which represents a
clockwise or counterclockwise spin) and (2) each patch counts
how many of its eight neighboring batches are blue. If more

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

FIGURE 1 | Example images from the initial setup (left) and the final arrangement (right) of patches in the Ising spin model from the fourth day′s
project.

5

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

than four of its neighbors are blue, the patch turns blue; if less
than four of its neighbors are blue, the patch turns yellow. Step 2
repeats indefinitely, and the patches typically form a stable color
configuration. When students are finished with the abstract cod-
ing, they can experience the visual and temporal representation
of spin arrangements and spin changes as graphically depicted by
the colors of patches in NetLogo (Wilensky, 1999a), and shown
in Figure 1. Modelers receive both the benefits of grounding and
abstracting.

Second, computer programming develops the practice of prob-
lem decomposition, whereby learners must represent complex
programs simply. Programmers must break down complicated
systems into simple line-by-line computer commands [but see
Palumbo (1990)]. Decomposing a situation into simple line-by-
line commands forces learners to see the underlying structure of
a problem. These simple commands may be used across different
programs and situations, such that problem decomposition helps
programmers identify the structural similarities between super-
ficially distant phenomena and thereby adjust their constructs
to emphasize similarities across complex systems principles. In
fact, programmers often borrow code from one program to use
in a structurally similar new program. Computer programming
training may allow learners to apply their knowledge broadly
because they notice the shared, fundamental principles that gov-
ern superficially distant situations. For example, when learners
code the Ising model of an array of atoms with magnetic spins that
mutually influence one another, they may realize that magnetic
spins of atoms are aligned through interactions among neighbors.
If learners also program a model of geographical distributions
of two-party political opinions, they can easily notice that the
structure of both models (i.e., the code involved) relies solely
upon interactions among neighbors. Noticing this common
structure can allow learners to generalize a schema and support
broad application of it.

Third, programmers must explicitly create agents and their
interactions. By clearly articulating and instantiating objects and

their relations (without providing aggregate-level commands
or creating a special object that leads the others), learners are
encouraged to recognize how the complex patterns that form in
their simulations do not require complex, aggregate-level rules
(Wilensky, 2001; Wilensky and Reisman, 2006). Students often
do not appropriately reason about causal structures between
multiple levels; in fact, “slippage” between different levels is one
impediment to complex systems understanding (Wilensky and
Resnick, 1999). Agent-based programming forces the learners to
differentiate between the simple agent-level rules, which they have
programmed, and the complex aggregate behavior, which they
have witnessed (Blikstein and Wilensky, 2004). Learners may be
more likely to correctly distinguish between the levels when they
have programmed only agent-level interactions but perceive the
resulting macroscopic effects. Learners may understand they are
programming rules for individuals and also observe that large-
scale patterns emerge “for free.” For example, when programming
the Ising model, learners only code rules for individual patches,
yet various patterns of large blocks of color quickly emerge.
Learners know the simple interactions among neighbors that they
programmed, yet observe a novel and unanticipated structured
arrangement that occurs at the population level.

Fourth, agent-based models reduce the cognitive load placed
upon students who are learning complex systems by computing
the complex interactions among agents and presenting the results
in a helpful visual modality. Learners do not need to use cognitive
resources to mentally simulate the interactions among hundreds
of independent agents because the program computes these
quickly and easily. The learner can offload the mental burden of
simulating the complexity and variability of a complex system
to the computer program (Cooper et al., 2010). Learners can
enact countless simulations by manipulating parameters to test
hypotheses, allowing the program to compute the interactions,
and observing the results. This allows learners to connect aggre-
gate behavior with the relevant agent-level variables. Further,
agent-based models easily illuminate how complex patterns

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

6

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

arise in ways that other methods (e.g., differential equations)
cannot (Penner, 2000; Sherin, 2001). For example, agent-based
models can clearly present how complex patterns arise by visu-
ally displaying the individual agents and their interactions (Scaife
and Rogers, 1996). In this manner, agent-based models extend
students’ ability to perceive and encode complex systems, even
when the complex phenomena may be otherwise unobserv-
able (Quellmalz et al., 2012). For instance, learners who have
programmed the Ising model can easily modify the temperature
and variability parameters in order to observe how the overall
patterns change. The NetLogo program does the complex work
of simulating the individual interactions among thousands of
turtles, and the learner can reflect on why the patterns change
with changes in variables.

Fifth, students are more likely to build new knowledge when
they actively create external artifacts, even when those artifacts are
virtual. By creating an agent-based model, learners are engaged
in an active, hands-on process and active processes foster deep
understanding (National Research Council, 1999).

Sixth, computer modeling languages offer new cognitive tools
for describing complex systems phenomena (Goldstone and
Wilensky, 2008). Teaching children relational language, language
that emphasizes relations between objects, prompts them to
notice abstract commonalities (Loewenstein and Gentner, 2005);
teaching students a new computer modeling language may shift
how they view and describe situations. A high-level program-
ming language may allow learners to see connections among
various complex systems that they could not perceive before
training, which should help them apply their knowledge broadly.
For instance, in the Ising model, students learn to use the code
“sum [spin] of neighbors4.” This code may give students new
tools and language (e.g., “neighbors”) to analyze and describe the
fundamental causes of complex systems.

Seventh, under the assumption that the computational
programming constructs acquired by students will shape their
mental models, student-generated agent-based models can
eliminate irrelevant distractions and focus student attention on
central principles of complex systems. For example, variations in
elements’ appearances can be eliminated in order to focus atten-
tion on the interactions among the agents, rather than absolute
properties of the agents themselves (Goldstone and Son, 2005).
The agent-to-agent interactions can be made visually salient,
while the distracting, superficial details can be downplayed. By
eliminating irrelevant characteristics in the models (e.g., shape
of the agents), students will be able to form more general mental
models that apply to a broader array of novel situations. For
example, in the Ising model, the spins of individual atoms are
simply represented by colors. This minimalistic representation
eliminates irrelevant distractions and allows learners to focus
on the overall emergent patterns; plus, a similar abstract color
arrangement can also be aptly employed in the geographic model
of political party opinions.

Finally, teaching programming allows students to interact
with several different models of complex systems. Learners who
encounter multiple varied exemplars of the same structural
principles begin to mentally discard the superficial character-
istics and focus on the deeper principles underlying all of the

exemplars (Gick and Holyoak, 1980; Catrambone and Holyoak,
1989; Bransford and Schwartz, 1999). Interactions with multiple
examples of a deep principle allows learners to identify the core,
consistent deep principle that underlies the varied instantiations
because learners discard inconsistent superficial features across
examples. By modeling several different exemplars of complex
systems phenomena, students’ identification of the structural
principles underlying them should be promoted. For example,
learners who build both the Ising model and the model of geo-
graphical distributions of two-party political opinions should
be able to identify the common structure between these two
superficially distinct instances, namely, that spatially clustered
regions of patches with the same property arise when each patch
has tendency to adopt the same property as most of its neighbors.

In the quasi-experiments reported here, we implemented a
NetLogo training program across two high school classes. We
relied upon the eight principles outlined above to create 1 week of
instruction centered on coding and creating models in NetLogo.
Our main question was whether training in NetLogo program-
ming would support student understanding of complex systems
and allow them to accurately answer novel complex systems
questions.

CURRENT RESEARCH

Intervention 1
In the first study, we tested the idea that teaching an agent-based
modeling language can foster application of complex systems
knowledge across superficially different situations (Wilensky and
Reisman, 2006; Blikstein and Wilensky, 2010). We taught a high
school class how to program agent-based models in NetLogo
(Wilensky, 1999a) for 1 week. During the training, students cre-
ated several different agent-based models that illustrated complex
systems concepts such as positive and negative feedback loops
and self-organized cluster formation. Students took a complex
systems knowledge inventory before and after the NetLogo
training, and we measured how their knowledge changed and
analyzed their programs.

Participants
Twenty-eight students participated as a part of the “Computer
Science: Principles” course at a local public high school. Computer
Science: Principles is a class that stresses computational thinking
and abstraction, and students took the class as an elective. It was
the first time that the class was taught at this high school. Fourteen
students were seniors, 12 were juniors, and 2 were sophomore.
Only five participants were female. The high school was located
in a mid-size city, 80% of its students were white (with the biggest
minority—Hispanic—comprising 6% of the students), and 21%
of its students qualified for free or reduced lunch. Our agent-
based modeling intervention occurred toward the end of their
school year, and addressed one of the course’s core goals—using
models and simulations to generate new understanding and
knowledge. The class lasted 65 min long and met 5 days a week.
Most students had very little or no experience writing code; none
had experience writing code in NetLogo.

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

7

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

Ethics
The interventions in this manuscript were ruled Exempt under
Category 1 from the Indiana University IRB, as it only involved
research conducted in established or commonly accepted educa-
tional settings, involving normal educational practices.

Materials
We chose to use NetLogo (Wilensky, 1999a) as our agent-based
modeling language because it enables learners to write mean-
ingful models in a short amount of time with little training and
without focusing on (and struggling with) syntax. NetLogo
is a free, domain-independent modeling language that can
represent thousands of basic agents (i.e., turtles, which can
move, and patches, which are stationary) spatially, dynami-
cally, and visually. It has powerful capabilities for modeling
wide-ranging phenomena, and it has a large built-in library of
models that can be used as code examples. Students can simply
specify how the turtles and patches behave and interact with
one another, and then observe the aggregate-level patterns that
visually evolve over time. NetLogo has been used widely in both
educational and research contexts (Blikstein and Wilensky,
2004; Abrahamson et al., 2006; Sengupta and Wilensky, 2009).
However, in much of the prior research, learners interacted
with prebuilt NetLogo simulations designed to improve stu-
dent understanding on specific target concepts [e.g., GasLab
(Wilensky, 1999b), Connected Chemistry (Stieff and Wilensky,
2003; Levy and Wilensky, 2009), BEAGLE (Rand et al., 2007),
and the NEILS project (Sengupta and Wilensky, 2009)]. The
minimal existing literature on training computer modeling
skills has shown that learners can effectively create a computer
model to represent emergent complex systems building from
simple principles (Wilensky and Reisman, 2006). Similarly,
students can modify existing models, and doing so can shift
their thinking about complex systems (Blikstein and Wilensky,
2010). Through modifying complex systems models, students
developed fewer, simpler rules that governed relevant complex
systems phenomena, which enabled them to better understand
and extend models with new rules. The current research extends
the existing research in two significant ways: (1) we trained an
entire classroom of students to create their own programs and
complex systems models in NetLogo and (2) we measured far
transfer among complex systems knowledge. We also developed
and employed a complex systems inventory to assess learners’
complex system knowledge, and this is located in Section
“Complex Systems Concepts Inventory” in Appendix.

Procedure
The first author acted as the instructor throughout each interven-
tion. Each day’s lesson had a similar structure. First, some review
of the previous day’s programming commands was conducted
(except on the first day). Second, the instructor introduced new
programming commands that were needed for the day’s assign-
ment by projecting some sample code onto a screen in the front of
the classroom. Students experimented with the new commands
on their own computers as the commands were introduced.
Students predicted how changing the commands would alter

the model’s output, and in doing so, engaged in a hypothesis/test
routine. Third, the day’s modeling project was given to students.
The project explicitly detailed the specific rules that the indi-
vidual turtles or patches needed to follow, without revealing what
complex aggregate patterns could emerge. Students individually
wrote their models with NetLogo on personal computers, but
often asked their neighbors (or instructor) for help. Within each
project, students were also given “challenges,” which involved
more sophisticated adaptations of their original projects. These
“challenges” were given so that students who finished the basic
project quickly would continue to be engaged, while the other
students finished the basic project. The instructor walked through
the class during this time to make sure students were on task
and helped students solve coding problems. Students were very
interested and active during the individual project times; most
students were motivated to solve the challenge problem. For the
last 10 min of each class session, the instructor, with participation
from the students, wrote one possible method (out of infinite dif-
ferent possible methods) of coding the program and explained
why some alternatives would not work. During this wrap-up
time, the instructor summarized what commands were covered.
The instructor questioned students about the individual-level
commands they coded and the subsequent aggregate-level
behavior they witnessed. Finally, students emailed their code to
the instructor to earn participation credit for the day. The content
of the individual days is detailed below.

Day 1—Basic Turtle Commands
Students first took the pretest. Then, in order to motivate and
capture the attention of students, an example NetLogo program
that used the computer’s camera to sense motion was introduced.
In the program, individual butterflies interacted with the real-life
motion of a student volunteer, which was displayed on Netlogo’s
graphical window. Next, the basics of NetLogo were described,
including the capability of representing individual turtles (inde-
pendent mobile agents) and patches (stationary sections of the
background). Finally, a few basic turtle and patch commands
(e.g., creating and killing turtles, assigning colors and shapes,
assigning specific x and y coordinates to turtles) were described.
Students created very simple programs that created turtles in
various colors and shapes.

Day 2—Advanced Turtle Commands
On their second day, students created a new program from scratch
that allowed the movement of turtles to be controlled through
the model’s interface. They learned how to utilize control flow
commands (e.g., if, ifelse) in NetLogo’s language. Further, they
learned how to create variables (e.g., turning angle and speed)
that could be adjusted once the program had started and how to
create switches that hide or show the individual turtles. For an
extra challenge, some students created a routine that made the
turtles move toward the on-screen location where the mouse was
clicked.

Day 3—Cluster Formation Model
The instructor introduced commands that allowed turtles
to see if there were any other turtles ahead of them. Students

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

FIGURE 2 | Example images from the initial setup (left) and the
emergent groups (right) from the third day’s project. The entire code for
the project is displayed on the bottom.

8

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

programmed a model that randomly distributed turtles across
the patches. Turtles were then programmed to look ahead of
them by an adjustable distance (and angle). If a turtle saw another
turtle in front of it, it moved toward the other turtle. If a turtle
did not see another turtle, it did not move. Then, all the turtles
rotated a small, random amount to the left or right. The model
illustrated how a few simple rules caused several small, dense
groups of turtles to form from the initially randomly spaced
turtles, as shown in Figure 2. Further, the model illustrated the
need for small random changes in the turtles’ headings, as these
clusters only formed if some randomness in turtles’ headings
was included.

Day 4—Ising Spin Model
Students learned the commands needed for having patches count
the number of their neighbors with a certain property. In day
4’s project, students created an Ising model that represented the
spatial arrangement of magnetic moments associated with the
spins of atoms. First, patches were randomly assigned one of two
colors, which represented the clockwise or counterclockwise elec-
tron spin of an atom. When the model started, the patches would
switch their color to the color favored by the majority of their
neighboring patches. Over successive rounds of color updating,
this would lead to short-lived cascades of color switching because
once one patch changed its color, it might change the balance
of spins for a neighboring patch. Students then incorporated a
variable amount of noise into the model, whereby the individual
patches only probabilistically assumed the color of the majority
of their neighbors. Students interacted with the simulation to
see how different spin patterns emerged based upon the initial
density of colors and the amount of randomness in the model. For
an extra challenge, students coded the patches to be influenced
by eight random patches, rather than their eight immediately
surrounding neighbors.

Day 5—Conway’s Game of Life
No new commands were introduced on day 5. Similar to day 4,
students programmed a world where each patch was impacted
by the number of neighboring patches with a certain variable.
Specifically, students programmed J. H. Conway’s game, Life,
which has three simple rules: (1) a living patch with two or
three alive neighbors remains alive, (2) a dead patch with three
neighboring alive cells becomes alive, and (3) all other alive
patches become dead. The three simple rules can lead to complex,
self-sustaining or apparently chaotic patterns and provide con-
siderable potential for exploring emergence (Penner, 2000; Beer,
2014). Students programmed the model so they could click on
individual patches to switch them between being alive and dead.
Finally, students took the posttest.

Tests
Students were administered a 11-question Complex Systems
Concepts Inventory (CSCI), as shown in Section “Complex
Systems Concepts Inventory” in Appendix, on the first and last
days of the intervention. Students were not informed that they
would take the same test at the end of the week. The test covered
a wide array of principles central to complex systems under-
standing (e.g., dynamic equilibrium, non-linear influences, and
emergence). Importantly, in order to test the ability of learners
to transfer complex systems knowledge, the content of the test
questions was superficially unrelated to the content covered
during the training. The domains covered during the train-
ing were largely abstract, while those on the tests were mostly
applied, natural phenomena. Test questions included diverse
domains that naturally and intrinsically instantiated principles
of complex systems (e.g., fireflies flashing in synchrony, spiral
formations of pine cones), with different domains than those
covered in class. It included seven multiple-choice and four short
answer questions and was developed by the authors based upon
preliminary complex systems research. Students earned 1 point
for each multiple-choice question correct. Students earned 0, 1/2,
or 1 point for each of the short answer questions, based on the
depth and correctness of their answers. If students mentioned
that the observed complex patterns can arise from a simple rule,
they earned half a point. If students explicitly described what the
underlying rule was (e.g., fireflies look to their neighbors and
adjust the timing of their flash to be in greater synchrony with
their neighbors), students earned a full point.

Results
Students seemed very engaged throughout the training, and many
students attempted to complete the extra “challenge” projects.
Students’ scores on the pre- and posttests are displayed in the
left panel of Figure 3. Students earned more points [M = 5.46
(SD = 2.05)] on the posttest than on the pretest [M = 3.93
(SD = 1.88); t(25) = 4.54, p < 0.001, Cohen’s d = 0.91]. Twenty-
one (out of 26) of the students (81%) showed improvement from
the pretest to the posttest. The log odds of a correct answer on
each question were predicted using a multilevel logit model. The
model included the fixed effect of pretest or posttest and included
random intercepts for subjects and items. The model was fit in the
R software package (R Core Team, 2008) with Laplace estimation

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

FIGURE 3 | Scatter plots of total answers correct on the pre- and posttests in Intervention 1 (left panel) and Intervention 2 (right panel). In the right
panel, larger points represent two participants each. Points above the dashed diagonal line indicate better performance on the posttest than the pretest.

TABLE 2 | Beta weights from the logit model of Intervention 1.

β t Value

Intercept −0.22 2.50
Post- vs. pretest 0.14 4.48

9

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

using the lmer() function of the lme4 package (Bates et al., 2008).
The beta weights (and corresponding t values) of the model
are shown in Table 2. This model of performance shows that
students answered significantly more questions correctly on the
posttest than on the pretest. The odds of correctly responding to
a question after training were 1.15 times greater than correctly
answering before training.

Students’ answers to the short response questions revealed
a significant shift in thinking across the week of training.
Students initially invoked the centralized, deterministic mindset
to describe several complex natural phenomena. For example,
when describing how zebra stripes and cheetah spots can
form, students often suggested that high-level master plans
(i.e., genes) were needed to form complex patterns. Jason sug-
gested that DNA is needed to specify the spiral shaped pattern
in pinecones “because the designs are complicated.” Similarly,
Calvin responded, “the individual traits that create the spirals
are part of the DNA.” To describe the appearance of cheetah fur,
Marcus answered “some genes are dominant in certain places.”
Jacob described that emergent patterns of lightning bugs flashing
in synchrony and birds flying in V patterns arise because “it is
inherent in their genes.”

After training, students focused almost all of their explana-
tions on the agent-level interactions that could underlie the
complex aggregate-level patterns. For example, when describing
how color patterns form on animal fur, Beth answered, “the cells
want to be different than the ones next to them” and Will wrote
“the cells avoid their neighbors’ choices.” When describing how

the spirals of pinecones form, Erol explained that “it only takes
simple rules to create a pattern” and Jacob stated “sometimes
simple commands result naturally in complex patterns.” Even
when describing the similarities between lightning bug flashes
and the V pattern of flying geese, students ascribed the aggregate-
level patterns to agent-level interactions. Abe suggested “they
both observe their neighbors’ motions and make similar ones
themselves.” Jacob conjectured “it might change what it is doing
depending on what the organism next to it is doing.” Trey wrote
“they arise from neighbors communication – that’s what makes
them similar.”

Students sometimes broke down the problems into pseudoc-
ode to describe the agent-level interactions that could result in
complex aggregate-level patterns. For example, when describing
how zebra stripes can arise, Nathan wrote “if cell = black, set all
neighbors white.” To describe the spiral pattern in pinecones,
Abe answered, “if cells are told to grow out and clockwise from
their parent, then they would hopefully form a spiral, just from
a simple rule.”

Intervention 2
We repeated the intervention with a new class of students at
the same high school the following year. Instead of answer-
ing the same questions on the pre- and posttest, as in the first
intervention, students involved in this intervention answered
different questions before and after training. While this design
gives less statistical power and suffers from more statistical
noise than Intervention 1, any improvement from pre- to post-
tests cannot be driven by re-exposure to the same questions in
Intervention 2. We measured the change in performance across
two different versions of a complex systems inventory to assess
the development of complex systems understanding. Other
than the tests, the intervention followed the same procedure
as Intervention 1.

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

TABLE 3 | Beta weights from the logit model of Intervention 2.

β Z value

Intercept −2.09 3.54
Post- vs. pretest 0.92 2.60

10

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

Participants
Fifteen high school students enrolled in the “Computer Science:
Principles” course participated; three students were absent at the
time of the posttest and one student was absent for the pretest.
Eight students were seniors and seven students were juniors. Six
were female and nine were male.

Content of the Intervention
The content of the intervention was the same as in the first year.

Tests
Two versions of a complex systems inventory were developed
based on the results from the first intervention and are found
in Appendices B and C. Each version included five short answer
questions and one multiple-choice question that probe the same
complex systems knowledge and abilities. The superficial fea-
tures of the questions varied between test versions, but the deep
structure of the problems were consistent. For example, on Form
A, students were asked how geese form V patterns when flying,
while on Form B, students were asked how groups of fireflies
synchronize their flashing. While these are superficially distinct
questions, both answers are that the animals change their behavior
based upon the behavior of their neighbors. In this way, questions
about each specific topic were yoked to each other across versions
of the test. Students were randomly assigned to version A or B at
the pretest. After training, all subjects completed the other ver-
sion of the inventory. Students’ answers were graded blind to their
condition, and answers were awarded either full or no credit. If
students identified the complex systems principle associated with
the question (e.g., emergence of complex patterns from simple
local interactions), they earned full credit for the question.

Results
As in the first year, students seemed very excited and engaged
throughout the weeklong training. Individual student perfor-
mance is displayed in the right panel of Figure 3. Students earned
marginally more points [M = 2.67 (SD = 1.11)] on the posttest
than on the pretest [M = 1.57 (SD = 0.73); t(10) = 2.06, p = 0.06,
Cohen’s d = 0.65]. Only 11 students were present for both the
pre- and posttest, which limits the power of a traditional paired
t-test. We also used a multilevel model to compare pre- and
posttest performance because multilevel models can provide
us with more power. The log odds of a correct answer on each
question were predicted using a multilevel logit model, as in
Intervention 1. The model included the fixed effect of pretest
or posttest and included random intercepts for subjects, the 12
individual questions, and the 6 fundamental complex systems
principles that were repeated across test versions. As in the
first intervention, the model was fit in the R software package
(R Core Team, 2008) with Laplace estimation using the lmer()
function of the lme4 package (Bates et al., 2008). The beta weights
(and corresponding Z values) of the model are shown in Table 3.
This model of performance shows that students answered
significantly more questions correctly on the posttest than on
the pretest. The odds of correctly responding to a question after
training were 2.51 times greater than correctly answering before
training.

Similar to the first intervention, students’ answers to the short
response questions revealed a significant, medium sized, shift in
thinking across the week of training. Students initially invoked
the centralized, deterministic mindset to describe several com-
plex natural phenomena. For example, before the intervention,
when describing how fireflies could synchronize their flashing,
Avery wrote “the fireflies could sync by having a central firefly
work as a timer, using external stimuli or possibly by using a form
of internal clock.” Sam invoked the idea of DNA to describe how
animals form seashells in complex spiral patterns, when she wrote
“how else would the seashell make such complex spiral patterns?”
Similar, Holly explained animal stripes by arguing that “cells at
specific locations code for only 1 color. However, the cells can be
dispersed in different patches, which results into the making of
stripes.”

Students’ thinking shifted after training to invoke ideas of
repeated simple patterns and decentralization. To describe how
seashells can be formed in complex spiral patterns, Michael wrote
“it simply tells the next part of the shell to be bigger and at a cer-
tain angle.” Similarly, Avery explained the spirals in pinecones by
stating, “it is just the algorithm repeated over and over.” Students
also invoked the importance of agent-agent interactions in the
development of complex systems. To describe how fireflies can
synchronize their flashing, Ethan wrote “they may be influenced
by others’ patterns over a certain amount of time and larger
groups would hold more influence” and Sam wrote “they look at
others.” Garrett described how geese can form a V pattern while
flying by arguing the rule is to “follow a goose in any direction of
a cone around itself and a v pattern will emerge.”

DISCUSSION

Students’ ability to apply complex systems knowledge across a
wide variety of situations improved by learning an agent-based
modeling language. A brief 1-week intervention which targeted
NetLogo programming and modeling skills boosted students’
scores on a CSCI, even though the training intervention covered
models in different domains than those tested. Whereas prior
interactions with agent-based models have sometimes resulted
in situated learning [Day et al., 2010; Day and Goldstone, 2011;
but see Wilensky (1996) and Goldstone and Son (2005)], the cur-
rent intervention based on computational modeling produced
broadly applied knowledge of the core concepts of complex sys-
tems. In fact, both interventions produced medium to large sized
improvements (Cohen, 1988) in students’ learning that lasted
across multiple days. Students utilized the centralized mindset
less and agent-level interactions more often to describe complex
patterns following the intervention.

The specific combination of agent-based modeling and pro-
gramming supported students’ ability to transfer their complex

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

11

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

systems knowledge to distant new situations. The intervention
supported application of complex systems knowledge broadly for
many reasons. First, learners developed computational formal-
isms sufficient to express several different models (through learn-
ing a formal programming language), but also experienced the
concrete grounding of the visual representation of the outcome
(through running the agent-based model). Providing learners
with yoked concrete and formal representations likely led to
transportable knowledge. Second, students also seemed to gain
new tools to analyze the novel situations. After training, some
students used a spontaneously created pseudocode to describe
new natural phenomena. Gaining this new expressive language
apparently enables learners to connect superficially distinct situ-
ations that would be implemented using similar code. Further,
students adopted certain, specific linguistic forms (e.g., “complex
patterns”) when describing phenomena during the posttest.
Having new phrases, at minimum, shows that students have
acquired “prospective indexicals” (Goodwin, 1996) that can ease
learning of the concept in the future (Zemel and Koschmann,
2014). Learners likely would not have experienced the same
cognitive benefits from using ready-made models because they
would be less likely to internalize formalizations of rules, gain
new language to describe phenomena, and connect the abstract
rules to concrete outcomes.

Learners also experienced multiple, varied examples of emer-
gent phenomena throughout the week. Learners saw complex
spatial arrangements emerge from uncomplicated rules in the
Cluster Formation model, the Ising Spin model, and Conway’s
Game of Life. While the superficial features of these models vary
drastically, the underlying principles of macroscopic patterns
emerging from a few simple rules governing the local interactions
of basic agents remained consistent.

While evidence for far transfer has historically been con-
troversial, we believe that this intervention suggests a sound
pedagogical method for promoting transfer of complex systems
principles. We argue transfer can occur when well-designed
activities increase the perceived similarity of situations, trans-
forming once dissimilar situations into instantiations of the
same underlying principles. Moreover, while the term “princi-
ple” often connotes abstract and purely formal knowledge, the
concrete implementation of the formal programming language
into Netlogo code provides a cognitively accessible inroad into
construing phenomena in transferable fashion. Experience
with programming changes the perceived similarity among
situations because it gives learners a new tool for analyzing
situations (i.e., a programming language), focuses learners’
attention on the deep structure, and forces them to engage with
the essential rules sufficient for generating phenomena. Further,
modeling different projects gave students experience with mul-
tiple varied systems embodying the emergence principle and
likely primed their ability to see vastly different natural systems
as embodying the same principle. This agent-based modeling
training, then, likely made distant things seem more similar,
and allowed learners to use knowledge gained in a model
of electron spin when answering a question about a zebra’s
stripes, for example. Through the intervention, students began
to identify important, meaningful components of a complex

system, and connect the commonalities between superficially
distinct events. This intervention adds to the literature that
suggests how students can transfer scientific principles across
superficially dissimilar domains (Simon, 1980; Bransford and
Schwartz, 1999; Jacobson, 2001).

Programming, even when not coupled with agent-based
models, may provide extensive benefits for cognition. Some
have argued that computational thinking can foster broad
cognitive gains because it because it provides a general analytic
approach to problem solving, which involves problem represen-
tation, decomposition, abstraction, prediction, simulation, and
verification (Wing, 2006; National Research Council, 2010).
Some even argue that learning to program means learning to
construct mechanisms and explanations (Soloway, 1993). In
order to construct the mechanisms and explanations involved in
programming, learners must explicitly decompose problems into
their constituent rules (Nersessian, 1992; Ho, 2001). Learners
must identify the basic rules of interaction that are important,
which requires explicitly articulating and instantiating objects
and their relations (Penner et al., 1998). This need for problem
decomposition is inherent in all scientific and engineering
disciplines (Qualls and Sherrell, 2010). In fact, Swan and Black
(1987) show a significant increase in performance on subgoal
formation, forward chaining, backward chaining, systematic
trial and error, alternative representations, and analogy from
programming language instruction. Computational thinking
also involves conceptualizing via abstraction (Wing, 2006).
Learners need to think through multiple layers of abstraction
simultaneously, which may promote broad generalization of
instantiated concepts.

However, others have argued that computer programming
produces few general cognitive benefits (see Palumbo, 1990).
Although transfer of specific problem-solving skills may occur
through programming language instruction, improvements in
general problem-solving domains are very difficult to achieve
(Reed and Palumbo, 1988). In fact, Pea and Kurland (1984) found
no benefits of programming language instruction on general
problem-solving abilities or planning performance.

The intervention we developed may not have fully taken
advantage of the benefits of computer programming. Throughout
the training, learners were given the basic agent-level rules that
they needed to instantiate in their code. Many programming
interventions require learners to “reverse engineer” a system
(Wilensky and Reisman, 2006). Learners start with a description
of the macroscopic behavior; then, they have to break down
the problem, determine the underlying rules that govern the
elements and their interactions, build their model, and verify
that their model recreates the macroscopic behavior. Our inter-
vention did not require learners to decompose an event into its
basic rules; rather, learners built the models from the given rules.
Problem decomposition may be beneficial to explaining natural
complex systems phenomena because both involve breaking
down the aggregate-level pattern into agent-level interactions.
Incorporating an explicit process of problem decomposition
into agent-based modeling may further bolster student under-
standing. Problem decomposition may be especially relevant for
our assessment instrument, which requires learners to “reverse

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

12

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

engineer” a natural system. Additionally, we did not prompt
learners to borrow relevant existing model components when
building new models. Requiring learners to incorporate aspects
of prior models into new, superficially different models may help
learners make deep connections across the structural principles
of the models.

Despite its significant influence across math and science fields,
pre-college curricula have largely neglected complex systems
principles. In the practice of modern biology, complex systems
models have added precision to scientific theories and have been
important sources of hypothesis formation and testing. Yet,
the high school and undergraduate biology curriculum often
remains centered on the memorization of classification schemas
and established theories (Wilensky and Reisman, 1998, 2006).
As education shifts to address fewer, more integrated core ideas
(College Board, 2009; National Research Council, 2011), many
argue that a modeling perspective needs to take an increasingly
pronounced place in the curriculum.

Teaching agent-based programming can remedy this gap,
present the fundamentals of scientific modeling, and support
both computational thinking and science knowledge (Sengupta
and Wilensky, 2009). Through instruction in NetLogo, students
receive benefits associated with both interacting with agent-based
models and learning to program. Interacting with agent-based
models allows students to visualize complex phenomena,
manipulate variables, test hypotheses, and connect agent-based
interactions to aggregate-level behavior. Programming helps
students to explicitly state the actions and interactions of the
agents in a situation. Learners are then confronted with the
complex patterns that can arise from simple rules that govern
agent-level interactions. Programming naturally encourages
students to think about a phenomenon from the perspective of
what set of rules would minimally suffice to generate the phe-
nomenon. Further, modeling supports students’ understanding
of a wide range of key mathematical and scientific concepts and
“should be fostered at every age and grade… as a powerful way
to accomplish learning with understanding in mathematics and
science classrooms” (Romberg et al., 2005, p. 10). Incorporating

complex systems principles through agent-based modeling into
standard science curricula can provide numerous opportunities
to engage in the prevalent scientific pursuits of model building,
hypothesizing, and testing. Further, an appreciation of complex
systems schema can build links between disparate domains, pro-
vide unifying and coherent conceptual frameworks, and encour-
age students to look at natural phenomena in new and insightful
ways. Teaching computer programming can foster knowledge
transfer among superficially dissimilar disciplines, support valu-
able cross-fertilization of ideas and approaches, and ultimately
unify scientific domains that would otherwise be fractionated.

ETHICS STATEMENT

This study was ruled exempt by the Indiana University
Institutional Review Board because it is “research conducted in
established or commonly accepted educational settings, involv-
ing normal educational practices, such as (i) research on regular
and special educational instructional strategies, or (ii) research
on the effectiveness of or the comparison among instructional
techniques, curricula, or classroom management methods
[45CFR46.101(b)(1)].”

AUTHOR CONTRIBUTIONS

JT conceptualized the project, designed the instruction, taught
the classes, wrote the tests, collected the data, analyzed the
data, and wrote the manuscript. RG conceptualized the project,
contributed to the design the experiments, thought of the test
questions, helped analyze the data, and edited the manuscript.

FUNDING

This research was in part supported by National Science
Foundation REESE grant 0910218, Institute of Education
Sciences, US Department of Education Grant # R305A1100060,
and start-up funding provided to the first author by the
University of Arizona.

REFERENCES

Abrahamson, D., Janusz, R. M., and Wilensky, U. (2006). There once was a
9-block … a middle-school design for probability and statistics. J. Stat. Educ. 8.
Available at: http://www.amstat.org/publications/jse/v14n1/abrahamson.html

Ball, P. (1999). The Self-Made Tapestry. Oxford, England: Oxford University Press.
Barnett, S. M., and Ceci, S. J. (2002). When and where do we apply what

we learn? A taxonomy for far transfer. Psychol. Bull. 128, 612–637.
doi:10.1037/0033-2909.128.4.612

Barsalou, L. W. (1999). Perceptual symbol systems. Behav. Brain Sci. 22, 577–660.
doi:10.1017/S0140525X99532147

Bates, D., Maechler, M., and Dai, B. (2008). Ime4: Linear Mixed Effects Models Using
S4 Classes. R Package Version 0.999375 17. Available at: http://lme4.r-forge.r-
project.org/

Beer, R. D. (2014). The cognitive domain of a glider in the game of life. Artif. Life
20, 183–206. doi:10.1162/ARTL_a_00125

Bereiter, C. (1985). Toward a solution of the learning paradox. Rev. Educ. Res. 55,
201–226. doi:10.3102/00346543055002201

Berland, M., and Wilensky, U. (2015). Comparing virtual and physical robotics
environments for supporting complex systems and computational thinking.
J. Sci. Educ. Technol. 24, 628–647. doi:10.1007/s10956-015-9552-x

Bishop, B. A., and Anderson, C. W. (1990). Student conceptions of natural
selection and its role in evolution. J. Res. Sci. Teach. 27, 415–427. doi:10.1002/
tea.3660270503

Blikstein, P., and Wilensky, U. (2004). MaterialSim Model-Based Curriculum.
Evanston, IL: Northwestern University, Center for Connected Learning and
Computer Based Modeling. Available from: http://ccl.northwestern.edu/rp/
materialsim/models.shtml

Blikstein, P., and Wilensky, U. (2009). An atom is known by the company it
keeps: a constructionist learning environment for materials science using
agent-based modeling. Int. J. Comput. Math. Learn. 14, 81–119. doi:10.1007/
s10758-009-9148-8

Blikstein, P., and Wilensky, U. (2010). “MaterialSim: a constructionist agent-
based modeling approach to engineering education,” in Designs for Learning
Environments of the Future: International Perspectives from the Learning
Sciences, eds M. J. Jacobson and P. Reimann (New York: Springer), 17–60.

Bransford, J. D., and Schwartz, D. L. (1999). Rethinking transfer: a simple proposal
with multiple implications. Rev. Res. Educ. 24, 61–101. doi:10.2307/1167267

Brown, J. S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture
of learning. Educ. Res. 8, 32–42. doi:10.3102/0013189X018001032

Catrambone, R., and Holyoak, K. J. (1989). Overcoming contextual limitations on
problem-solving transfer. J. Exp. Psychol. Learn. Mem. Cogn. 15, 1147–1156.

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive
http://www.amstat.org/publications/jse/v14n1/abrahamson.html
https://doi.org/10.1037/0033-2909.128.4.612
https://doi.org/10.1017/S0140525X99532147
http://lme4.r-forge.r-project.org/
http://lme4.r-forge.r-project.org/
https://doi.org/10.1162/ARTL_a_00125
https://doi.org/10.3102/00346543055002201
https://doi.org/10.1007/s10956-015-9552-x
https://doi.org/10.1002/tea.3660270503
https://doi.org/10.1002/tea.3660270503
http://ccl.northwestern.edu/rp/materialsim/models.shtml
http://ccl.northwestern.edu/rp/materialsim/models.shtml
https://doi.org/10.1007/s10758-009-9148-8
https://doi.org/10.1007/s10758-009-9148-8
https://doi.org/10.2307/
1167267
https://doi.org/10.3102/0013189X018001032

13

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

Charles, E. S. (2002). Using Complex Systems Thinking to Facilitate Shifts in
Ontological Beliefs: A Qualitative Case Study Systematically Investigating a
Learning and Teaching Context that Employs “StarLogo” Simulations and a One-
on-One Coaching Methodology. Paper Presented at the 83rd Annual Meeting of
the American Educational Research Association. New Orleans, LA.

Charles, E. S. (2003). An Ontological Approach to Conceptual Change: The Role
that Complex Systems Thinking May Play in Providing the Explanatory
Framework Needed for Studying Contemporary Sciences. Unpublished Doctoral
[Dissertation], Concordia University, Montreal, Canada.

Cheng, P. C. H. (2002). Electrifying diagrams for learning: principles for
complex representational systems. Cogn. Sci. 26, 685–736. doi:10.1207/
s15516709cog2606_1

Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: why
some misconceptions are robust. J. Learn. Sci. 14, 161–199. doi:10.1207/
s15327809jls1402_1

Chi, M. T. H., Feltovich, P. J., and Glaser, R. (1981). Categorization and repre-
sentation of physics problems by experts and novices. Cogn. Sci. 5, 121–152.
doi:10.1207/s15516709cog0502_2

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn.
Hillsdale, NJ: Erlbaum.

Colella, V. (2000). Participatory simulations: building collaborative understanding
through immersive dynamic modeling. J. Learn. Sci. 9, 471–500. doi:10.1207/
S15327809JLS0904_4

College Board. (2009). Science: College Boards Standards for College Success.
Available at: http://professionals.collegeboard.com/profdownload/cbscs-
science-standards-2009.pdf

Cooper, S., Perez, L. C., and Rainey, D. (2010). K-12 computational learning.
Commun. ACM 53, 27–29. doi:10.1145/1839676.1839686

Danish, J. A. (2014). Applying an activity theory lens to designing instruction for
learning about the structure, behavior, and function of a honeybee system.
J. Learn. Sci. 23, 100–148. doi:10.1080/10508406.2013.856793

Dawkins, R. (1996). The Blind Watchmaker. New York: W.W. Norton. Dennett, D.C.
Day, S. B., and Goldstone, R. L. (2011). Analogical transfer from a simulated

physical system. J. Exp. Psychol. Learn. Mem. Cogn. 37, 551–567. doi:10.1037/
a0022333

Day, S. B., Goldstone, R. L., and Hills, T. (2010). The Effects of Similarity and
Individual Differences on Comparison and Transfer. Proceedings of the Thirty-
Second Annual Conference of the Cognitive Science Society. Portland, Oregon:
Cognitive Science Society, 465–470.

Deneubourg, J., Aron, S., Goss, S., Pasteels, J., and Duerinck, G. (1986).
Random behavior, amplification processes, and number of participants: how
they contribute to the foraging properties of ants. Physica D 22, 176–186.
doi:10.1016/0167-2789(86)90239-3

Detterman, D. R. (1993). “The case for prosecution: transfer as an epiphenome-
non,” in Transfer on Trial: Intelligence, eds D. K. Detterman and R. J. Sternberg
(Norwood, NJ: Ablex), 1–24.

diSessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy.
Cambridge, MA: MIT Press.

Epstein, J. M. (2007). Generative Social Science: Studies in Agent-Based
Computational Modeling. Princeton, NJ: Princeton University Press.

Epstein, J. M., and Axtell, R. (1996). Growing Artificial Societies: Social Science from
the Bottom Up. Washington, DC: Brookings Institution Press.

Feltovich, P. J., Spiro, R. J., and Coulson, R. L. (1989). “The nature of conceptual
understanding in biomedicine: the deep structure of complex ideas and the
development of misconceptions,” in The Cognitive Sciences in Medicine, eds D.
Evans and V. Patel (Cambridge, MA: MIT Press), 113–172.

Forrest, S. (ed.) (1991). Emergent Computation. Cambridge, MA: MIT Press.
Gentner, D. (2003). “Why we’re so smart,” in Language Inmind: Advances in

the Study of Language and Thought, eds D. Gentner and S. Goldin-Meadow
(Cambridge, MA: MIT Press), 195–236.

Gentner, D. (2005). “The development of relational category knowledge,” in
Building Object Categories in Developmental Time, eds L. Gershkoff-Stowe and
D. H. Rakison (Hillsdale, NJ: Erlbaum), 245–275.

Gick, M. L., and Holyoak, K. J. (1980). Analogical problem solving. Cogn. Psychol.
12, 306–355. doi:10.1016/0010-0285(80)90013-4

Gick, M. L., and Holyoak, K. J. (1983). Schema induction and analogical transfer.
Cogn. Psychol. 15, 1–39. doi:10.1016/0010-0285(83)90002-6

Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination.
J. Exp. Psychol. Gen. 123, 178–200. doi:10.1037/0096-3445.123.2.178

Goldstone, R. L., and Barsalou, L. (1998). Reuniting perception and conception.
Cognition 65, 231–262. doi:10.1016/S0010-0277(97)00047-4

Goldstone, R. L., and Janssen, M. A. (2005). Computational models of collective
behavior. Trends Cogn. Sci. 9, 424–430. doi:10.1016/j.tics.2005.07.009

Goldstone, R. L., Landy, D., and Brunel, L. (2011). Improving perception to
make distant connections closer. Front. Percept. Sci. 2:385. doi:10.3389/
fpsyg.2011.00385

Goldstone, R. L., and Sakamoto, Y. (2003). The transfer of abstract principles
governing complex adaptive systems. Cogn. Psychol. 46, 414–466. doi:10.1016/
S0010-0285(02)00519-4

Goldstone, R. L., and Son, J. Y. (2005). The transfer of scientific principles using
concrete and idealizedsimulations. J. Learn. Sci. 14, 69–110. doi:10.1207/
s15327809jls1401_4

Goldstone, R. L., and Wilensky, U. (2008). Promoting transfer by grounding
complex systems principles. J. Learn. Sci. 17, 465–516. doi:10.1080/10508400
802394898

Goodwin, C. (1996). “Transparent vision,” in Interaction and Grammar, eds
O. Elinor, E. A. Schegloff, and T. Sandra (Cambridge: Cambridge University
Press), 370–404.

Guzdial, M. (2008). Paving the way for computational thinking. Commun. ACM
51, 25–27. doi:10.1145/1378704.1378713

Hayes, J. R., and Simon, H. A. (1977). “Psychological differences among problem
isomorophs,” in Cognitive Theory, Vol. 2, eds N. J. Castellan Jr., D. B. Pisoni, and
G. R. Potts (Hillsdale, NJ: Erlbaum), 21–41.

Hmelo-Silver, C. E., Marathe, S., and Liu, L. (2007). Fish swim, rocks sit, and lungs
breathe: expert-novice understanding of complex systems. J. Learn. Sci. 16,
307–331.

Hmelo-Silver, C. E., and Pfeffer, M. G. (2004). Comparing expert and novice
understanding of a complex system from the perspective of structures, behav-
iors, and functions. Cogn. Sci. 28, 127–138. doi:10.1207/s15516709cog2801_7

Ho, C. H. (2001). Some phenomena of problem decomposition strategy for design
thinking: differences between novices and experts. Des. Stud. 22, 27–45.
doi:10.1016/S0142-694X(99)00030-7

Hughes, R. L. (2003). The flow of human crowds. Annu. Rev. Fluid Mech. 35,
169–182. doi:10.1146/annurev.fluid.35.101101.161136

Jacobson, M. J. (2001). Problem solving, cognition, and complex systems: differ-
ences between experts and novices. Complexity 6, 41–49. doi:10.1002/cplx.1027

Jacobson, M. J., and Wilensky, U. (2006). Complex systems in education: scientific
and educational importance and research challenges for the learning sciences.
J. Learn. Sci. 15, 11–34. doi:10.1207/s15327809jls1501_4

Klopfer, E., Yoon, S., and Um, T. (2005). Teaching complex dynamic systems to
young students with StarLogo. J. Comput. Math. Sci. Teach. 24, 157–178.

Kynigos, C. (2007). Using half-baked microworlds to challenge teacher educators’
knowing. J. Comput. Math Learn. 12, 87–111. doi:10.1007/s10758-007-9114-2

Lave, J. (1988). Cognition in Practice: Mind, Mathematics, and Culture in Everyday
Life. New York: Cambridge University Press.

Levy, S. T., and Wilensky, U. (2008). Inventing a “mid-level” to make ends
meet: reasoning through the levels of complexity. Cogn. Instr. 26, 1–47.
doi:10.1080/07370000701798479

Levy, S. T., and Wilensky, U. (2009). Students’ learning with the connected
chemistry (CC1) curriculum: navigating the complexities of the partic-
ulate world. J. Sci. Educ. Technol. 18, 243–254. doi:10.1007/s10956-009-
9145-7

Livingston, K. R., Andrews, J. K., and Harnad, S. (1998). Categorical perception
effects induced by category learning. J. Exp. Psychol. Learn. Mem. Cogn. 24,
732–753.

Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to
educational research and practice. Educ. Psychol. 47, 232–247. doi:10.1080/00
461520.2012.693353

Loewenstein, J., and Gentner, D. (2005). Relational language and the devel-
opment of relational mapping. Cogn. Psychol. 50, 315–353. doi:10.1016/
j.cogpsych.2004.09.004

Miller, J. H., and Page, S. E. (2007). Complex Adaptive Systems: An Introduction to
Computational Models of Social Life. Princeton, NJ: Princeton University Press.

Narayanan, N. H., and Hegarty, M. (1998). On designing comprehensible interac-
tive hypermedia manuals. Int. J. Hum. Comput. Stud. 48, 267–301. doi:10.1006/
ijhc.1997.0169

National Research Council. (1999). How People Learn: Brain, Mind, Experience,
and School. Washington, DC: The National Academy Press.

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive
https://doi.org/10.1207/s15516709cog2606_1
https://doi.org/10.1207/s15516709cog2606_1
https://doi.org/10.1207/s15327809jls1402_1
https://doi.org/10.1207/s15327809jls1402_1
https://doi.org/10.1207/s15516709cog0502_2
https://doi.org/10.1207/S15327809JLS0904_4
https://doi.org/10.1207/S15327809JLS0904_4
http://professionals.collegeboard.com/profdownload/cbscs-science-standards-2009.pdf
http://professionals.collegeboard.com/profdownload/cbscs-science-standards-2009.pdf
https://doi.org/10.1145/1839676.1839686
https://doi.org/10.1080/10508406.2013.856793
https://doi.org/10.1037/a0022333
https://doi.org/10.1037/a0022333
https://doi.org/10.1016/0167-2789(86)90239-3
https://doi.org/10.1016/0010-0285(80)90013-4
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1037/0096-3445.123.2.178
https://doi.org/10.1016/S0010-0277(97)00047-4
https://doi.org/10.1016/j.tics.2005.07.009
https://doi.org/10.3389/fpsyg.2011.00385
https://doi.org/10.3389/fpsyg.2011.00385
https://doi.org/10.1016/S0010-0285(02)00519-4
https://doi.org/10.1016/S0010-0285(02)00519-4
https://doi.org/10.1207/s15327809jls1401_4
https://doi.org/10.1207/s15327809jls1401_4
https://doi.org/10.1080/10508400
802394898
https://doi.org/10.1080/10508400
802394898
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1207/
s15516709cog2801_7
https://doi.org/10.1016/S0142-694X(99)00030-7
https://doi.org/10.1146/annurev.fluid.35.101101.161136
https://doi.org/10.1002/cplx.1027
https://doi.org/10.1207/s15327809jls1501_4
https://doi.org/10.1007/s10758-007-
9114-2
https://doi.org/10.1080/07370000701798479
https://doi.org/10.1007/s10956-009-
9145-7
https://doi.org/10.1007/s10956-009-
9145-7
https://doi.org/10.1080/00461520.2012.693353
https://doi.org/10.1080/00461520.2012.693353
https://doi.org/10.1016/
j.cogpsych.2004.09.004
https://doi.org/10.1016/
j.cogpsych.2004.09.004
https://doi.org/10.1006/ijhc.1997.0169
https://doi.org/10.1006/ijhc.1997.0169

14

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

National Research Council. (2010). Report of a Workshop on the Scope and Nature
of Computational Thinking. Washington, DC: The National Academies Press.

National Research Council. (2011). Learning Science through Computer Games and
Simulations. Washington, DC: The National Academies Press.

Nersessian, N. J. (1992). “How do scientists think? Capturing the dynamics of
conceptual change in science,” in Cognitive Models of Science, ed. R. N. Giere
(Minneapolis, MN: University of Minnesota Press), 3–45.

Palumbo, D. B. (1990). Programming language/problem-solving research: a review
of relevant issues. Rev. Educ. Res. 1, 65–89. doi:10.3102/00346543060001065

Papert, S. (1991). “Situating constructionism,” in Constructionism, eds I. Harel and
S. Papert (Norwood, NJ: Ablex), 1–11.

Pea, R. D., and Kurland, D. M. (1984). On the cognitive effects of learning computer
programming. New Ideas Psychol. 2, 137–168. doi:10.1016/0732-118X(84)
90018-7

Penner, D. E. (2000). Explaining systems: investigating middle school students’
understanding of emergent phenomena. J. Res. Sci. Teach. 37, 784–806.
doi:10.1002/1098-2736(200010)37:8<784::AID-TEA3>3.0.CO;2-E

Penner, D. E. (2001). “Complexity, emergence, and synthetic models in science
education,” in Designing for Science, eds K. Crowley, C. D. Schunn, and T. Okada
(Mahwah, NJ: Lawrence Erlbaum Associates, Inc.), 177–208.

Penner, D. E., Lehrer, R., and Schauble, L. (1998). From physical models to biome-
chanics: a design-based modeling approach. J. Learn. Sci. 7, 429–449. doi:10.1
080/10508406.1998.9672060

Qualls, J., and Sherrell, L. (2010). Why computational thinking should be inte-
grated into the curriculum. J. Comput. Sci. Coll. 25, 66–71.

Quellmalz, E. S., Timms, M. J., Silberglitt, M. D., and Buckley, B. C. (2012). Science
assessments for all: integrating science simulations into balanced state science
assessment systems. J. Res. Sci. Teach. 49, 363–393. doi:10.1002/tea.21005

R Core Team. (2008). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing. Available at: https://
www.R-project.org/

Railsback, S., Lytinen, S., and Jackson, S. (2006). Agent-based simulation plat-
forms: review and development recommendations. Simulation 82, 609–623.
doi:10.1177/0037549706073695

Rand, W., Novak, M., and Wilensky, U. (2007). BEAGLE Curriculum. Evanston, IL:
Center for Connected Learning and Computer-Based Modeling, Northwestern
University.

Reed, W. M., and Palumbo, D. B. (1988). The effect of the BASIC programming
language on problem-solving skills and computer anxiety. Comput. Sch. 4,
91–101. doi:10.1300/J025v04n03_11

Reeves, L., and Weisberg, R. W. (1994). The role of content and abstract
information in analogical transfer. Psychol. Bull. 115, 381–400.
doi:10.1037/0033-2909.115.3.381

Resnick, M. (1994). Turtles, Termites and Traffic Jams: Explorations in Massively
Parallel Microworlds. Cambridge, MA: MIT Press.

Resnick, M. (1996). Beyond the centralized mindset. J. Learn. Sci. 5, 1–22.
doi:10.1207/s15327809jls0501_1

Resnick, M., and Wilensky, U. (1998). Diving into complexity: developing prob-
abilistic decentralized thinking through roleplaying activities. J. Learn. Sci. 7,
153–171. doi:10.1207/s15327809jls0702_1

Roberson, D., Davies, I., and Davidoff, J. (2000). Color categories are not universal:
replications and new evidence in favor of linguistic relativity. J. Exp. Psychol.
Gen. 129, 369–398. doi:10.1037/0096-3445.129.3.369

Romberg, T., Carpenter, T., and Kwako, J. (2005). “Standards based reform and
teaching for understanding,” in Understanding Mathematics and Science Matters,
eds T. Romberg, T. Carpenter, and F. Dremock (Mahwah, NJ: Erlbaum), 3–26.

Ross, B. H. (1984). Remindings and their effects in learning a cognitive skill.
Cogn. Psychol. 16, 371–416. doi:10.1016/0010-0285(84)90014-8

Ross, B. H. (1987). This is like that: the use of earlier problems and the separation
of similarity effects. J. Exp. Psychol. Learn. Mem. Cogn. 13, 629–639.

Ross, B. H. (1989). Distinguishing types of superficial similarities: different effects
on the access and use of earlier problems. J. Exp. Psychol. Learn. Mem. Cogn.
15, 456–468.

Scaife, M., and Rogers, Y. (1996). External cognition: how do graphical represen-
tations work? Int. J. Hum. Comput. Stud. 45, 185–213. doi:10.1006/ijhc.1996.
0048

Sengupta, P., and Wilensky, U. (2009). Learning electricity with NIELS: thinking
with electrons and thinking in levels. Int. J. Comput. Math. Learn. 14, 21–50.
doi:10.1007/s10758-009-9144-z

Sherin, B. (2001). A comparison of programming languages and algebraic notation
as expressive languages for physics. Int. J. Comput. Math. Learn. 6, 1–61. doi:1
0.1023/A:1011434026437

Simon, H. A. (1980). “Problem solving and education,” in Problem Solving and
Education: Issues in Teaching and Research, eds D. T. Tuma and R. Reif (Hillsdale,
NJ: Erlbaum), 81–96.

Soloway, E. (1993). Should we teach students to program? Commun. ACM 36,
21–24. doi:10.1145/163430.164061

Spencer, R. M., and Weisberg, R. W. (1986). Context-dependent effects on analog-
ical transfer. Mem. Cognit. 14, 442–449. doi:10.3758/BF03197019

Stieff, M., and Wilensky, U. (2003). Connected chemistry – incorporating interac-
tive simulations into the chemistry classroom. J. Sci. Educ. Technol. 12, 285–302.
doi:10.1023/A:1025085023936

Swan, K., and Black, J. B. (1987). The Cross-Contextual Transfer of Problem Solving
Skills (CTT Report 87-3). New York: Teachers College, Columbia University,
Department of Communication, Computing, and Technology.

Tullis, J. G., Braverman, M., Ross, B. H., and Benjamin, A. S. (2014). Remindings
influence the interpretation of ambiguous stimuli. Psychon. Bull. Rev. 21,
107–113. doi:10.3758/s13423-013-0476-2

Wilensky, U. (1996). Modeling rugby: kick first, generalize later? Int. J. Comput.
Math. Learn. 1, 124–131.

Wilensky, U. (1997). What is normal anyway? Therapy for epistemological anxiety.
Educ. Stud. Math. 33, 171–202. doi:10.1023/A:1002935313957

Wilensky, U. (1999a). NetLogo. Evanston, IL: Center for Connected Learning
and Computer-Based Modeling, Northwestern University. Available at:
http://ccl.northwestern.edu/netlogo/

Wilensky, U. (1999b). “GasLab: an extensible modeling toolkit for exploring micro-
and-macro-views of gases,” in Computer Modeling and Simulation in Science
Education, eds N. Roberts, W. Feurzeig, and B. Hunter (Berlin: Springer Verlag),
151–178.

Wilensky, U. (2001). “Modeling nature’s emergent patterns with multi-agent
languages,” in Proceedings of EuroLogo 2001, Linz, Austria.

Wilensky, U., and Abrahamson, D. (2006). Is a Disease Like a Lottery? Classroom
Networked Technology that Enables Student Reasoning about Complexity.
Paper Presented at the Annual Meeting of the American Educational Research
Association. San Francisco, CA. Available at: http://ccl.northwestern.edu/
papers.shtml

Wilensky, U., and Reisman, K. (1998). ConnectedScience: learning biology through
constructing and testing computational theories – an embodied modeling
approach. Int. J. Complex Syst. 234, 1–12.

Wilensky, U., and Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly:
learning biology through constructing and testing computational theories
– an embodied modeling approach. Cogn. Instr. 24, 171–209. doi:10.1207/
s1532690xci2402_1

Wilensky, U., and Resnick, M. (1999). Thinking in levels: a dynamic systems
perspective to making sense of the world. J. Sci. Educ. Technol. 8, 3–19. doi:10.
1023/A:1009421303064

Wing, J. M. (2006). Computational thinking. Commun. ACM 49, 33–35.
doi:10.1145/1118178.1118215

Zemel, A., and Koschmann, T. (2014). ‘Put your fingers right in here’:
learnability and instructed experience. Discourse Stud. 16, 163–183.
doi:10.1177/1461445613515359

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Tullis and Goldstone. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive
https://doi.org/10.3102/00346543060001065
https://doi.org/10.1016/0732-118X(84)
90018-7
https://doi.org/10.1016/0732-118X(84)
90018-7
https://doi.org/10.1002/1098-2736(200010)37:8﻿<﻿784::AID-TEA3﻿>﻿3.0.CO;2-E
https://doi.org/10.1080/10508406.1998.9672060
https://doi.org/10.1080/10508406.1998.9672060
https://doi.org/10.1002/tea.21005
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1177/0037549706073695
https://doi.org/10.1300/J025v04n03_11
https://doi.org/10.1037/0033-2909.115.3.381
https://doi.org/10.1207/s15327809jls0501_1
https://doi.org/10.1207/s15327809jls0702_1
https://doi.org/10.1037/0096-3445.129.3.369
https://doi.org/10.1016/0010-0285(84)90014-8
https://doi.org/10.1006/ijhc.
1996.0048
https://doi.org/10.1006/ijhc.
1996.0048
https://doi.org/10.1007/s10758-009-9144-z
https://doi.org/10.1023/A:1011434026437
https://doi.org/10.1023/A:1011434026437
https://doi.org/10.1145/163430.164061
https://doi.org/10.3758/BF03197019
https://doi.org/10.1023/A:1025085023936
https://doi.org/10.3758/s13423-013-0476-2
https://doi.org/10.1023/A:1002935313957
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/papers.shtml
http://ccl.northwestern.edu/papers.shtml
https://doi.org/10.1207/s1532690xci2402_1
https://doi.org/10.1207/s1532690xci2402_1
https://doi.org/10.1023/A:1009421303064
https://doi.org/10.1023/A:1009421303064
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1177/1461445613515359
http://creativecommons.org/licenses/by/4.0/

15

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

APPENDIX

A. Complex Systems Concepts Inventory
	1.	 There is a world made of black and white squares. Each square

has four neighbor squares: one above, one below, one to the
left, and one to the right. The squares all change color from one
time to the next by the following rule: if a square has more than
one black square neighbor, then it will be black. Otherwise, it
will be white. All of the squares change at the same time. If the
world starts with the pattern:

	

	2.	 Wherever there is an A in this world, on the next generation it
grows a B below it (if there is not already one there). Wherever
there is a B, on the next generation, it grows a B to its left and
an A below it (if these letters are not there already). What does
a world that initially looks like this:

	

	3.	 There are four kinds of soda in a city: Yaz, Jot, Mup, and
Fet. The people in the city are very influenced by each other,
and if somebody sees another person drinking a soda, they
will then drink the same soda next time. If every person
drinks a soda every day in a café, but the four soft drinks
start off equally popular, then in three years, what is the likely
outcome?

		 A.	 Everybody will be drinking the same soft drink.
		 B.	 All four of the soft drinks will still be about equally popular.
		 C.	 One of the soft drinks will be drunk by about 70% of the

citizens and the three other soft drinks will be drunk by
about 10% of the citizens.

		 D.	 The four soft drinks will be ordered in their popularity: 40,
30, 20, and 10%.

	4.	 There is a machine that produces 10 spiky blobs per minute.
The machine is the box at the bottom of the scene below. Each
of the spiky blobs pops about 2 min after it has been created.
Once created, the blobs randomly move around the scene.
If more than four blobs fall on the circular sensor at the top
of the scene at the same time, then the sensor turns off the
machine and it stops producing blobs. Whenever there are
fewer than four blobs on the sensor, the machine will be on.
What will happen in the scene over time?

		

		 A.	 There will be more and more blobs in the scene over time,
until the machine or the sensor breaks.

		 B.	 The number of blobs will increase until a certain number
of blobs is reached, and then this will roughly be the stable
number of blobs in the scene.

		 C.	 There will be fewer and fewer blobs in the scene because
they pop after awhile.

		 D.	 As more and more blobs appear in the scene, the sensor
will cause the machine to produce even more blobs, until
the space is completely filled with blobs.

	5.	 The trees in the forest below follow the following rule: they will
catch fire if a tree above, below, left or right of them catches
fire. Diagonally positioned trees (e.g., a tree above and to the
left) are too far away to spread a fire. If the tree in the lower
left hand corner of this forest catches fire, how many trees in
all will eventually catch fire?

		 _______ trees will catch fire in all.

		

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

16

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

		 D.	 If the peak is located in a surprising location, then random-
ness is needed to find the location. Moving randomly is the
only strategy that will work if the peak could be anywhere.

	8.	 Instead of storing the exact pattern of zebra stripes in zebra
DNA, how could cells interact that could cause stripes to
eventually be formed?

	9.	 [continued from #8] In what simple way could this interaction
be slightly altered to create spotted cheetah fur rather than
striped zebra fur?

	10.	Do biological organisms need complex, high-level rules
(i.e., “grow in a spiral pattern”) to form the following intricate
designs?

		

		 (circle one) YES or NO. If so, why? If not, why not?
	11.	Some species of fireflies will begin to synchronize their flash-

ing after spending some time together in an area. Canadian
geese typically fly in a V formation. In what ways might the
formation of these reliable patterns be similar?

B. Version A
	1.	 Wherever there is an A in this world, on the next generation it

grows a B below it (if there’s not already one there). Wherever

	6.	 Two balls rolling the same speed start off heading in random
directions. As they roll, the black ball turns slightly toward the
white ball and the white ball turns slightly toward the black
ball, but neither slows down. What pattern will they end up
forming?

		

		 A.	 Each ball will trace out a circle, but the two circles may be
different.

		 B.	 Both of the balls will trace out the same circle.
		 C.	 Both balls will end up converging on a single point.
		 D.	 The balls will trace out a single line and oscillate back and

forth on this line.
	7.	 The hiker below wants to get to the highest peak on the

mountain range. Unfortunately, it is very foggy and he can
only see a couple of feet in any direction. He decides to walk
in whatever direction will raise him up the highest amount.
What does adding in a bit of randomness to his movements
cause him to do?

		
		 A.	 Adding randomness will make it more likely that he will

end up in a valley between two peaks.
		 B.	 Adding randomness to his movements will make the trip

more interesting for him and will probably help him to stay
motivated.

		 C.	 Randomness in his movements will help him move past
peaks that are not highest overall.

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

17

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

there is a B, on the next generation it grows a B to its left and
an A below it (if these letters are not there already). What does
a world that initially looks like this:

	

	2.	 large group of children live in a neighborhood. Each child
randomly prefers a red, blue, orange, or green toy, so that these
colors are equally preferred across the neighborhood. The
children are constantly moving around the neighborhood and
playing with other kids. As they randomly move about, they
look to see the preferred color of the most other kids around
them. They switch their toy preference to the one preferred
by the most children that they see at any moment. What will
happen to toy preferences over time?

		 A.	 Everyone will eventually come to prefer the same toy
		 B.	 Toy preferences will not shift much at all
		 C.	 Toy preferences will shift back and forth a lot, but the four

toy colors will always return to an equal balance
		 D.	 The toy preferences will have popularities of about 60, 20,

15, and 5%
	3.	 A pattern of ridges and troughs can be formed when varnish

begins to wrinkle and lift off of wood, as shown below. How
can this complex pattern occur?

		

	4.	 You are dropping a set of balls through an obstacle course (as
shown below). You want all the balls to fall all the way through
the obstacles (the black arcs). Why might it be important to
add in a bit of random movement to the balls as they fall?

		

	5.	 Seashells are often formed in very complex spiral patterns. Do
you think the plans for these elaborate spirals are present in an
animal’s DNA like a blueprint? (circle one) YES or NO. If so,
why? If not, why not?

		

	6.	 Some groups of fireflies will begin to synchronize their flash-
ing after spending some time together in an area. How might
large groups synchronize their flashing?

C. Version B

	1.	 There is a world made of black and white squares. Each square
has four neighbor squares: one above, one below, one to the
left, and one to the right. The squares all change color from one
time to the next by the following rule: if a square has more than

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

18

Tullis and Goldstone Modeling Complex Systems

Frontiers in Education  |  www.frontiersin.org March 2017  |  Volume 2  |  Article 4

one black square neighbor, then it will be black. Otherwise, it
will be white. All of the squares change at the same time. If the
world starts with the pattern:

	

	2.	 There are four kinds of soda in a city: Yaz, Jot, Mup, and Fet.
The people in the city are very influenced by each other, and if
somebody sees another person drinking a soda, they will then
drink the same soda next time. If every person drinks a soda
every day in a café, but the four soft drinks start off equally
popular, then in 3 years, what is the likely outcome?

		 A.	 Everybody will be drinking the same soft drink.
		 B.	 All four of the soft drinks will still be about equally popular.
		 C.	 One of the soft drinks will be drunk by about 70% of the

citizens and the three other soft drinks will be drunk by
about 10% of the citizens.

		 D.	 The four soft drinks will be ordered in their popularity: 40,
30, 20, and 10%.

	3.	 Instead of storing the exact pattern of zebra stripes in zebra
DNA, what is a simple rule for how cells interact that could
cause stripes to eventually be formed?

	4.	 The hiker below wants to get to the highest peak on the moun-
tain range. Unfortunately, it is very foggy and he can only see a
couple of feet in any direction. He decides to walk in whatever
direction will raise him up the highest amount. Why might it
be important to add in a bit of randomness to his movements?

		

	5.	 Do biological organisms need complex, high-level rules
(i.e., “grow in a spiral pattern”) to form the following
intricate design? (circle one) YES or NO If so, why? If not,
why not?

		

	6.	 Canadian geese typically fly in a V formation. If there is no
special geese leader, how might they arrange themselves in
these patterns?

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive

	Instruction in Computer Modeling Can Support Broad Application of Complex Systems Knowledge
	Complex Systems Principles are Important, but Difficult to Learn
	Transferring Complex Systems Principles is Particularly Difficult
	Programming Should Promote Complex Systems Transfer
	Current Research
	Intervention 1
	Participants
	Ethics
	Materials
	Procedure
	Day 1—Basic Turtle Commands
	Day 2—Advanced Turtle Commands
	Day 3—Cluster Formation Model
	Day 4—Ising Spin Model
	Day 5—Conway’s Game of Life
	Tests

	Results
	Intervention 2
	Participants
	Content of the Intervention
	Tests

	Results

	Discussion
	Ethics Statement
	Author Contributions
	Funding
	References
	Appendix
	A. Complex Systems Concepts Inventory
	B. Version A
	C. Version B

