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Learners often struggle to grasp the important, central principles of complex systems, 
which describe how interactions between individual agents can produce complex, aggre-
gate-level patterns. Learners have even more difficulty transferring their understanding 
of these principles across superficially dissimilar instantiations of the principles. Here, we 
provide evidence that teaching high school students an agent-based modeling language 
can enable students to apply complex system principles across superficially different 
domains. We measured student performance on a complex systems assessment before 
and after 1 week training in how to program models using NetLogo (Wilensky, 1999a). 
Instruction in NetLogo helped two classes of high school students apply complex sys-
tems principles to a broad array of phenomena not previously encountered. We argue 
that teaching an agent-based computational modeling language effectively combines 
the benefits of explicitly defining the abstract principles underlying agent-level interac-
tions with the advantages of concretely grounding knowledge through interactions with 
agent-based models.

Keywords: complex systems, programming, transfer, agent-based modeling, computational thinking

Providing learners with knowledge that they can apply in new situations and use to solve novel 
problems is a central goal of education. However, learners often fail to apply well-known knowledge 
to unfamiliar problems. Transfer of knowledge, whereby learners apply knowledge learned in one 
domain to a superficially different, novel domain, may be especially difficult for complex systems 
understanding because different instantiations of complex systems often share few, if any, superficial 
features. Here, we propose that instruction in an agent-based computer programming language can 
create complex systems knowledge that is transportable among superficially distant domains. First, 
we address why learning complex systems principles is both important and difficult. Then, we discuss 
why transferring learned complex systems knowledge is especially challenging. Finally, we outline 
eight pedagogical principles that should promote the far transfer of complex systems knowledge and 
discuss our implementation of these principles within a weeklong computer programming interven-
tion in a local high school.

cOMPleX sYsTeMs PrinciPles are iMPOrTanT, BUT 
DiFFicUlT TO learn

Understanding complex systems has become increasingly important in many fields. Complex 
systems are systems made up of many independent units (aka “agents”) whose interaction produce 
higher order emergent behavior [for more details, see Goldstone and Wilensky (2008)]. Complex 
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systems approaches, which enable researchers to study phe-
nomena that have multiple causes and consequences and have 
structure at many different temporal, spatial, and organizational 
levels, have had a large impact on the fields of math and science 
(e.g., Deneubourg et  al., 1986; Forrest, 1991; Dawkins, 1996; 
Epstein and Axtell, 1996) and are having an increasing impact on 
engineering, medicine, finance, law, and management (Jacobson 
and Wilensky, 2006). Despite the widespread influence of com-
plex systems approaches in science and engineering, the tools 
and perspectives of complex systems have had significantly less 
influence in STEM curriculum (Jacobson and Wilensky, 2006).

Incorporating complex systems principles into the STEM 
curriculum is pedagogically promising for three major reasons: 
(1) the same complex systems principle frequently arises across 
superficially distant areas in different guises (e.g., positive 
feedback loops in microphone feedback and in the popularity 
of TV shows), (2) different instantiations of the same principle 
frequently behave very similarly [e.g., Navier–Stokes equations 
can be used to describe and predict wind flow patterns around 
an air foil, water in a damn, or crowds of people fleeing a burning 
building (Hughes, 2003)], and (3) complex systems principles are 
not obvious categories that students will usually learn on their 
own (e.g., positive feedback loops are not conspicuous). Students 
will learn the concepts of dogs, tables, and pencils on their own, 
but may not ever think about water flow in toilet tanks and ther-
moregulatory feathers on a bird as both being instantiations of 
negative feedback systems.

Successfully teaching complex systems has proven to be 
very difficult. Learners struggle to grasp complex systems 
ideas, such as those involved in equilibrium in chemistry and 
evolution in biology (Bishop and Anderson, 1990; Wilensky 
and Resnick, 1999; Penner, 2000, 2001; Charles, 2002, 2003; 
Stieff and Wilensky, 2003), because learners typically employ 
a centralized schema (i.e., a cognitive framework that helps to 
interpret, understand, and explain information). Learners with 
well-developed centralized and “clockwork” mindsets assume 
systematic control whenever they see patterns in the world and 
favor explanations that rely upon leaders, rules, and prearranged 
structures (Resnick, 1994; Resnick and Wilensky, 1998; Jacobson, 
2001). Clockwork mindsets favor reductive understandings (e.g., 
stepwise sequences), centralized control, completely predictable 
agent actions, single causes, static ontologies, and small actions 
only causing small effects (Jacobson, 2001). Learners harbor 
resistance to the counterintuitive concepts of complex systems 
like emergence, self-organization, and probabilistic outcomes 
(Feltovich et  al., 1989; Resnick, 1994, 1996; Wilensky, 1997; 
Wilensky and Resnick, 1999; Chi, 2005). Learners believe that a 
distinct leader must direct agents to create complex aggregate pat-
terns (i.e., leader centralization) or that some outside event must 
start the events’ unfolding (i.e., seed centralization), rather than 
appreciate how complex patterns can arise from simple simulta-
neous interactions among agents (Resnick, 1996). For instance, 
flocking formations emerge from simple rules and interactions 
among birds (i.e., stay close to other birds, fly in the same direction 
as other birds, and stay a certain distance away from other birds), 
yet learners are likely to endorse the idea that an alpha goose 
must lead the rest. Further, learners resist seeing randomness as 

conducive to order and pattern (Goldstone and Wilensky, 2008). 
Learners may not fully endorse self-organization and decen-
tralization because they cannot mentally model complex systems. 
Limited working memory spans may prohibit mental simulations 
involving hundreds of agent-level interactions simultaneously 
(Narayanan and Hegarty, 1998). Similarly, learners struggle to 
correctly connect the agent-level rules to the aggregate pattern 
(Wilensky and Resnick, 1999; Penner, 2000). Learners’ reasoning 
often “slips” between levels, as they simplify complex systems by 
viewing micro- and macrolevels as similar rather than distinct. 
Alternatively, learners may employ “mid-level constructions,” 
whereby small groups are treated as homogeneous entities or a 
small number of individuals are described as interacting within 
small groups, rather than complex patterns emerging from inter-
actions across all of the individual agents (Levy and Wilensky, 
2008). Learners, therefore, often make incorrect inter-level causal 
explanations (or confuse how levels are causally related) because 
ascribing aggregate-level patterns to agent-level interactions is 
complex, multiple levels may compete for limited attention, and 
considering multiple levels simultaneously may require a larger 
working memory than most learners have (Hmelo-Silver and 
Pfeffer, 2004; Chi, 2005).

Research suggests design principles that improve complex 
systems teaching. First, learners benefit from experiencing 
complex systems (Jacobson and Wilensky, 2006). For example, 
role-playing particles in a simulation of diffusion can develop 
improved complex systems schema (Resnick and Wilensky, 1998; 
Colella, 2000). Similarly, students acting out honey bee behavior 
show improvements in complex systems reasoning (Danish, 
2014). Students can also learn about complex systems by using 
agent-based computer models that show numerous distinct 
agents moving and interacting to result in a system that globally 
changes over time (Epstein and Axtell, 1996; Wilensky, 2001; 
Goldstone and Janssen, 2005; Railsback et al., 2006; Epstein, 2007; 
Miller and Page, 2007). Agent-based models perceptually ground 
learners’ understanding by visually displaying results so that 
learners can track the evolution of systems in time. These con-
crete representations often support learning and can even bolster 
abstract understanding (i.e., not tied to the physical instantiation 
or context of the original representation) when designed appro-
priately (Goldstone and Barsalou, 1998; Barsalou, 1999; Cheng, 
2002). Concrete representations are grounded in perceptual and/
or motor experiences and have identifiable correspondences 
between their form and referents, while abstract representations 
may not be tied to specific perceptual experiences.

Grounding in perception and action is at the core of our 
resolution to the discrepancy between fast scientific and slow 
neuro-evolutionary progress. Learners solve new cognitive tasks 
by reusing brain and cognitive functions that evolved for other 
purposes. One of the exciting prospects of teaching complex 
systems using NetLogo is that difficult concepts that would other-
wise be taught using opaque formalisms can be taught in (some-
times literally) graspable ways by taking advantage of adaptive 
perceptual systems. In this context, we consider formalisms from 
math and logic to be more abstract than simulations in which 
system components are represented by visual objects. Formalisms 
are more abstract because their representational forms have a 
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more arbitrary, less perceptually direct connection to the system 
elements that they are intended to model. However, we consider 
a particular mental representation to be neither abstract nor 
concrete in itself; rather, it depends on how the learner construes 
their representation. NeLogo models may give students an effec-
tive new vocabulary for interpreting situations and help students 
to interpret scenarios in new ways. Even though the situations are 
“concrete” in the sense that they are made up of colored shapes 
with particular sizes and locations, learners armed with NetLogo 
primitives can see them as less tied to their perceptual qualities.

The concrete, visual representations of the individual agents in 
a simulation encourage learners to analyze both the agent-level 
and aggregate behavior. Whereas equations that describe the 
macroscopic behavior often obscure agent-level interactions, 
agent-based modeling forms a bridge between agent-based and 
aggregate levels that learners can use to develop a deeper under-
standing of complex system concepts (Resnick, 1994; Wilensky 
and Resnick, 1999; Klopfer et al., 2005; Blikstein and Wilensky, 
2009; Levy and Wilensky, 2009; Sengupta and Wilensky, 2009). 
Further, dynamic manipulation of agent-based models promotes 
hands-on, active exploration of agent-based interactions and 
fosters deep, multilevel explanations of complex phenomena 
(Papert, 1991; National Research Council, 1999). Manipulating 
agent-based models allows learners to form hypotheses about the 
impact of variables on individual and aggregate-level patterns, 
test their hypotheses, and revise their understanding (Cooper 
et al., 2010).

A second principle for instruction that improves understanding 
is to make the complex systems framework explicit. Even though 
some learning environments address complex systems by build-
ing and exploring models without the explicit teaching of “com-
plexity” (Wilensky and Resnick, 1999; Sengupta and Wilensky, 
2009), some research suggests that making the complex systems 
framework explicit helps learning. For example, instruction 
that directly stresses how emergence differs from centralization 
improves complex system understanding and remedies students’ 
lack of a general schema for emergent phenomena (Chi, 2005). 
Stressing how emergence differs from a directed, narrative story 
schema allows students to develop a new schema and connect 
it to existing knowledge (Bereiter, 1985). Making the emergence 
framework explicit has enhanced students’ abilities to apply this 
knowledge broadly (Chi, 2005).

Third, training students to analyze both the “agent-based” 
level (where students think about the behavior of individual 
agents) and the “aggregate” level (where students reason about 
the properties and rates of change of the macrolevel structures) 
supports complex system knowledge (Levy and Wilensky, 2009; 
Berland and Wilensky, 2015). Training in analysis of these two 
distinct levels supports deeper understanding of the meaning that 
emerges from their specific and causal relationships and promotes 
learning of scientific phenomena quickly and effectively (Levy 
and Wilensky, 2008). For example, training in the microscopic 
interactions that happen between molecules and how those 
interactions correspond to macroscopic physical changes results 
in better complex systems knowledge (Levy and Wilensky, 2008).

A different approach to teaching complex systems emphasizes 
analyzing the structural, behavioral, and functional aspects of the 

different agents. Breaking down complex systems into structural, 
behavioral, and functional components may make the implicit 
functions and behaviors of a system explicit and may instantiate 
a schema that can be used to understand a variety of complex sys-
tems (Hmelo-Silver and Pfeffer, 2004). In fact, experts are much 
better at breaking apart complex systems into the structures, 
behaviors, and functions of the interacting individual agents than 
are novices (Hmelo-Silver et al., 2007).

TransFerring cOMPleX sYsTeMs 
PrinciPles is ParTicUlarlY 
DiFFicUlT

Students are usually taught material in the classroom setting 
with the hope that they will apply the newly learned principles to 
novel, real-world situations (Reeves and Weisberg, 1994; Barnett 
and Ceci, 2002). However, transfer, especially involving complex 
systems knowledge, has proven difficult to achieve. New knowl-
edge of complex systems can be very fragile and revert to non-
complex ways of thinking when applied to novel situations (e.g., 
Day et al., 2010; Day and Goldstone, 2011). Across many different 
paradigms, learners fail to spontaneously transfer knowledge 
to new situations (Gick and Holyoak, 1980, 1983; Detterman, 
1993). Advocates of “situated learning” argue that knowledge is 
grounded in the concrete, contextualized situation in which it was 
learned, and decontextualizing this knowledge in order to apply 
it across situations is impossible (Lave, 1988; Brown et al., 1989).

Superficial similarity often drives reminding, such that learn-
ers are highly influenced by a previous solution of a problem if 
it involves the same superficial “cover story” (e.g., both problems 
involve race cars) (Ross, 1984, 1987; Tullis et  al., 2014). When 
surface features differ across events, even if the deep structure is 
similar, learners fail to notice the applicability of a prior experi-
ence in new contexts (Hayes and Simon, 1977; Gick and Holyoak, 
1980, 1983; Spencer and Weisberg, 1986). If learners notice the 
structural similarity between situations, or are told to use the 
prior situation to help solve the novel problem, most learners cor-
rectly apply their knowledge to solve the new problem (Gick and 
Holyoak, 1980, 1983). Transfer, then, seems to be most impeded 
by a lack of “noticing” the applicability of prior knowledge in new 
situations (Lobato, 2012).

Transferring complex systems knowledge appropriately may 
prove to be particularly difficult, as complex systems phenomena 
rarely share superficial features. For instance, similar complex 
systems models have been recruited to explain predator-prey 
dynamics and business cycles, and these two situations share 
few superficial features (Ball, 1999). When the phenomena 
share few superficial features, students are unlikely to notice the 
underlying structural principles that connect complex systems. 
Consequently, transferring across complex systems phenomena 
has proven very difficult (Wilensky, 1996).

Research provides hints about what does and does not foster 
appropriate transfer. For example, learning pure abstract and 
logical formalisms does not consistently foster far transfer. 
General formalisms provided by algebra and logic might be 
expected to be powerful because they can be applied across an 
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TaBle 1 | summary of the programming mechanics and corresponding 
cognitive benefits of teaching an agent-based model.

Features that describe 
construction of agent-
based models

cognitive benefit

Integrates coding with 
modeling

The combination of abstractness and 
concreteness supports transfer

Decomposes goals into line-
by-line commands

Problem decomposition skills are practiced and 
basic underlying structure is uncovered

Codes only agents and their 
interactions

Learners separate microlevel rules from 
macrolevel outcomes

Facilitates parametric 
variation by reducing 
cognitive load

Learners easily identify agent-level causes of 
different aggregate outcomes

Requires creation of an 
external artifact

Learners are more active and engaged

Provides new languages and 
methods of thinking

Development of new cognitive tools change how 
learners perceive complex systems

Eliminates irrelevant 
dimensions

Focused models showcase core components of 
systems while minimizing superficial features

Fosters comparisons 
between models

Learners experience multiple, superficially distinct 
models, which fosters abstraction of deep 
structure
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infinite number of situations; however, the connection between 
specific scenarios and equations is typically difficult for students 
to notice (Ross, 1987, 1989). Therefore, students who learn 
abstract formalisms often fail to consistently apply their knowl-
edge to new situations.

However, student interactions with physical elements during 
modeling has produced transferable knowledge, especially when 
the models are relatively idealized (Goldstone and Sakamoto, 
2003; Goldstone and Wilensky, 2008). For example, students who 
learned about “competitive specialization” in a situation involving 
abstract ants and food transferred that knowledge to a situation 
involving neurons learning to differentially respond to patterns 
(Goldstone and Son, 2005). Similarly, student participation in 
classroom simulations involving complex systems has shown 
some ability to create transferrable knowledge (Wilensky and 
Abrahamson, 2006). When learners view events as manifestations 
of general principles, this learning prepares them to see future 
events in terms of the same basic principles and they can apply 
their knowledge to the new events (Goldstone and Sakamoto, 
2003; Goldstone and Son, 2005). Further, providing multiple, 
different cases of the same principle can allow learners to identify 
the deep principles involved, view the events as manifestations of 
general principles (Bransford and Schwartz, 1999), and mentally 
discard the superficial characteristics (Gick and Holyoak, 1980, 
1983; Gentner, 2005).

Transfer can be enhanced through training that alters stu-
dents’ perceptions of novel situations. Through well-designed 
experiences, the perceived similarity between instances 
can be adapted so that formerly dissimilar situations seem 
similar (Goldstone and Wilensky, 2008; Goldstone et al., 2011). 
Subjective similarities between situations are malleable rather 
than fixed. Experience and training can give learners new tools 
to interpret novel situations and ultimately shift their percep-
tions of similarity. Transfer can best happen when students’ psy-
chological spaces become tailored so that superficially dissimilar 
situations that instantiate the same complex systems principle 
become more closely related. For example, prompts can help 
students see abstract commonalities between situations that 
they would have otherwise missed (Gentner, 2003). Likewise, 
experience sorting objects into task or culturally relevant cat-
egories changes learners’ assessments of similarities (Goldstone, 
1994; Livingston et  al., 1998; Roberson et  al., 2000). Further, 
long-term experience shifts judgments of similarities among 
problems, as experts shift from relying upon superficialities to 
structural components (Chi et al., 1981).

PrOgraMMing shOUlD PrOMOTe 
cOMPleX sYsTeMs TransFer

Programming and computational modeling have been used as 
effective tools for learning difficult science and math concepts 
(diSessa, 2000; Sherin, 2001; Wilensky and Abrahamson, 2006; 
Kynigos, 2007; Guzdial, 2008; Blikstein and Wilensky, 2009). 
Here, we examine whether high school students can acquire 
complex systems knowledge through computer programming 
training and apply it to domains far beyond those involved in 

training. Because spontaneous far transfer has been difficult to 
achieve and transfer as a central goal of education, pedagogical 
methods that demonstrate far transfer are of great importance 
to the learning sciences research community (Jacobson and 
Wilensky, 2006).

Teaching an agent-based modeling computer programming 
language may both impart complex systems knowledge and foster 
transferable knowledge across superficially distant instantiations 
of complex systems for several reasons, which are summarized 
in Table 1. First, programming an agent-based model combines 
abstraction with concrete grounding (i.e., it combines formal 
logical rules with perceptual, physical representations); this com-
bination has been shown to help foster far transfer. Programming 
necessitates abstraction, as programmers must abstractly define 
variables and routines before a simulation can run. However, 
learners also must interact with the concrete representation of 
the system in order to build up, debug, and explore the program. 
Interactions with the spatiotemporal visual representations 
can ground learners’ knowledge. Programming an agent-based 
model, then, combines the formal abstractions of programming 
with the physical, concrete instantiation of modeling in order 
to produce transportable knowledge. For example, when learn-
ers are programming a complex systems representation of the 
Ising model of ferromagnetism in statistical mechanics, they 
must first code the abstract rules that govern the interactions 
among neighboring atoms. In an Ising model, each atom has a 
directional magnetic spin (i.e., clockwise or counterclockwise) 
that is influenced by the direction of the magnetic spins of the 
atoms around it. In NetLogo, the two basic rules in an Ising model 
are as follows: (1) each patch (which represents a single atom) 
starts with a random state of blue or yellow (which represents a 
clockwise or counterclockwise spin) and (2) each patch counts 
how many of its eight neighboring batches are blue. If more 
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than four of its neighbors are blue, the patch turns blue; if less 
than four of its neighbors are blue, the patch turns yellow. Step 2 
repeats indefinitely, and the patches typically form a stable color 
configuration. When students are finished with the abstract cod-
ing, they can experience the visual and temporal representation 
of spin arrangements and spin changes as graphically depicted by 
the colors of patches in NetLogo (Wilensky, 1999a), and shown 
in Figure 1. Modelers receive both the benefits of grounding and 
abstracting.

Second, computer programming develops the practice of prob-
lem decomposition, whereby learners must represent complex 
programs simply. Programmers must break down complicated 
systems into simple line-by-line computer commands [but see 
Palumbo (1990)]. Decomposing a situation into simple line-by-
line commands forces learners to see the underlying structure of 
a problem. These simple commands may be used across different 
programs and situations, such that problem decomposition helps 
programmers identify the structural similarities between super-
ficially distant phenomena and thereby adjust their constructs 
to emphasize similarities across complex systems principles. In 
fact, programmers often borrow code from one program to use 
in a structurally similar new program. Computer programming 
training may allow learners to apply their knowledge broadly 
because they notice the shared, fundamental principles that gov-
ern superficially distant situations. For example, when learners 
code the Ising model of an array of atoms with magnetic spins that 
mutually influence one another, they may realize that magnetic 
spins of atoms are aligned through interactions among neighbors. 
If learners also program a model of geographical distributions 
of two-party political opinions, they can easily notice that the 
structure of both models (i.e., the code involved) relies solely 
upon interactions among neighbors. Noticing this common 
structure can allow learners to generalize a schema and support 
broad application of it.

Third, programmers must explicitly create agents and their 
interactions. By clearly articulating and instantiating objects and 

their relations (without providing aggregate-level commands 
or creating a special object that leads the others), learners are 
encouraged to recognize how the complex patterns that form in 
their simulations do not require complex, aggregate-level rules 
(Wilensky, 2001; Wilensky and Reisman, 2006). Students often 
do not appropriately reason about causal structures between 
multiple levels; in fact, “slippage” between different levels is one 
impediment to complex systems understanding (Wilensky and 
Resnick, 1999). Agent-based programming forces the learners to 
differentiate between the simple agent-level rules, which they have 
programmed, and the complex aggregate behavior, which they 
have witnessed (Blikstein and Wilensky, 2004). Learners may be 
more likely to correctly distinguish between the levels when they 
have programmed only agent-level interactions but perceive the 
resulting macroscopic effects. Learners may understand they are 
programming rules for individuals and also observe that large-
scale patterns emerge “for free.” For example, when programming 
the Ising model, learners only code rules for individual patches, 
yet various patterns of large blocks of color quickly emerge. 
Learners know the simple interactions among neighbors that they 
programmed, yet observe a novel and unanticipated structured 
arrangement that occurs at the population level.

Fourth, agent-based models reduce the cognitive load placed 
upon students who are learning complex systems by computing 
the complex interactions among agents and presenting the results 
in a helpful visual modality. Learners do not need to use cognitive 
resources to mentally simulate the interactions among hundreds 
of independent agents because the program computes these 
quickly and easily. The learner can offload the mental burden of 
simulating the complexity and variability of a complex system 
to the computer program (Cooper et  al., 2010). Learners can 
enact countless simulations by manipulating parameters to test 
hypotheses, allowing the program to compute the interactions, 
and observing the results. This allows learners to connect aggre-
gate behavior with the relevant agent-level variables. Further, 
agent-based models easily illuminate how complex patterns 
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arise in ways that other methods (e.g., differential equations) 
cannot (Penner, 2000; Sherin, 2001). For example, agent-based 
models can clearly present how complex patterns arise by visu-
ally displaying the individual agents and their interactions (Scaife 
and Rogers, 1996). In this manner, agent-based models extend 
students’ ability to perceive and encode complex systems, even 
when the complex phenomena may be otherwise unobserv-
able (Quellmalz et  al., 2012). For instance, learners who have 
programmed the Ising model can easily modify the temperature 
and variability parameters in order to observe how the overall 
patterns change. The NetLogo program does the complex work 
of simulating the individual interactions among thousands of 
turtles, and the learner can reflect on why the patterns change 
with changes in variables.

Fifth, students are more likely to build new knowledge when 
they actively create external artifacts, even when those artifacts are 
virtual. By creating an agent-based model, learners are engaged 
in an active, hands-on process and active processes foster deep 
understanding (National Research Council, 1999).

Sixth, computer modeling languages offer new cognitive tools 
for describing complex systems phenomena (Goldstone and 
Wilensky, 2008). Teaching children relational language, language 
that emphasizes relations between objects, prompts them to 
notice abstract commonalities (Loewenstein and Gentner, 2005); 
teaching students a new computer modeling language may shift 
how they view and describe situations. A high-level program-
ming language may allow learners to see connections among 
various complex systems that they could not perceive before 
training, which should help them apply their knowledge broadly. 
For instance, in the Ising model, students learn to use the code 
“sum [spin] of neighbors4.” This code may give students new 
tools and language (e.g., “neighbors”) to analyze and describe the 
fundamental causes of complex systems.

Seventh, under the assumption that the computational 
programming constructs acquired by students will shape their 
mental models, student-generated agent-based models can 
eliminate irrelevant distractions and focus student attention on 
central principles of complex systems. For example, variations in 
elements’ appearances can be eliminated in order to focus atten-
tion on the interactions among the agents, rather than absolute 
properties of the agents themselves (Goldstone and Son, 2005). 
The agent-to-agent interactions can be made visually salient, 
while the distracting, superficial details can be downplayed. By 
eliminating irrelevant characteristics in the models (e.g., shape 
of the agents), students will be able to form more general mental 
models that apply to a broader array of novel situations. For 
example, in the Ising model, the spins of individual atoms are 
simply represented by colors. This minimalistic representation 
eliminates irrelevant distractions and allows learners to focus 
on the overall emergent patterns; plus, a similar abstract color 
arrangement can also be aptly employed in the geographic model 
of political party opinions.

Finally, teaching programming allows students to interact 
with several different models of complex systems. Learners who 
encounter multiple varied exemplars of the same structural 
principles begin to mentally discard the superficial character-
istics and focus on the deeper principles underlying all of the 

exemplars (Gick and Holyoak, 1980; Catrambone and Holyoak, 
1989; Bransford and Schwartz, 1999). Interactions with multiple 
examples of a deep principle allows learners to identify the core, 
consistent deep principle that underlies the varied instantiations 
because learners discard inconsistent superficial features across 
examples. By modeling several different exemplars of complex 
systems phenomena, students’ identification of the structural 
principles underlying them should be promoted. For example, 
learners who build both the Ising model and the model of geo-
graphical distributions of two-party political opinions should 
be able to identify the common structure between these two 
superficially distinct instances, namely, that spatially clustered 
regions of patches with the same property arise when each patch 
has tendency to adopt the same property as most of its neighbors.

In the quasi-experiments reported here, we implemented a 
NetLogo training program across two high school classes. We 
relied upon the eight principles outlined above to create 1 week of 
instruction centered on coding and creating models in NetLogo. 
Our main question was whether training in NetLogo program-
ming would support student understanding of complex systems 
and allow them to accurately answer novel complex systems 
questions.

cUrrenT research

intervention 1
In the first study, we tested the idea that teaching an agent-based 
modeling language can foster application of complex systems 
knowledge across superficially different situations (Wilensky and 
Reisman, 2006; Blikstein and Wilensky, 2010). We taught a high 
school class how to program agent-based models in NetLogo 
(Wilensky, 1999a) for 1 week. During the training, students cre-
ated several different agent-based models that illustrated complex 
systems concepts such as positive and negative feedback loops 
and self-organized cluster formation. Students took a complex 
systems knowledge inventory before and after the NetLogo 
training, and we measured how their knowledge changed and 
analyzed their programs.

Participants
Twenty-eight students participated as a part of the “Computer 
Science: Principles” course at a local public high school. Computer 
Science: Principles is a class that stresses computational thinking 
and abstraction, and students took the class as an elective. It was 
the first time that the class was taught at this high school. Fourteen 
students were seniors, 12 were juniors, and 2 were sophomore. 
Only five participants were female. The high school was located 
in a mid-size city, 80% of its students were white (with the biggest 
minority—Hispanic—comprising 6% of the students), and 21% 
of its students qualified for free or reduced lunch. Our agent-
based modeling intervention occurred toward the end of their 
school year, and addressed one of the course’s core goals—using 
models and simulations to generate new understanding and 
knowledge. The class lasted 65 min long and met 5 days a week. 
Most students had very little or no experience writing code; none 
had experience writing code in NetLogo.
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Ethics
The interventions in this manuscript were ruled Exempt under 
Category 1 from the Indiana University IRB, as it only involved 
research conducted in established or commonly accepted educa-
tional settings, involving normal educational practices.

Materials
We chose to use NetLogo (Wilensky, 1999a) as our agent-based 
modeling language because it enables learners to write mean-
ingful models in a short amount of time with little training and 
without focusing on (and struggling with) syntax. NetLogo 
is a free, domain-independent modeling language that can 
represent thousands of basic agents (i.e., turtles, which can 
move, and patches, which are stationary) spatially, dynami-
cally, and visually. It has powerful capabilities for modeling 
wide-ranging phenomena, and it has a large built-in library of 
models that can be used as code examples. Students can simply 
specify how the turtles and patches behave and interact with 
one another, and then observe the aggregate-level patterns that 
visually evolve over time. NetLogo has been used widely in both 
educational and research contexts (Blikstein and Wilensky, 
2004; Abrahamson et al., 2006; Sengupta and Wilensky, 2009). 
However, in much of the prior research, learners interacted 
with prebuilt NetLogo simulations designed to improve stu-
dent understanding on specific target concepts [e.g., GasLab 
(Wilensky, 1999b), Connected Chemistry (Stieff and Wilensky, 
2003; Levy and Wilensky, 2009), BEAGLE (Rand et al., 2007), 
and the NEILS project (Sengupta and Wilensky, 2009)]. The 
minimal existing literature on training computer modeling 
skills has shown that learners can effectively create a computer 
model to represent emergent complex systems building from 
simple principles (Wilensky and Reisman, 2006). Similarly, 
students can modify existing models, and doing so can shift 
their thinking about complex systems (Blikstein and Wilensky, 
2010). Through modifying complex systems models, students 
developed fewer, simpler rules that governed relevant complex 
systems phenomena, which enabled them to better understand 
and extend models with new rules. The current research extends 
the existing research in two significant ways: (1) we trained an 
entire classroom of students to create their own programs and 
complex systems models in NetLogo and (2) we measured far 
transfer among complex systems knowledge. We also developed 
and employed a complex systems inventory to assess learners’ 
complex system knowledge, and this is located in Section 
“Complex Systems Concepts Inventory” in Appendix.

Procedure
The first author acted as the instructor throughout each interven-
tion. Each day’s lesson had a similar structure. First, some review 
of the previous day’s programming commands was conducted 
(except on the first day). Second, the instructor introduced new 
programming commands that were needed for the day’s assign-
ment by projecting some sample code onto a screen in the front of 
the classroom. Students experimented with the new commands 
on their own computers as the commands were introduced. 
Students predicted how changing the commands would alter 

the model’s output, and in doing so, engaged in a hypothesis/test 
routine. Third, the day’s modeling project was given to students. 
The project explicitly detailed the specific rules that the indi-
vidual turtles or patches needed to follow, without revealing what 
complex aggregate patterns could emerge. Students individually 
wrote their models with NetLogo on personal computers, but 
often asked their neighbors (or instructor) for help. Within each 
project, students were also given “challenges,” which involved 
more sophisticated adaptations of their original projects. These 
“challenges” were given so that students who finished the basic 
project quickly would continue to be engaged, while the other 
students finished the basic project. The instructor walked through 
the class during this time to make sure students were on task 
and helped students solve coding problems. Students were very 
interested and active during the individual project times; most 
students were motivated to solve the challenge problem. For the 
last 10 min of each class session, the instructor, with participation 
from the students, wrote one possible method (out of infinite dif-
ferent possible methods) of coding the program and explained 
why some alternatives would not work. During this wrap-up 
time, the instructor summarized what commands were covered. 
The instructor questioned students about the individual-level 
commands they coded and the subsequent aggregate-level 
behavior they witnessed. Finally, students emailed their code to 
the instructor to earn participation credit for the day. The content 
of the individual days is detailed below.

Day 1—Basic Turtle Commands
Students first took the pretest. Then, in order to motivate and 
capture the attention of students, an example NetLogo program 
that used the computer’s camera to sense motion was introduced. 
In the program, individual butterflies interacted with the real-life 
motion of a student volunteer, which was displayed on Netlogo’s 
graphical window. Next, the basics of NetLogo were described, 
including the capability of representing individual turtles (inde-
pendent mobile agents) and patches (stationary sections of the 
background). Finally, a few basic turtle and patch commands 
(e.g., creating and killing turtles, assigning colors and shapes, 
assigning specific x and y coordinates to turtles) were described. 
Students created very simple programs that created turtles in 
various colors and shapes.

Day 2—Advanced Turtle Commands
On their second day, students created a new program from scratch 
that allowed the movement of turtles to be controlled through 
the model’s interface. They learned how to utilize control flow 
commands (e.g., if, ifelse) in NetLogo’s language. Further, they 
learned how to create variables (e.g., turning angle and speed) 
that could be adjusted once the program had started and how to 
create switches that hide or show the individual turtles. For an 
extra challenge, some students created a routine that made the 
turtles move toward the on-screen location where the mouse was 
clicked.

Day 3—Cluster Formation Model
The instructor introduced commands that allowed turtles 
to see if there were any other turtles ahead of them. Students 
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programmed a model that randomly distributed turtles across 
the patches. Turtles were then programmed to look ahead of 
them by an adjustable distance (and angle). If a turtle saw another 
turtle in front of it, it moved toward the other turtle. If a turtle 
did not see another turtle, it did not move. Then, all the turtles 
rotated a small, random amount to the left or right. The model 
illustrated how a few simple rules caused several small, dense 
groups of turtles to form from the initially randomly spaced 
turtles, as shown in Figure 2. Further, the model illustrated the 
need for small random changes in the turtles’ headings, as these 
clusters only formed if some randomness in turtles’ headings 
was included.

Day 4—Ising Spin Model
Students learned the commands needed for having patches count 
the number of their neighbors with a certain property. In day 
4’s project, students created an Ising model that represented the 
spatial arrangement of magnetic moments associated with the 
spins of atoms. First, patches were randomly assigned one of two 
colors, which represented the clockwise or counterclockwise elec-
tron spin of an atom. When the model started, the patches would 
switch their color to the color favored by the majority of their 
neighboring patches. Over successive rounds of color updating, 
this would lead to short-lived cascades of color switching because 
once one patch changed its color, it might change the balance 
of spins for a neighboring patch. Students then incorporated a 
variable amount of noise into the model, whereby the individual 
patches only probabilistically assumed the color of the majority 
of their neighbors. Students interacted with the simulation to 
see how different spin patterns emerged based upon the initial 
density of colors and the amount of randomness in the model. For 
an extra challenge, students coded the patches to be influenced 
by eight random patches, rather than their eight immediately 
surrounding neighbors.

Day 5—Conway’s Game of Life
No new commands were introduced on day 5. Similar to day 4, 
students programmed a world where each patch was impacted 
by the number of neighboring patches with a certain variable. 
Specifically, students programmed J. H. Conway’s game, Life, 
which has three simple rules: (1) a living patch with two or 
three alive neighbors remains alive, (2) a dead patch with three 
neighboring alive cells becomes alive, and (3) all other alive 
patches become dead. The three simple rules can lead to complex, 
self-sustaining or apparently chaotic patterns and provide con-
siderable potential for exploring emergence (Penner, 2000; Beer, 
2014). Students programmed the model so they could click on 
individual patches to switch them between being alive and dead. 
Finally, students took the posttest.

Tests
Students were administered a 11-question Complex Systems 
Concepts Inventory (CSCI), as shown in Section “Complex 
Systems Concepts Inventory” in Appendix, on the first and last 
days of the intervention. Students were not informed that they 
would take the same test at the end of the week. The test covered 
a wide array of principles central to complex systems under-
standing (e.g., dynamic equilibrium, non-linear influences, and 
emergence). Importantly, in order to test the ability of learners 
to transfer complex systems knowledge, the content of the test 
questions was superficially unrelated to the content covered 
during the training. The domains covered during the train-
ing were largely abstract, while those on the tests were mostly 
applied, natural phenomena. Test questions included diverse 
domains that naturally and intrinsically instantiated principles 
of complex systems (e.g., fireflies flashing in synchrony, spiral 
formations of pine cones), with different domains than those 
covered in class. It included seven multiple-choice and four short 
answer questions and was developed by the authors based upon 
preliminary complex systems research. Students earned 1 point 
for each multiple-choice question correct. Students earned 0, 1/2, 
or 1 point for each of the short answer questions, based on the 
depth and correctness of their answers. If students mentioned 
that the observed complex patterns can arise from a simple rule, 
they earned half a point. If students explicitly described what the 
underlying rule was (e.g., fireflies look to their neighbors and 
adjust the timing of their flash to be in greater synchrony with 
their neighbors), students earned a full point.

results
Students seemed very engaged throughout the training, and many 
students attempted to complete the extra “challenge” projects. 
Students’ scores on the pre- and posttests are displayed in the 
left panel of Figure 3. Students earned more points [M = 5.46 
(SD  =  2.05)] on the posttest than on the pretest [M  =  3.93 
(SD = 1.88); t(25) = 4.54, p < 0.001, Cohen’s d = 0.91]. Twenty-
one (out of 26) of the students (81%) showed improvement from 
the pretest to the posttest. The log odds of a correct answer on 
each question were predicted using a multilevel logit model. The 
model included the fixed effect of pretest or posttest and included 
random intercepts for subjects and items. The model was fit in the 
R software package (R Core Team, 2008) with Laplace estimation 
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using the lmer() function of the lme4 package (Bates et al., 2008). 
The beta weights (and corresponding t values) of the model 
are shown in Table  2. This model of performance shows that 
students answered significantly more questions correctly on the 
posttest than on the pretest. The odds of correctly responding to 
a question after training were 1.15 times greater than correctly 
answering before training.

Students’ answers to the short response questions revealed 
a significant shift in thinking across the week of training. 
Students initially invoked the centralized, deterministic mindset 
to describe several complex natural phenomena. For example, 
when describing how zebra stripes and cheetah spots can 
form, students often suggested that high-level master plans 
(i.e., genes) were needed to form complex patterns. Jason sug-
gested that DNA is needed to specify the spiral shaped pattern 
in pinecones “because the designs are complicated.” Similarly, 
Calvin responded, “the individual traits that create the spirals 
are part of the DNA.” To describe the appearance of cheetah fur, 
Marcus answered “some genes are dominant in certain places.” 
Jacob described that emergent patterns of lightning bugs flashing 
in synchrony and birds flying in V patterns arise because “it is 
inherent in their genes.”

After training, students focused almost all of their explana-
tions on the agent-level interactions that could underlie the 
complex aggregate-level patterns. For example, when describing 
how color patterns form on animal fur, Beth answered, “the cells 
want to be different than the ones next to them” and Will wrote 
“the cells avoid their neighbors’ choices.” When describing how 

the spirals of pinecones form, Erol explained that “it only takes 
simple rules to create a pattern” and Jacob stated “sometimes 
simple commands result naturally in complex patterns.” Even 
when describing the similarities between lightning bug flashes 
and the V pattern of flying geese, students ascribed the aggregate-
level patterns to agent-level interactions. Abe suggested “they 
both observe their neighbors’ motions and make similar ones 
themselves.” Jacob conjectured “it might change what it is doing 
depending on what the organism next to it is doing.” Trey wrote 
“they arise from neighbors communication – that’s what makes 
them similar.”

Students sometimes broke down the problems into pseudoc-
ode to describe the agent-level interactions that could result in 
complex aggregate-level patterns. For example, when describing 
how zebra stripes can arise, Nathan wrote “if cell = black, set all 
neighbors white.” To describe the spiral pattern in pinecones, 
Abe answered, “if cells are told to grow out and clockwise from 
their parent, then they would hopefully form a spiral, just from 
a simple rule.”

intervention 2
We repeated the intervention with a new class of students at 
the same high school the following year. Instead of answer-
ing the same questions on the pre- and posttest, as in the first 
intervention, students involved in this intervention answered 
different questions before and after training. While this design 
gives less statistical power and suffers from more statistical 
noise than Intervention 1, any improvement from pre- to post-
tests cannot be driven by re-exposure to the same questions in 
Intervention 2. We measured the change in performance across 
two different versions of a complex systems inventory to assess 
the development of complex systems understanding. Other 
than the tests, the intervention followed the same procedure 
as Intervention 1.
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Participants
Fifteen high school students enrolled in the “Computer Science: 
Principles” course participated; three students were absent at the 
time of the posttest and one student was absent for the pretest. 
Eight students were seniors and seven students were juniors. Six 
were female and nine were male.

Content of the Intervention
The content of the intervention was the same as in the first year.

Tests
Two versions of a complex systems inventory were developed 
based on the results from the first intervention and are found 
in Appendices B and C. Each version included five short answer 
questions and one multiple-choice question that probe the same 
complex systems knowledge and abilities. The superficial fea-
tures of the questions varied between test versions, but the deep 
structure of the problems were consistent. For example, on Form 
A, students were asked how geese form V patterns when flying, 
while on Form B, students were asked how groups of fireflies 
synchronize their flashing. While these are superficially distinct 
questions, both answers are that the animals change their behavior 
based upon the behavior of their neighbors. In this way, questions 
about each specific topic were yoked to each other across versions 
of the test. Students were randomly assigned to version A or B at 
the pretest. After training, all subjects completed the other ver-
sion of the inventory. Students’ answers were graded blind to their 
condition, and answers were awarded either full or no credit. If 
students identified the complex systems principle associated with 
the question (e.g., emergence of complex patterns from simple 
local interactions), they earned full credit for the question.

results
As in the first year, students seemed very excited and engaged 
throughout the weeklong training. Individual student perfor-
mance is displayed in the right panel of Figure 3. Students earned 
marginally more points [M = 2.67 (SD = 1.11)] on the posttest 
than on the pretest [M = 1.57 (SD = 0.73); t(10) = 2.06, p = 0.06, 
Cohen’s d =  0.65]. Only 11 students were present for both the 
pre- and posttest, which limits the power of a traditional paired 
t-test. We also used a multilevel model to compare pre- and 
posttest performance because multilevel models can provide 
us with more power. The log odds of a correct answer on each 
question were predicted using a multilevel logit model, as in 
Intervention 1. The model included the fixed effect of pretest 
or posttest and included random intercepts for subjects, the 12 
individual questions, and the 6 fundamental complex systems 
principles that were repeated across test versions. As in the 
first intervention, the model was fit in the R software package  
(R Core Team, 2008) with Laplace estimation using the lmer() 
function of the lme4 package (Bates et al., 2008). The beta weights 
(and corresponding Z values) of the model are shown in Table 3. 
This model of performance shows that students answered 
significantly more questions correctly on the posttest than on 
the pretest. The odds of correctly responding to a question after 
training were 2.51 times greater than correctly answering before 
training.

Similar to the first intervention, students’ answers to the short 
response questions revealed a significant, medium sized, shift in 
thinking across the week of training. Students initially invoked 
the centralized, deterministic mindset to describe several com-
plex natural phenomena. For example, before the intervention, 
when describing how fireflies could synchronize their flashing, 
Avery wrote “the fireflies could sync by having a central firefly 
work as a timer, using external stimuli or possibly by using a form 
of internal clock.” Sam invoked the idea of DNA to describe how 
animals form seashells in complex spiral patterns, when she wrote 
“how else would the seashell make such complex spiral patterns?” 
Similar, Holly explained animal stripes by arguing that “cells at 
specific locations code for only 1 color. However, the cells can be 
dispersed in different patches, which results into the making of 
stripes.”

Students’ thinking shifted after training to invoke ideas of 
repeated simple patterns and decentralization. To describe how 
seashells can be formed in complex spiral patterns, Michael wrote 
“it simply tells the next part of the shell to be bigger and at a cer-
tain angle.” Similarly, Avery explained the spirals in pinecones by 
stating, “it is just the algorithm repeated over and over.” Students 
also invoked the importance of agent-agent interactions in the 
development of complex systems. To describe how fireflies can 
synchronize their flashing, Ethan wrote “they may be influenced 
by others’ patterns over a certain amount of time and larger 
groups would hold more influence” and Sam wrote “they look at 
others.” Garrett described how geese can form a V pattern while 
flying by arguing the rule is to “follow a goose in any direction of 
a cone around itself and a v pattern will emerge.”

DiscUssiOn

Students’ ability to apply complex systems knowledge across a 
wide variety of situations improved by learning an agent-based 
modeling language. A brief 1-week intervention which targeted 
NetLogo programming and modeling skills boosted students’ 
scores on a CSCI, even though the training intervention covered 
models in different domains than those tested. Whereas prior 
interactions with agent-based models have sometimes resulted 
in situated learning [Day et al., 2010; Day and Goldstone, 2011; 
but see Wilensky (1996) and Goldstone and Son (2005)], the cur-
rent intervention based on computational modeling produced 
broadly applied knowledge of the core concepts of complex sys-
tems. In fact, both interventions produced medium to large sized 
improvements (Cohen, 1988) in students’ learning that lasted 
across multiple days. Students utilized the centralized mindset 
less and agent-level interactions more often to describe complex 
patterns following the intervention.

The specific combination of agent-based modeling and pro-
gramming supported students’ ability to transfer their complex 
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systems knowledge to distant new situations. The intervention 
supported application of complex systems knowledge broadly for 
many reasons. First, learners developed computational formal-
isms sufficient to express several different models (through learn-
ing a formal programming language), but also experienced the 
concrete grounding of the visual representation of the outcome 
(through running the agent-based model). Providing learners 
with yoked concrete and formal representations likely led to 
transportable knowledge. Second, students also seemed to gain 
new tools to analyze the novel situations. After training, some 
students used a spontaneously created pseudocode to describe 
new natural phenomena. Gaining this new expressive language 
apparently enables learners to connect superficially distinct situ-
ations that would be implemented using similar code. Further, 
students adopted certain, specific linguistic forms (e.g., “complex 
patterns”) when describing phenomena during the posttest. 
Having new phrases, at minimum, shows that students have 
acquired “prospective indexicals” (Goodwin, 1996) that can ease 
learning of the concept in the future (Zemel and Koschmann, 
2014). Learners likely would not have experienced the same 
cognitive benefits from using ready-made models because they 
would be less likely to internalize formalizations of rules, gain 
new language to describe phenomena, and connect the abstract 
rules to concrete outcomes.

Learners also experienced multiple, varied examples of emer-
gent phenomena throughout the week. Learners saw complex 
spatial arrangements emerge from uncomplicated rules in the 
Cluster Formation model, the Ising Spin model, and Conway’s 
Game of Life. While the superficial features of these models vary 
drastically, the underlying principles of macroscopic patterns 
emerging from a few simple rules governing the local interactions 
of basic agents remained consistent.

While evidence for far transfer has historically been con-
troversial, we believe that this intervention suggests a sound 
pedagogical method for promoting transfer of complex systems 
principles. We argue transfer can occur when well-designed 
activities increase the perceived similarity of situations, trans-
forming once dissimilar situations into instantiations of the 
same underlying principles. Moreover, while the term “princi-
ple” often connotes abstract and purely formal knowledge, the 
concrete implementation of the formal programming language 
into Netlogo code provides a cognitively accessible inroad into 
construing phenomena in transferable fashion. Experience 
with programming changes the perceived similarity among 
situations because it gives learners a new tool for analyzing 
situations (i.e., a programming language), focuses learners’ 
attention on the deep structure, and forces them to engage with 
the essential rules sufficient for generating phenomena. Further, 
modeling different projects gave students experience with mul-
tiple varied systems embodying the emergence principle and 
likely primed their ability to see vastly different natural systems 
as embodying the same principle. This agent-based modeling 
training, then, likely made distant things seem more similar, 
and allowed learners to use knowledge gained in a model 
of electron spin when answering a question about a zebra’s 
stripes, for example. Through the intervention, students began 
to identify important, meaningful components of a complex 

system, and connect the commonalities between superficially 
distinct events. This intervention adds to the literature that 
suggests how students can transfer scientific principles across 
superficially dissimilar domains (Simon, 1980; Bransford and 
Schwartz, 1999; Jacobson, 2001).

Programming, even when not coupled with agent-based 
models, may provide extensive benefits for cognition. Some 
have argued that computational thinking can foster broad 
cognitive gains because it because it provides a general analytic 
approach to problem solving, which involves problem represen-
tation, decomposition, abstraction, prediction, simulation, and 
verification (Wing, 2006; National Research Council, 2010). 
Some even argue that learning to program means learning to 
construct mechanisms and explanations (Soloway, 1993). In 
order to construct the mechanisms and explanations involved in 
programming, learners must explicitly decompose problems into 
their constituent rules (Nersessian, 1992; Ho, 2001). Learners 
must identify the basic rules of interaction that are important, 
which requires explicitly articulating and instantiating objects 
and their relations (Penner et al., 1998). This need for problem 
decomposition is inherent in all scientific and engineering 
disciplines (Qualls and Sherrell, 2010). In fact, Swan and Black 
(1987) show a significant increase in performance on subgoal 
formation, forward chaining, backward chaining, systematic 
trial and error, alternative representations, and analogy from 
programming language instruction. Computational thinking 
also involves conceptualizing via abstraction (Wing, 2006). 
Learners need to think through multiple layers of abstraction 
simultaneously, which may promote broad generalization of 
instantiated concepts.

However, others have argued that computer programming 
produces few general cognitive benefits (see Palumbo, 1990). 
Although transfer of specific problem-solving skills may occur 
through programming language instruction, improvements in 
general problem-solving domains are very difficult to achieve 
(Reed and Palumbo, 1988). In fact, Pea and Kurland (1984) found 
no benefits of programming language instruction on general 
problem-solving abilities or planning performance.

The intervention we developed may not have fully taken 
advantage of the benefits of computer programming. Throughout 
the training, learners were given the basic agent-level rules that 
they needed to instantiate in their code. Many programming 
interventions require learners to “reverse engineer” a system 
(Wilensky and Reisman, 2006). Learners start with a description 
of the macroscopic behavior; then, they have to break down 
the problem, determine the underlying rules that govern the 
elements and their interactions, build their model, and verify 
that their model recreates the macroscopic behavior. Our inter-
vention did not require learners to decompose an event into its 
basic rules; rather, learners built the models from the given rules. 
Problem decomposition may be beneficial to explaining natural 
complex systems phenomena because both involve breaking 
down the aggregate-level pattern into agent-level interactions. 
Incorporating an explicit process of problem decomposition 
into agent-based modeling may further bolster student under-
standing. Problem decomposition may be especially relevant for 
our assessment instrument, which requires learners to “reverse 
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engineer” a natural system. Additionally, we did not prompt 
learners to borrow relevant existing model components when 
building new models. Requiring learners to incorporate aspects 
of prior models into new, superficially different models may help 
learners make deep connections across the structural principles 
of the models.

Despite its significant influence across math and science fields, 
pre-college curricula have largely neglected complex systems 
principles. In the practice of modern biology, complex systems 
models have added precision to scientific theories and have been 
important sources of hypothesis formation and testing. Yet, 
the high school and undergraduate biology curriculum often 
remains centered on the memorization of classification schemas 
and established theories (Wilensky and Reisman, 1998, 2006). 
As education shifts to address fewer, more integrated core ideas 
(College Board, 2009; National Research Council, 2011), many 
argue that a modeling perspective needs to take an increasingly 
pronounced place in the curriculum.

Teaching agent-based programming can remedy this gap, 
present the fundamentals of scientific modeling, and support 
both computational thinking and science knowledge (Sengupta 
and Wilensky, 2009). Through instruction in NetLogo, students 
receive benefits associated with both interacting with agent-based 
models and learning to program. Interacting with agent-based 
models allows students to visualize complex phenomena, 
manipulate variables, test hypotheses, and connect agent-based 
interactions to aggregate-level behavior. Programming helps 
students to explicitly state the actions and interactions of the 
agents in a situation. Learners are then confronted with the 
complex patterns that can arise from simple rules that govern 
agent-level interactions. Programming naturally encourages 
students to think about a phenomenon from the perspective of 
what set of rules would minimally suffice to generate the phe-
nomenon. Further, modeling supports students’ understanding 
of a wide range of key mathematical and scientific concepts and 
“should be fostered at every age and grade… as a powerful way 
to accomplish learning with understanding in mathematics and 
science classrooms” (Romberg et al., 2005, p. 10). Incorporating 

complex systems principles through agent-based modeling into 
standard science curricula can provide numerous opportunities 
to engage in the prevalent scientific pursuits of model building, 
hypothesizing, and testing. Further, an appreciation of complex 
systems schema can build links between disparate domains, pro-
vide unifying and coherent conceptual frameworks, and encour-
age students to look at natural phenomena in new and insightful 
ways. Teaching computer programming can foster knowledge 
transfer among superficially dissimilar disciplines, support valu-
able cross-fertilization of ideas and approaches, and ultimately 
unify scientific domains that would otherwise be fractionated.
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aPPenDiX

a. complex systems concepts inventory
 1. There is a world made of black and white squares. Each square 

has four neighbor squares: one above, one below, one to the 
left, and one to the right. The squares all change color from one 
time to the next by the following rule: if a square has more than 
one black square neighbor, then it will be black. Otherwise, it 
will be white. All of the squares change at the same time. If the 
world starts with the pattern:

 

 2. Wherever there is an A in this world, on the next generation it 
grows a B below it (if there is not already one there). Wherever 
there is a B, on the next generation, it grows a B to its left and 
an A below it (if these letters are not there already). What does 
a world that initially looks like this:

 

 3. There are four kinds of soda in a city: Yaz, Jot, Mup, and 
Fet. The people in the city are very influenced by each other, 
and if somebody sees another person drinking a soda, they 
will then drink the same soda next time. If every person 
drinks a soda every day in a café, but the four soft drinks 
start off equally popular, then in three years, what is the likely 
outcome?

  A. Everybody will be drinking the same soft drink.
  B. All four of the soft drinks will still be about equally popular.
  C. One of the soft drinks will be drunk by about 70% of the 

citizens and the three other soft drinks will be drunk by 
about 10% of the citizens.

  D. The four soft drinks will be ordered in their popularity: 40, 
30, 20, and 10%.

 4. There is a machine that produces 10 spiky blobs per minute. 
The machine is the box at the bottom of the scene below. Each 
of the spiky blobs pops about 2 min after it has been created. 
Once created, the blobs randomly move around the scene. 
If more than four blobs fall on the circular sensor at the top 
of the scene at the same time, then the sensor turns off the 
machine and it stops producing blobs. Whenever there are 
fewer than four blobs on the sensor, the machine will be on. 
What will happen in the scene over time?

  

  A. There will be more and more blobs in the scene over time, 
until the machine or the sensor breaks.

  B. The number of blobs will increase until a certain number 
of blobs is reached, and then this will roughly be the stable 
number of blobs in the scene.

  C. There will be fewer and fewer blobs in the scene because 
they pop after awhile.

  D. As more and more blobs appear in the scene, the sensor 
will cause the machine to produce even more blobs, until 
the space is completely filled with blobs.

 5. The trees in the forest below follow the following rule: they will 
catch fire if a tree above, below, left or right of them catches 
fire. Diagonally positioned trees (e.g., a tree above and to the 
left) are too far away to spread a fire. If the tree in the lower 
left hand corner of this forest catches fire, how many trees in 
all will eventually catch fire?

  _______ trees will catch fire in all.
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  D. If the peak is located in a surprising location, then random-
ness is needed to find the location. Moving randomly is the 
only strategy that will work if the peak could be anywhere.

 8. Instead of storing the exact pattern of zebra stripes in zebra 
DNA, how could cells interact that could cause stripes to 
eventually be formed?

 9. [continued from #8] In what simple way could this interaction 
be slightly altered to create spotted cheetah fur rather than 
striped zebra fur?

 10. Do biological organisms need complex, high-level rules  
(i.e., “grow in a spiral pattern”) to form the following intricate 
designs? 

  

  (circle one) YES or NO. If so, why? If not, why not?
 11. Some species of fireflies will begin to synchronize their flash-

ing after spending some time together in an area. Canadian 
geese typically fly in a V formation. In what ways might the 
formation of these reliable patterns be similar?

B. Version a
 1. Wherever there is an A in this world, on the next generation it 

grows a B below it (if there’s not already one there). Wherever 

 6. Two balls rolling the same speed start off heading in random 
directions. As they roll, the black ball turns slightly toward the 
white ball and the white ball turns slightly toward the black 
ball, but neither slows down. What pattern will they end up 
forming?

  

  A. Each ball will trace out a circle, but the two circles may be 
different.

  B. Both of the balls will trace out the same circle.
  C. Both balls will end up converging on a single point.
  D. The balls will trace out a single line and oscillate back and 

forth on this line.
 7. The hiker below wants to get to the highest peak on the 

mountain range. Unfortunately, it is very foggy and he can 
only see a couple of feet in any direction. He decides to walk 
in whatever direction will raise him up the highest amount. 
What does adding in a bit of randomness to his movements 
cause him to do?

  
  A. Adding randomness will make it more likely that he will 

end up in a valley between two peaks.
  B. Adding randomness to his movements will make the trip 

more interesting for him and will probably help him to stay 
motivated.

  C. Randomness in his movements will help him move past 
peaks that are not highest overall.
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there is a B, on the next generation it grows a B to its left and 
an A below it (if these letters are not there already). What does 
a world that initially looks like this:

 

 2. large group of children live in a neighborhood. Each child 
randomly prefers a red, blue, orange, or green toy, so that these 
colors are equally preferred across the neighborhood. The 
children are constantly moving around the neighborhood and 
playing with other kids. As they randomly move about, they 
look to see the preferred color of the most other kids around 
them. They switch their toy preference to the one preferred 
by the most children that they see at any moment. What will 
happen to toy preferences over time?

  A. Everyone will eventually come to prefer the same toy
  B. Toy preferences will not shift much at all
  C. Toy preferences will shift back and forth a lot, but the four 

toy colors will always return to an equal balance
  D. The toy preferences will have popularities of about 60, 20, 

15, and 5%
 3. A pattern of ridges and troughs can be formed when varnish 

begins to wrinkle and lift off of wood, as shown below. How 
can this complex pattern occur?

  

 4. You are dropping a set of balls through an obstacle course (as 
shown below). You want all the balls to fall all the way through 
the obstacles (the black arcs). Why might it be important to 
add in a bit of random movement to the balls as they fall?

  

 5. Seashells are often formed in very complex spiral patterns. Do 
you think the plans for these elaborate spirals are present in an 
animal’s DNA like a blueprint? (circle one) YES or NO. If so, 
why? If not, why not?

  

 6. Some groups of fireflies will begin to synchronize their flash-
ing after spending some time together in an area. How might 
large groups synchronize their flashing?

c. Version B

 1. There is a world made of black and white squares. Each square 
has four neighbor squares: one above, one below, one to the 
left, and one to the right. The squares all change color from one 
time to the next by the following rule: if a square has more than 
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one black square neighbor, then it will be black. Otherwise, it 
will be white. All of the squares change at the same time. If the 
world starts with the pattern:

 

 2. There are four kinds of soda in a city: Yaz, Jot, Mup, and Fet. 
The people in the city are very influenced by each other, and if 
somebody sees another person drinking a soda, they will then 
drink the same soda next time. If every person drinks a soda 
every day in a café, but the four soft drinks start off equally 
popular, then in 3 years, what is the likely outcome?

  A. Everybody will be drinking the same soft drink.
  B. All four of the soft drinks will still be about equally popular.
  C. One of the soft drinks will be drunk by about 70% of the 

citizens and the three other soft drinks will be drunk by 
about 10% of the citizens.

  D. The four soft drinks will be ordered in their popularity: 40, 
30, 20, and 10%.

 3. Instead of storing the exact pattern of zebra stripes in zebra 
DNA, what is a simple rule for how cells interact that could 
cause stripes to eventually be formed?

 4. The hiker below wants to get to the highest peak on the moun-
tain range. Unfortunately, it is very foggy and he can only see a 
couple of feet in any direction. He decides to walk in whatever 
direction will raise him up the highest amount. Why might it 
be important to add in a bit of randomness to his movements?

  

 5. Do biological organisms need complex, high-level rules 
(i.e., “grow in a spiral pattern”) to form the following 
intricate design? (circle one) YES or NO If so, why? If not,  
why not? 

  

 6. Canadian geese typically fly in a V formation. If there is no 
special geese leader, how might they arrange themselves in 
these patterns?
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