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Academic growth is often estimated using a random slope multilevel model with several 
years of data. However, if there are few time points, the estimates can be unreliable. 
While using random slope multilevel models can lower the variance of the estimates, 
these procedures can produce more highly erroneous estimates—zero and negative 
correlations with the true underlying growth—than using ordinary least squares estimates 
calculated for each student or school individually. An example is provided where schools 
with increasing graduation rates are estimated to have negative growth and vice versa. 
The estimation is worse when the underlying data are skewed. It is recommended that 
there are at least six time points for estimating growth if using a random slope model. 
A combination of methods can be used to avoid some of the aberrant results if it is not 
possible to have six or more time points.
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Multilevel (also called mixed, random coefficient, and hierarchical) modeling is popular in educa-
tion research. Researchers can run complex multilevel models with most of the main statistical 
packages.1 While these procedures are powerful, they are not appropriate for all problems and this 
paper will explore one situation, estimating the growth of students and schools, where they have 
limitations. As noted by one of the technique’s chief architects, “models for multilevel analysis 
cannot be a universal panacea [for all statistical problems]” (Goldstein (2003), p. 12). It is important 
to recognize the limits of these models, and this paper shows problems that can occur if using these 
models to measure growth.

There are several methods for analyzing longitudinal data [e.g., latent growth modeling, see 
Preacher et  al. (2008) and Rosseel (2012)]. Multilevel models are often used for longitudinal 
analyses (e.g., Rabe-Hesketh and Skrondal, 1992; Singer and Willett, 2003; Steele, 2008; Wright and 
London, 2009). Any of the regression coefficients can be treated as a fixed or random coefficient 
(Laird and Ware, 1982). In a linear model the coefficient for a variable is the slope (conditional on 
other covariates), and therefore these models are sometimes called random slope multilevel (RSM) 
models. These are popular in education to measure individual student trajectories, for example, 
Muthén (1997) showed gain in mathematics scores among grades 7–10.

Consider an example from the help page of lmer in version 1.1-12 (Bates et al., 2015). The 
data come from a study of mean reaction times of 18 long-distance truck drivers after a number 
of days of sleep deprivation (Belenky et al., 2003). Reaction times tended to increase with the 
number of days of sleep deprivation. A model for these data is:

  Reaction u u Days eij j j ij ij= ( + ) + + + ,β β0 0 1 1( )   (1)

where u0j is a random variable that allows variation around the intercept β0 for each truck driver j, u1j 
allows for variation around the slope β1, and eij is the subject-level residual. Each of these is usually 

1 http://www.bristol.ac.uk/cmm/learning/mmsoftware/.
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FIGURe 2 | A scatter plot of the relationship between the conditional means 
for the intercept and for the slope. (A) Slope RSM and (B) intercept RSM.

FIGURe 1 | Estimates of individuals’ regression lines. The response times 
(RT) are in milliseconds (ms). The left panel shows the results using OLS to 
calculate separate coefficients for each student. The right panel uses a RSM 
model where information of other students is used to shrink the coefficient 
estimates. The values for Days (light gray dots) have had a small random 
jitter added to them to make them easier to see.
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assumed to be independent and normally distributed. The model 
can be estimated with or without estimating the correlation 
between the random intercept and the random slope variables. 
As will be seen, this has implications for the accuracy of the 
estimates. The u1j allows values to be calculated for the slope for 
each truck driver. These are called the conditional modes (which 
are also the conditional means for linear models) and are the 
best linear unbiased predictions (or BLUPs). Details are given in 
§2.2.1 of Goldstein (2003). For reasons discussed below, they are 
often called shrunken estimates and within education sometimes 
called school or teacher residuals.

Figure  1 shows estimates of the regression line for each 
truck driver using an ordinary least squares (OLS) regression 
(left panel) and a RSM model (right panel). The key difference 
between these two models is the 18 intercept and slope estimates 
from the RSM model have been shrunk slightly toward their 
means from the OLS estimates. The SDs for the OLS intercepts 
and slopes are, respectively, 28.95 and 6.56. They are 21.60 and 
5.46 for the RSM model. RSM uses information of other drivers’ 
data to help produce an estimate for each individual driver’s 
slope. Using Tukey’s phrase, this involves “borrowing strength” 
from the data of other drivers. Shrunken estimates tend to be 
more accurate (Efron and Morris, 1977). This is the common 
effect of using these random effect models when there are ample 
data and it is likely that many people using these models expect 
this to be the only effect.

Much education research relies on measuring growth and 
there are several excellent textbooks for this (e.g., Plewis, 
1985; Singer and Willett, 2003; Grimm et al., 2016). There is 
interest both in how student scores increase and decrease over 
the years and also how school statistics (e.g., attendance rates, 
graduation rates) fluctuate. Often teachers and policy makers 
want to know if the students’ and schools’ trajectories are in the 
right direction and if they are likely to reach certain thresholds  
(e.g., proficiency for students or government dictated targets 
for schools). With the increase in the use of accountability sta-
tistics in education for grading teachers and schools, and also 
outside of education (e.g., in health care (Foley and Goldstein, 

2012)), the accuracy of these estimates are critical. While 
researchers in most laboratory research have much control 
over the number of repeated measurements, those conducting 
field research in education and the social sciences often do not 
have much control. The objective of the current research is to 
examine how many points are necessary per student/school to 
yield accurate slope estimates using the RSM model.

1. AN eXAMPLe: GRAdUAtIoN RAte 
GRoWth

In the US, states evaluate schools based on whether they have 
achieved or are making progress toward reaching several goals. 
One of these goals concerns the school’s graduation rate. For 
example, for the 2014–2015 school-grading cycle, New Mexico 
recorded each high school’s graduation rate for the previous 
3 years2 and awarded points for graduation rate growth. This was 
estimated (that year) using the slope estimates from a RSM.3 These 
values were used as part of the overall grade that was awarded to 
the school.

The conditional means for the intercepts and slopes are created 
using lme4 (Bates et al., 2015) with:

coef(lmer(rate ~ year + (year|school)))

and the OLS estimates with:

coef(lm(rate ~ 0 + as.factor(school)+
as.factor(school)*year))

Figure 2A shows that the estimates from the RSM and the 
OLS models are very different (r  =  0.11). Note also that the 
spread of the slope estimates is very small for the RSM estimates, 
SD  =  0.62, compared with the OLS estimates, SD  =  10.16. 
Figure 2B shows that the slope estimates from the RSM method 
are closely associated with the intercept estimates (r  =  0.99), 
though with a much smaller spread. The small SD and the cor-
relation patterns are clear indicators that these estimates are 

2 School data for several years are at http://aae.ped.state.nm.us/ accessed September 
20, 2017.
3 There were a few new schools that had only a single graduation rate. If a school has 
only 1 year of data the RSM will still estimate its growth by borrowing information 
from other schools. The OLS method will not.

http://www.frontiersin.org/education
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FIGURe 3 | Histogram of the correlations from 10,000 bootstrap samples 
from the 2012 to 2014 graduation rates in New Mexico between the random 
slope multilevel and fixed slope (OLS) models.
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problematic. Analysis of some of the individual school results 
also raised alarms. Consider two schools:

school Rate  
2012 (%)

Rate  
2013 (%)

Rate  
2014 (%)

RsM 
slope

oLs  
slope

A 26 36 50 −1.30 11.62
B 96 89 81 −0.16 −7.74

While School A has a low graduation rate it is clearly increas-
ing and the opposite is true for School B. However, the RSM 
method estimates that School A’s rate is decreasing and School 
B’s rate is near zero.

To determine how often data sets like these would produce 
problematic estimates 10,000 bootstrap samples of these data 
were taken and the correlation between slope estimates from the 
two methods recorded. Figure 3 shows the histogram of these 
correlations. There are two clear modes: one near zero and one 
near 0.85. Fifty-four percent are below r = 0.25 and only 27% are 
above r = 0.75 (which might be deemed high enough for some 
purposes). When problems like these were presented to Secretary 
of Educa tion in New Mexico, the Public Education Department 
stopped using the RSM model to estimate the growth in gradu-
ation rates.

2. PRoBLeM desCRIPtIoN ANd 
Method

The example above shows that using RSM models can be 
problematic for data with similar characteristics to New Mexico 
graduation rate data. It is important to show when this proce-
dure produces reliable and unreliable results. Two simulations 
will explore the limits of the random slope model for estimating 
growth. The key variable being manipulated is the number of 
years of data. The prediction is that the accuracy of the RSM (and 
OLS) estimates will increase with number of time points.

The language used to describe the simulations will assume that 
the analyst is attempting to measure student growth from a series 
of test scores. Suppose the goal is to measure student growth 

per year and that each student has a 0–100 percentile score on a 
standardized annual test for several consecutive years. Denote the 
ith student’s score in the jth year as scoreij and denote the number 
of years since the first year of data with yearij = 0…10. An intuitive 
estimate of growth for any student would be the slope estimated 
from an OLS regression using only this student’s data. The model 
would be: scorei  =  β0  +  β1yeari  +  ei for each student. A single 
regression for the whole sample could be solved by estimating 
a separate (β0i

, β1i
) pair for each student by having n dummy 

variables and including their interactions with yeari. There would 
be two estimates for each student, one for the main effect and one 
for the interaction with yearij. If there are n = 100 students, this 
would mean that there are 200 coefficients estimated.

Stein (1956) showed that if there are more than two individu-
als estimating statistics for individuals can be improved by using 
information from the other individuals. Efron and Morris (1977) 
describe this for a non-statistical audience. See Efron and Hastie 
(2016) (Chapter 7) for its place within modern statistics. Since 
Stein’s paper, several alternatives for shrunken estimates have 
been used. One alternative is to estimate the slopes based on the 
RSM model:

 scores u u year eij j j ij ij= ( + ) + ( )β β0 10 1 + +  (2)

This involves estimating just one (β0
, β1

) pair, the variances 
for the random variables u0j and u1j (it is usually assumed they 
are normally distributed with means of zero), and optionally 
their covariance. These values are used to estimate a slope 
for each student by calculating the conditional modes, which 
with the linear models considered here are also the condi-
tional means. This can be done with many multilevel pack-
ages and are often called EM (empirical Bayesian) estimates 
or BLUPs (best linear unbiased predictions) in the literature 
for many statistics packages (e.g., Stata, see Rabe-Hesketh 
and Skrondal (1992)).

In this simulation the R package lme4 (Bates et  al., 2015, 
version 1.1-12) is used. R is free and can be downloaded from 
https://cran.r-project.org/. The code to estimate the slopes using 
a RSM model, with the correlation between the random variables 
estimated, is:

estimates <- coef(lmer(scores ~ year +
(year|students)))$students$year

The code where the correlation between the random slope and 
the random intercept is fixed at zero is:

estimates <- coef(lmer(scores ~ 1 + year + 
(1|students) + (0 + year|students)))
$students$year

In this paper, the first of these is referred to as RSM 1 and the 
second RSM 2. Calculating individual coefficients (the follow-
ing produces estimates for both β0s and β1s) separately for each 
student using OLS is done in R with:

estimates <- coef(lm(score ~ 0 +
as.factor(student)*year + as.factor
(student)))

http://www.frontiersin.org/education
http://www.frontiersin.org
http://www.frontiersin.org/education/archive
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3. sIMULAtIoN 1: LINeAR ReLAtIoNs 
ANd NoRMAL dIstRIBUtIoNs

Let there be 100 students with annual test scores for between 3 
and 10 years of data. The sample size of one hundred students 
was chosen as the approximate number of students in a single 
grade in an average public school in the US. On average, there 
are more students in high schools and fewer in elementary 
schools.4 Each student has a true underlying value for their 
individual intercept and slope. These are drawn from Normal 
distributions, μ = 0, σ = 1 for the intercept; and μ = 0, σ = 0.2 
for the slope, with the constraint that they are uncorrelated. 
The data will fan-out. This occurs with much educational data 
and is often called the Matthew effect (Walberg and Ling Tsai, 
1983; Stanovich, 1986). The year variable is not being centered 
in the analyses. The residual terms are drawn from a Normal 
distribution with μ = 0 and σ = 1. If σ is smaller the estimates are 
more accurate and if σ is larger the estimates are less accurate. 
The distribution of data in real-world applications will depend 
on the standardized tests that are used and some are designed 
approximate these assumptions. The main R code to create the 
test score is:

score <- int + sl*year + 
rnorm(n*cormat[i,2],0,1)

where int and sl are variables for the true intercept and slope 
for each student, year is which year of data the score is for, and 
the part of the cormat matrix that is used above is the number 
of time points for the replication.

The complete code used for the simulations are in the 
Appendix. R (R Core Team, 2016, R version 3.3.2 (2016-10-31)) 
was used for the simulations. One thousand replication data 
sets for each of the 8 possible number of years of data (3–10) 
were created. RSM 1, RSM 2, and OLS were used to estimate the 
growth. The key part of the code is below, where CMs1 are the 
estimates from RSM1 (correlation between the variance terms 
estimated), CMs2 are from RSM2 (correlation set to zero), and 
OLS for ordinary least squares.

CMs1 <- as.matrix(coef(lmer(score~year +
(year|student)))$student)

CMs2 <- as.matrix(coef(lmer(score~year +
(1|student) + (0 + year|student)))
$student)

OLS <- matrix(coef(lm(score ~ 0 +
as.factor(student)*year +
as.factor(student))),ncol = 2)

The as.matrix and matrix functions are so that the data 
are stored in a convenient manner for comparison.

Two statistics were used to evaluate these procedures. First, as 
the data were created in the same way for 1,000 runs, the SDs of 
the estimated slopes should be near the value used to create them. 

4 https://nces.ed.gov/programs/digest/d15/tables/dt15_216.20.asp, accessed May 
31, 2017.

Second, these values were correlated with the true underlying 
growth (the sl variable from above, which is known because this 
is a simulation) used to create the data to produce a measure of the 
accuracy of the statistical procedure for each replication. Ideally 
β1
s should be similar to β1s, so a good procedure should have 
a high correlation. The entire code used to produce this paper, 
including simulations, tables, and figures, is available from the 
author as a knitr document (Xie, 2013).

4. ResULts

Figure 4 shows the histograms of the SDs of the slope estimates 
from each of the 1,000 replications for situations with 3 and 
10  years of data, and for the three estimation methods. These 
data were created such that the SD of the underlying true slope 
was σ = 0.2. Starting with the top row (3 years of data), the two 
RSM methods have smaller SDs than the OLS method. This 
is expected because the individual students’ slope estimates 
are shrunk toward the center of that replication’s distribution. 
Examining the histogram for RSM 2, 26.6% of these are less 
than 0.0001 (i.e., very small and 17% are equal to zero within 
R’s level of precision). While the analyst should realize that there 
is an estimation problem if the estimates have a zero SD, there 
is a high proportion of non-zero, but small, SDs that might be 
more difficult to detect as aberrant. If these values are ranked or 
transformed into z-scores, then even minute differences near zero 
may appear large. As the number of years of data increase, there 
were fewer obviously problematic results. RSM 2 had: 7.6, 1.1, and 
0.0% cases with SDs less than 0.0001 when there were 4, 5, and 
6 years of data per student. The bottom row in Figure 4 shows the 
plots for when there are 10 years of data. The tendency is for the 
SDs of the RSM models to be slightly smaller than the true σ = 0.2 
because of shrinkage and the OLS SDs to be slightly above σ = 0.2 
because of sampling variability.

The key question is whether the estimates accurately measure 
the true slope that was used to create the data for each student. 
Several measures can be used in simulation studies to identify 
whether a statistic tends to be accurate (Feinberg and Rubright, 
2016). Here, there are two sets of continuous measures: the true 
growth values used to create the data and the estimated values. 
A simple measure of this is the Pearson correlation between 
the estimated and the true underlying slope. Figure  5 shows 
histograms for these correlations for the three methods when 
there are 3 and 10 years of data. When there are only 3 years 
of data (the top row), all the methods produced some correla-
tions that were either negative or near zero. The zeroes in the 
top-middle panel correspond to cases where the SD was zero 
(to the level of R’s precision). The OLS method had fewer non-
positive correlations. The bottom row shows that when many of 
the assumptions of these models are meet (linear relationships, 
normally distributed data) and there are ten measurements per 
student, all these methods performed relatively well.

The central tendency and spread of these correlations when 
there are three time points are worth noting. The mean and 
median for each of the three methods are: mean  =  0.21 and 
median = 0.25 for RSM 1; mean = 0.27 and median = 0.30 for 
RSM 2; and mean = 0.28 and median = 0.28 for OLS. The SD 

http://www.frontiersin.org/education
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FIGURe 5 | Histograms of the correlations between the estimated and true underlying slopes for the different estimation methods when there are 3 and 10 years of data. 
Simulation 1 (normally distributed linear relationships). RSM 1 and RSM 2 refer to estimating the correlation between the random variables (1) and fixing it at zero (2).

FIGURe 4 | Histograms for the SD of the slope estimates for the different estimation methods when there are 3 and 10 years of data. Simulation 1 (normally 
distributed linear relationships). RSM 1 and RSM 2 refer to estimating the correlation between the random variables (1) and fixing it at zero (2).
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and inter-quartile range (IQR) for each of the three methods are: 
SD = 0.17 and IQR = 0.19 for RSM 1; SD = 0.15 and IQR = 0.17 
for RSM 2; and SD = 0.09 and IQR = 0.12 for OLS.

Table  1 shows that the mean correlations increased for all 
three methods with the number of years of data per student. 
RSM 2 tended to have slightly higher correlations than RSM 1 
(but if the correlation between u0j and u1j is increased close to 
1, RSM 2 has slightly higher correlations). Table  2 shows the 
frequency of cases out of 1,000 replications that had correlations 

that were less than 0.0001 including negative correlations. These 
occurred mostly when there were only three or four time points 
and more frequently for the RSM methods.

5. dIsCUssIoN

There two main conclusions. First, basing the estimation of the 
two values that determine a line on just three points should be 
done cautiously if the points are measured with error. This was 

http://www.frontiersin.org/education
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tABLe 2 | The number of correlations, out of 1,000, that were less than 
0.0001 (including negative values) for between the estimated slope and the true 
underlying slope.

RsM 1 RsM 2 oLs

Years of data: 3 133 171 5
4 44 45 0
5 2 5 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0

Simulation 1 (normally distributed linear relationships). RSM 1 and RSM 2 refer to 
estimating the correlation between the random variables (1) and fixing it at zero (2).

tABLe 1 | The mean correlations between the estimated slope and the true 
underlying slope.

RsM 1 RsM 2 oLs

Years of data: 3 0.21 0.27 0.28
4 0.37 0.44 0.40
5 0.56 0.59 0.53
6 0.67 0.69 0.64
7 0.76 0.77 0.72
8 0.82 0.82 0.79
9 0.86 0.86 0.84
10 0.89 0.89 0.87

Simulation 1 (normally distributed linear relationships). RSM 1 and RSM 2 refer to the 
multilevel models estimating the correlation between the random variables (1) and fixing 
it at zero (2).
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shown with the OLS estimates having high SDs. The hope by 
many using multilevel methods is that by “borrowing strength” 
from the data of other students, the estimates become more 
accurate. While the basic descriptive statistics of the correlations 
support this when there are several time points, examining the 
distributions in Figure 5 highlight the second statistical conclu-
sion: “multilevel models are tools to be used with care and under-
standing” (Goldstein, 2003, p. 12). These are complex models and 
unreliable results can emerge when they are pushed beyond their 
limits. The distributions in the top row show that these methods’ 
limits have been passed. When there are only three time points, 
the estimates can be unreliable.

Analysts should not restrict themselves to only one method. 
If, for example, an analyst used a RSM model with just a few time 
points per students, a student’s slope based just on these scores 
(OLS) may be positive, but the RSM estimates may be negative. 
If students have access to their scores they can calculate their 
own OLS scores. This will lead to some dispute and undermine 
the credibility of the analysis. However, the analyst could use a 
RSM method and an OLS method to identify situations where 
the estimates diverge. When cases with odd patterns emerge, 
like those shown in the example, the analyst could use the OLS 
estimates because, although they may be more variable, they are 
less likely to produce highly irregular estimates (Table 2).

The main recommendation from this section is to have as 
many time points as is feasible. When there were only three or 
four points, the accuracy was low. In some situations, it is not 

possible to have more points. For example, if trying to estimate 
growth of third graders, there may not be four previous scores 
from reliable standardized tests. There is already concern among 
many parents about the amount of time allocated to these tests. If 
an adequate number of tests are not available estimating growth 
may be unwise. Often no estimate is better than an unreliable one. 
It is worth stressing that using more reliable measures (e.g., longer 
tests, using paradata like response latencies to improve estimates, 
Wright (2016)) can also improve the growth estimates. However, 
this is not always possible. For example, consider the example of 
school graduation rates. These are annual statistics. While some 
improvements can be made in making reports of these more 
accurate and comparable across institutions, random variability 
will remain.

The situations examined in this section involved creating 
data with normal distributions and linear relationships. These 
aspects of the data are often assumed by analysts in statistical 
models, but they are rare in nature (Micceri, 1989). In the next 
section, data that are not normally distributed are examined.

6. sIMULAtIoN 2: NeGAtIVeLY sKeWed 
dIstRIBUtIoN

While test score data can be constructed to be normally dis-
tributed, much of the data both in education and elsewhere are 
not normally distributed (Micceri, 1989). Several steps were 
followed to create negatively skewed data for the simulation 
presented in this section. First, values were drawn from a normal 
distribution with a mean based on the linear function used in the 
previous section, (xij = β0 + u0j) + β1 + u1j)yearij. β0 and β1 were 
drawn from normal distributions as above. The xij values were 
then squared. The negative of this value was used in the logistic 
distribution function in R (plogis). This was multiplied by 
80 and subtracted from 80. A number, randomly drawn from a 
uniform distribution from 0 to 20, was added to it. This creates 
scores from 0 to 100 that are negatively skewed, approximately 
−0.5. This distribution was used to approximate scores from 
school tests that often use a 0–100 scale where above 90 is an A, 
above 80 is a B, etc., and with most student scores in the D–A 
range. The R code is:

score <- 80 - (80*plogis(rnorm
(n,-1*(B0 + year*B1)))ˆ2) + runif(n,0,20)

The scores were kept as continuous values. Additional 
simu lations were conducted varying other aspects of the data, 
including using discrete values (accuracy decreased slightly) 
and allowing u0j and u1j to be correlated (negative correlations 
decreased accuracy, positive correlations increased accuracy), 
but are not reported here to focus on the distribution alteration, 
which had a larger effect than these. Other than how the data 
were created, this simulation was identical to the first.

7. ResULts ANd dIsCUssIoN

As with Simulation 1, the SD of the estimates and their correla-
tions with the true values are used to evaluate the procedures. 

http://www.frontiersin.org/education
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FIGURe 6 | Histograms of the SDs of the slope estimates for the different estimation methods when there are 3 and 10 years of data. Simulation 2  
(negatively skewed). RSM 1 and RSM 2 refer to estimating the correlation between the random variables (1) and fixing it at zero (2).
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However, because of the way in which the data were created the 
expected value of estimated slope from the linear models is not, 
even under ideal circumstances, expected to be the β1 used to 
create the data. Therefore, the size of the SDs of the estimates will 
be different than in Simulation 1. Furthermore, the relationship 
between the estimated and actual growth is not expected to be lin-
ear. The results using Spearman’s ρ correlation were analyzed and 
very similar to those reported below using Pearson’s correlation.

Figure  6 shows the histograms of the SDs of the estimated 
slopes from each replication for situations with 3 and 10 years 
of data, and for the three estimation methods. The results have a 
similar pattern to those reported for Simulation 1. Starting with 
the top row (3 years of data), the two RSM methods have smaller 
SDs than the OLS method. For RSM 2, where the correlation 
between the random variables is fixed at zero, 35.6% of these 
are less than 0.0001. This is about 50% more than reported for 
Simulation 1 with normally distributed data. There were: 14.6, 
2.4, and 0.1% (1 of 1,000 replications), cases with SDs less than 
0.0001 when there were 4, 5, and 6  years of data per student, 
respectively. The bottom row in Figure 6 shows the plots for when 
there are 10 years of data. The tendency is for the SDs of the RSM 
models to be smaller than the OLS SDs.

Figure 7 shows histograms for these correlations for the three 
methods when there are 3 and 10 years of data. When there are 
only 3 years of data (the top row), all the methods produce some 
correlations that are either negative or zero, though there are very 
few of these for the OLS method. As with Simulation 1, the spike 
in the top-middle panel at r = 0 corresponds with cases where 
the SD was effectively zero. The mean and median for each of 
the three methods when there are only three time points were: 
mean = 0.15 and median = 0.20 for RSM 1; mean = 0.23 and 
median = 0.26 for RSM 2; and mean = 0.23 and median = 0.24 for 

OLS. The SD and inter-quartile range (IQR) for each of the three 
methods were: SD = 0.18 and IQR = 0.23 for RSM 1; SD = 0.14 
and IQR = 0.18 for RSM 2; and SD = 0.09 and IQR = 0.12 for OLS. 
The bottom row shows that these models preformed much better 
when there were ten measurements per student.

Table  3 shows that the means of the correlations increased 
for all three methods as the number of years of data per student 
increased. When there were at least five time points, the RSM 
methods had higher mean correlations than the OLS method. 
Table  4 shows the frequency of cases out of 1,000 replications 
that had correlations that were less than 0.0001 including negative 
correlations. These occurred mostly when there are only three 
or four time points and more frequently for the RSM methods. 
There were more of these aberrant cases here than there were 
reported for Simulation 1.

The main conclusion for the skewed data evaluated in this 
study is that the results are likely to be even less accurate 
than with normally distributed data. Education data can be 
very messy. There are often missing values, outliers, and non-
independence (i.e., clustering). What is striking in the results 
reported here and even without a lot of these factors the RSM 
procedures still performed poorly when there were less than six 
time points.

8. GeNeRAL dIsCUssIoN

Estimating growth from only a few points will often produce 
poor estimates. It is intuitive that if the individual scores are 
measured with error that the slope of three or four points may not 
be reliable. This is one reason why random slope models seem 
attractive: information from other individuals’ scores can be 
“borrowed” to improve reliability. Information of other students’ 
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tABLe 4 | The number of correlations, out of 1,000, that were less than 
0.0001 (including negative values) for between the estimated slope and the true 
underlying slope.

RsM 1 RsM 2 oLs

Years of data: 3 203 198 4
4 64 88 0
5 6 17 0
6 0 1 0
7 0 0 0
8 0 0 0
9 0 0 0

10 0 0 0

Simulation 2 (negatively skewed). RSM 1 and RSM 2 refer to estimating the correlation 
between the random variables (1) and fixing it at zero (2).

tABLe 3 | The mean correlations between the estimated slope and the true 
underlying slope.

RsM 1 RsM 2 oLs

Years of data: 3 0.15 0.23 0.23
4 0.32 0.38 0.35
5 0.48 0.53 0.46
6 0.61 0.63 0.55
7 0.69 0.70 0.62
8 0.74 0.75 0.68
9 0.78 0.79 0.72

10 0.81 0.81 0.75

Simulation 2 (negatively skewed). RSM 1 and RSM 2 refer to the multilevel models 
estimating the correlation between the random variables (1) and fixing it at zero (2).

The RSM can be unreliable with less than six time points and are particu-
larly like to be poor with three or four time points.

FIGURe 7 | Histograms of the correlations between the estimated and true underlying slopes for the different estimation methods when there are 3 and 10 years  
of data. Simulation 2 (negatively skewed). RSM 1 and RSM 2 refer to estimating the correlation between the random variables (1) and fixing it at zero (2).
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These results reinforce the recommendation to have as many 
points as possible. In many laboratory studies, the researcher 
can add additional time points. For example, Belenky et  al. 
(2003) could have taken multiple measurements each day. 
This is not always possible in education. There is significant 
backlash against the number of standardized tests that students 
are already taking. It might not be practical and would likely be 
politically unpopular to include more tests within each year. For 
older students, there might be several years of annual test score 
data, but the interest may be just in recent growth. The same 
issues apply to schools.

Policy makers can pressure analysts to produce estimates even 
when the analyst is aware that the estimates may be unreliable. 
This is one of the reasons why it is important to report the error 
associated with any statistics that are reported (Wilkinson and 
the Task Force on Statistical Inference, 1999; Wright, 2003). 
Bootstrap methods can be used to examine whether slight varia-
tions in the data produce very different results. As shown with the 
example, these estimates can be quite variable. For the particular 
problem of measuring growth, the RSM methods did do better 
than the OLS method, providing that there were enough time 
points. However, in both reported simulations, the RSM methods 
produced results that were often negatively correlated with the 
true slope. When this happens, individuals could have increasing 
scores but a negative growth estimate, as shown with the gradu-
ation rate growth example. Reporting that a student or school 
has a negative growth estimate from a complex model when the 

performance is used to inform individual slope estimates. 
However, when there are not many time points these complex 
models can produce results that are aberrant. These include cases 
where the estimated growth is negatively correlated with the true 
underlying growth. Results from individual cases, like Schools 

A and B in the example, can undermine the credibility of the 
accounting system. Thus, the main conclusion is:
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student or principal can see that their scores have increased (as 
would be found using OLS of just that student’s scores) will create 
disputes. Estimating these growth scores with different methods 
may help to identify these cases and allow them to be adjusted. 
The OLS estimates could be used when the two methods produce 
very different results. Although the OLS estimates have a larger 
variation than the RSM estimates, they do not produce as many 
estimates that are negatively correlated with the true slope and do 
not produce estimates that will be clearly at odds with an indi-
vidual student’s or school’s data as with the example for Schools 
A and B above. The poor estimates for Schools A and B harm the 
public’s confidence in the accountability system.

The focus of this paper was on the relationship between the 
number of time points and the slope estimates. Other aspects, like 
missing values and the variability of the individual scores, should 
be considered in future research. Researchers are welcome to adapt 
the code that appears in the Appendix. The RSM procedure was 
shown, in both example and simulations, to be problematic. There 
is no recommended ideal procedure that will always work. Even 
if using seemingly magic phrases like “analytics,” “deep learning,” 
and “value-added modeling” (Braun, 2013), often the data do not 
provide sufficient information to yield accurate estimates. If you 
only have a small number of time points, each measured with 
error, then the estimates of the slope with any procedure can be 
poor. However, the RSM procedures will occasionally produces 
very bad estimates.

9. ReCoMMeNdAtIoNs

The following are of importance.

 1. Use as many time points as is feasible. The reliability of the 
slope estimates will increase with the reliability of the data 
themselves, but from these simulations having at least six time 
points seems appropriate for most education data sets.

 2. If the RSM methods produce small SDs or produce estimates 
that are very different from the OLS estimates, the RSM 
method is likely to be unreliable. The OLS slope estimates are 
preferred in this case and should be used. This will more likely 
occur when there are less than six time points than when there 
are more and can occur often when there are only three time 
points (e.g., the New Mexico graduation rate data).

 3. With any complex statistical model, it can be worth estimating 
the model multiple times for bootstrap samples to observe if 
the estimates are reliable.

 4. The OLS procedure is simpler to explain. If transparency is 
important for the accountability system, this would be another 
argument for not using RSM. The OLS estimates can also be 
calculated with the individual student’s or school’s own data.
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APPeNdIX

The R code for the first simulation, with normally distributed data. The function for creating correlated values (other 
simulations available from the author used non-zero values) is from http://stats.stackexchange.com/questions/38856/
how-to-generate-correlated-random-numbers-given-means-variances-and-degree-of.

correlatedValue = function(x, r){
r2 = r**2; ve = 1-r2; SD = sqrt(ve)
e = rnorm(length(x), mean=0, sd = SD)
y = r*x + e; return(y)}

set.seed(8374)
n <- 100
runs <- 8*1000
cormat <- matrix(nrow=runs,ncol = 38)
cormat[,1:2] <- c(1:runs,rep(3:10,runs/8))
options(warn=-1)
for (i in 1:runs){
if(i %%100 == 0) message(i) #to track progress
student <- rep(1:n,each = cormat[i,2])
int <- rep(ival <- rnorm(n,0,1),each=cormat[i,2])
sl <- rep(sval <- correlatedValue(ival,0.0)/5,each=cormat[i,2])
year <- rep(0:(cormat[i,2]-1),n)
score <- int + sl*year + rnorm(n*cormat[i,2],0,1)
CMs1 <- as.matrix(coef(lmer(score~year + (year|student)))$student)
CMs2 <- as.matrix(coef(lmer(score~year + (1|student) + (0 + year|student)))$student)
OLS <- matrix(coef(lm(score ~
0 + as.factor(student)*year + as.factor(student))),ncol = 2)
vals <- cbind(CMs1,CMs2,OLS,ival,sval)
cormat[i,3:30] <- cor(vals)[lower.tri(cor(vals))]
cormat[i,31:38] <- apply(vals[,1:8],2,sd)}
options(warn = 0)

cormat[is.na(cormat)] <- 0 #This noted in results
cormat <- as.data.frame(cormat)
names(cormat) <- c("runs","grades",

"CI1S1","CI1I2","CI1S2","CI1OI","CI1OS","CI1i","CI1s",
"CS1I2","CS1S2","CS1OI","CS1OS","CS1i","CS1s",

"CI2S2","CI2OI","CI2OS","CI2i","CI2s",
"CS2OI","CS2OS","CS2i","CS2s",

"COIOS","COIi","COIs",
"COSi","COSs",

"Cis",
"sdI1","sdS1","sdI2","sdS2","sdOI","sdOS","sdi","sds")

cormat1 <- cormat
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The code for the second simulation is:

correlatedValue = function(x, r){
r2 = r**2; ve = 1-r2; SD = sqrt(ve)
e = rnorm(length(x), mean=0, sd=SD)
y = r*x + e; return(y)}

set.seed(83214)
n <- 100
runs <- 8*1000
cormat2 <- matrix(nrow=runs,ncol=38)
cormat2[,1:2] <- c(1:runs,rep(3:10,runs/8))
options(warn=-1)
for (i in 1:runs){
if(i %%100 == 0) message(i)
student <- rep(1:n,each=cormat2[i,2])
int <- rep(ival <- rnorm(n,0,1),each=cormat2[i,2])
sl <- rep(sval <- correlatedValue(ival,0)/5,each=cormat2[i,2])
year <- rep(0:(cormat2[i,2]-1),n)
score <- 80-(80*plogis(rnorm(n*cormat2[i,2],-1*(int + year*sl)))ˆ2) + runif(n*cormat2[i,2], 
0,20)
CMs1 <- as.matrix(coef(lmer(score~year + (year|student)))$student)
CMs2 <- as.matrix(coef(lmer(score~year + (1|student) + (0 + year|student)))$student)
OLS <- matrix(coef(lm(score~0 + as.factor(student)*year + as.factor(student))),ncol = 2)
vals <- cbind(CMs1,CMs2,OLS,ival,sval)
cormat2[i,3:30] < − cor(vals)[lower.tri(cor(vals))]
cormat2[i,31:38] < − apply(vals[,1:8],2,sd)}
options(warn = 0)

cormat2[is.na(cormat2)] < − 0 # Reported in results
cormat2 <- as.data.frame(cormat2)
names(cormat2) < − c("runs","grades",

"CI1S1","CI1I2","CI1S2","CI1OI","CI1OS","CI1i","CI1s",
"CS1I2","CS1S2","CS1OI","CS1OS","CS1i","CS1s",

"CI2S2","CI2OI","CI2OS","CI2i","CI2s",
"CS2OI","CS2OS","CS2i","CS2s",

"COIOS","COIi","COIs",
"COSi","COSs",

"Cis",
"sdI1","sdS1","sdI2","sdS2","sdOI","sdOS","sdi","sds")
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