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Researchers engaged in the scholarship of teaching and learning seek tools for rigorous,

quantitative analysis. Here we present a brief introduction to computational techniques

for the researcher with interest in analyzing data pertaining to pedagogical study. Sample

dataset and fully executable code in the open-source R programming language are

provided, along with illustrative vignettes relevant to common forms of inquiry in the

educational setting.
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INTRODUCTION

The scholarship of teaching and learning (SoTL), i.e., research as applied in a pedagogical setting
(Witman and Richlin, 2007; Kanuka, 2011), has become increasingly prominent over the past 20
years (Boyer, 1997; Gilpin and Liston, 2009; Hutchings et al., 2011; Bishop-Clark and Dietz-Uhler,
2012). As the interest in SoTL grows, so, too, grows the need for robust tools in support of inquiry
and analysis (Bishop-Clark and Dietz-Uhler, 2012; Mertens, 2014). The purpose of this article is to
provide introduction to simple but effective computational techniques for application to SoTL. The
objective of this article is to empower investigators to adopt heretofore non-traditional approaches
for the advancement of SoTL.

In this article, we introduce R, a numerical computing environment that is now 25 years’
matured beyond its first release (Thieme, 2018). R is derived from the S programming
language, developed at Bell Labs in the 1970s, designed to provide a variety of statistical
and graphical techniques, with an intentionally extensionable design, meaning that users can
devise and publish code add-ons to enhance base-R’s functionality. R is regularly ranked in
the top-20 of the TIOBE index of programming language popularity and as of March, 2018
is the highest-ranked software with focal application to statistical analysis (cf. SAS, Stata,
and SPSS, which are not typically ranked in TIOBE; TIOBE, 2018), and is the analytical
tool of choice for major print media, social media, Federal agencies, and search engines
(Willems, 2014). R is freeware and completely Open Source; it is employed in the writing of
innumerable scientific manuscripts, and is being added to ever more undergraduate and graduate
curricula.

Recognizing that numerical analysis and scripted computation are not typically the province
of educational researchers, this article is intentionally basic, with an interest in introduction.
Accordingly, this article mixes novice-level guidance with tutorial-style walkthroughs of a
few realistic datasets, obtained through the authors’ own scholarly activities in educational
research. This article is completely self-contained: all datasets and code are printed within the
manuscript, although condensed code and data files are available for convenient download as article
Supplements.
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FAMILIARIZATION

Acquisition and Operation
The R software package can be downloaded from its online
repository (http://r-project.org), and typically installs in a minute
or two. When opening R, the Command Window will open. The
Command Window is “live” meaning that commands can be
typed in, and will deliver a response. Typing 8 ∗ 2 <ENTER>

will yield the answer 16.
In general practice, analyses are executed using a “script,”

i.e., a file with .R extension that executes commands in order,
displaying the results in the Command Window. When opening
R, open the Script Window, either by File > New Document,
or File > Open Document. Commands are written identically,
whether in the Command Window, or Script Window, but the
Script Window is not live: pressing <ENTER> will simply bring
the cursor to the next line, as in any text editor. In order to run
a single command from within the Script Window, place cursor
on the relevant line, and type <CTRL> + R in Windows, or
<COMMAND> + <ENTER> in Mac. It is possible to highlight
multiple lines (or a portion of a line) and send this selection to
the Command Window for execution.

Basic Syntax
Each coding language has its own particular way of creating
and manipulating objects. These objects are called variables and
the language-specific way the variable is created or manipulated
is called syntax. Given the introductory nature of this article,
only cursory overview can be given to the syntax here, but it is
sufficient to give a few pointers to accelerate the reader along the
learning curve.

Creating Variables
R is unique in its flexibility of assigning variables. R allows
assignment “from the left” and from the right, and assignment
can be accomplished with either the equals sign =, or a left- <-

or right-arrow ->. For consistency, we shall employ only the
equals sign. Variables can be named arbitrarily, except that the
variable name must start with an alphabetic character (upper-
or lower-case), and cannot start with a numerical character or
special character (underscore, etcetera).

alpha = 1

beta_1 = 0.20

Score = 100

Here, we have created three variables, using three different styles
of naming: all lower-caps, delimited enumeration, and capitalized
first letter. R can handle all three; it is up to those writing the code
to pick the style that suits.

Array Types
Generally, an array is a vehicle for storing data. There are three
main array types in R: scalars, vectors, and matrices. A scalar is a
single datum, e.g., alpha, beta_1, and Score, as above. A vector is
an ordered set of variables

vect = c(1, 2, 3, 6, 7, 64, 81, 100, pi)

Note the use of the c(...) syntax: so named because it
combines the data. Note further that we invoked pi in our vector.

R contains a number of useful variables that can be called upon
as needed.

Lastly, a matrix is a collection of vectors

matx = matrix(c(1, 2, 3, 4, 5, 6, 7, 8),

nrow = 4)

This creates a 4 × 2 (“four by two”; rows then columns) matrix.
By typing these commands into the R Command Window,
these variables are created. By typing their names again at the
command window, they will be displayed, e.g.,

> matx
[ ,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

The rows and columns of this matrix can be named:
colnames(matx) = c("col_1", "col_2")

rownames(matx) = c("a", "b", "c", "d")

yields
> matx

col_1 col_2

a 1 5

b 2 6

c 3 7

d 4 8

Data Frames
One of the most convenient aspects of R is its data frame
class. Data frames look like matrices, but allow for convenient
utilization of many sophisticated functions. In many cases, it is
desirable to convert a matrix into a data frame; in most (nearly
all) cases, it is not undesirable to create a data frame. When in
doubt, we recommend to convert a variable to a matrix-based
data object to data frame class.

my_frame = data.frame(matx)

The two variables my_frame and matx will appear the same
if called at the Command Window, but they are of different
classes (verify via class(matx) and class(my_frame)).
Data frames have the provision of intuitive variable selection. We
can retrieve a desired column from a data frame using the dollar
sign

> my_frame$col_1

1 2 3 4

If at first this appears unnecessary or clunky, be
assured that the many R functions that operate on
data frames will provide ample evidence of their true
convenience.

Arithmetic Operations
The most elementary activity that can be performed in a
numerical coding environment is basic arithmetic. Within R,
these operations are performed using the common special
characters used in other computing applications, including the
Google search engine:
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> beta_1/2

0.1

and
> Score∧2

10000

Naturally, we may want to create a new variable based on the
manipulation of an old variable, or simply re-assign a new
variable to the same variable. Both are easily done:
> gamma = 2∗alpha

> alpha = 10

> gamma

2

> alpha

10

Arithmetic operations can also be performed over vectors and
matrices

> matx∧2

col_1 col_2

a 1 25

b 4 36

c 9 49

d 16 64

We leave element-wise operations, e.g., matrix multiplication to
the reader to explore, as these more sophisticated manipulations
are beyond the scope of this primer.

Functions
The vast utility of a numerical computing approach is in the
utilization of pre-packaged functions for executing intensive
operations on data. Each coding language has thousands of
functions, and most languages allow for the creation of user-
defined functions. Writing one’s own functions is typically the
interest of the experienced coder, but are not out of reach of
the beginner. However, we shall only discuss a few relevant pre-
existing functions within R here. Consider, for example, taking
the absolute value

> all_pos = abs(c(−1,0,2,3,−2))

> all_pos

1 0 2 3 2

or computing the average and standard deviation

> mean(vect)

29.6824

> sd(vect)

40.0569

Within the parentheses, the argument specifies the variable
to be operated on. These three functions all carry a single
argument by default. But often, multiple arguments can be
specified. For example, round(mean(vect)) yields 30, but
round(mean(vect),2) provides two digits of rounding:
29.68. Functions are useful not only for manipulating
variables, but for writing/reading data to/from file, data
visualization, and housekeeping within the workspace (i.e.,
clearing vestigial variables, or checking variable type). For
instance my_data=read.csv("my_file.csv") will

read a local file and store its contents in a data frame (my_data)
for analysis within R, and class(my_data) will verify
data.frame.

Notes
A few additional items bear mentioning in order to fully
introduce R as appertaining to the examples that follow.

Sensitivities
R code is generally space-insensitive. In the case of horizontal
space (as would be produced by pressing the space bar), R is
insensitive in nearly all assignments, e.g., a =1 and a = 1

yield the same result; round(vect,1) and round(vect,

1) yield the same result, etcetera, with a notable exception
of non-equals assignment operators (see section Assignment
Operator, below). In the case of vertical space, R is also usually
insensitive: an arbitrary number of carriage returns can be placed
between lines of code. Vertical space does become complicated
when interrupting a function, i.e., splitting the function across
multiple lines, but this is generally acceptable, as long as each
carriage return is preceded by the comma separating arguments,
and the last line ends with the parenthesis:

read_data = read.csv("my_file.csv",

stringsAsFactors=TRUE,

header=TRUE)

The R language, however, is case-sensitive.

Strings
We have already seen here several functions where an argument
was passed using the double-quote character. These are string
variables; the quotes mark these variables as containing character
information and to be treated as text, not as numerical.
Setting my_string = "" tells R that this variable contains
a character that does not yield to arithmetic manipulation:
my_string / 2 produces an error. Try this and see:
all_pos / 2 = 0.5 0 1 1.5 1, but "all_pos"/2

yields an error.

Assignment operator
In this Primer, all variable assignments use the equal sign (=).
However, R has multiple operators for making assignments;
perhaps the most common amongst R users is the left-ward (or
right-ward) arrow: a dash next to a pointy-bracket. The three
lines of code that follow all yield the same result

x = 100

y <- 100

100 -> z

This plurality of assignment approaches has some subtle, but
illuminating consequences. For instance, we observe that R
allows chained assignments:

a = b = 2

a <- b <- 2

both have the effect of creating two variables in one line of
code, both equal to 2; other languages (Matlab, for example),
do not allow this. However, note that this does not always
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work with a mix of assignments (i.e., a <- b = 2 throws an
error). Similarly, it can be confusing for the human coder or
code reader to interpret whether f<-2 is meant to convey “f
is a variable with value negative two” vs. the assessment of the
variables value, i.e., “is f < −2?” Placing those four characters in
strict order, i.e., f<-2 will yield the assignment; placing a space
before the two will yield an evaluative statement (with output
either TRUE or FALSE). These examples provide some insight
into the way R’s coding language is deconstructed by its parser.
More can be learned about the hierarchy of syntactic operators in
R’s widely available documentations (refer: Operator Syntax and
Precedence). Naturally, whether to force assignments by way of
= or <- will often be determined by user preference.

Best practice
A code file should be written in such a way that everything is
self-explanatory. This is critically important when code is put
away for several months and then revived, or when passing code
between collaborators. The three most essential practices here
are: (1) intuitive naming of variables, (2) code commenting,
and (3) code structure. In learning or re-learning a code
segment, it is much more interpretable for a variable to be
named in a way that conveys its meaning, e.g., avg_gpa =

mean(data$gpa). If this seems unnecessarily explicit at this
juncture (since the right-hand clearly contains a grade point
variable in a dataset), consider a downstream code line that
converts scholastic performance from grade-point on a 4.0 scale
to raw percentage: avg_gpa = avg_gpa ∗ 10 + 55. If
this variable were named more opaquely, e.g., a = a ∗ 10 +

55, would be much less readily understood.
Likewise, every code line should be commented. All coding

languages allow for commenting. In R, the hash character # tells
the compiler that all characters to the right are to be ignored.
Best practice is to have a comment section at the top of the file
to give overview to the file’s main actions and revision history,
and comments throughout the body to explain specific actions.

# compute the mean grade point average

mean_gpa = mean(data$gpa)

# create a histogram of grade points range:

1.0 to 4.0 by 0.1

hist(data$gpa, breaks = seq(1,4,by=0.1))

It is atypical to use comments when working within the
CommandWindow; it is vital to utilize comments when working
within the Script Window.

Lastly, wherever the task is complex (see, for example,
nesting discussed in sections Descriptive Statistics and Control
Structures), artful code structure can make the difference
between interpretable code and uninterpretable code. Comments
require interpretation by the code author. But when the code is
to be reviewed and de-bugged, the comments are only a guide,
and can conceivably be misleading: the comment may be more
aspirational, rather than actual, especially if the code is in draft
form and the output hasn’t been extensively checked. Ultimately,
the code must speak for itself. The best way to facilitate this is to
make the code easy to understand even without the comments:
re-factor the code, limit the length of any single line of code,

and break large code blocks into smaller sub-blocks as necessary.
The coder should consider three aspects of their code document,
whenever a modification is to be made: (1) the operation, (2)
the assignment, and (3) the comment. The operation (the right-
hand side of the equation, e.g., “mean(data$gpa),” above)
should be reflected in the variable name (the left-hand side of
the equation, i.e., “mean_gpa”), and also the comment (“#
compute the mean grade point average”). If one
of these three items is to change, all three items should change
in synchrony, e.g.,

# compute the median grade point average

median_gpa = median(data$gpa)

or
# compute the mean skill score

mean_skill = mean(data$skill)

Outside of the code file, another best practice is to save code in
a new file and/or a new folder at each session. Code files take
up very little memory, and overwriting working code can result
in painful losses when the revision is less functional than its
predecessor. Whenever a functional code segment is achieved,
store the file in a safe location, and Save As a new version. For
more resources on best practices, which may differ by discipline,
application, and setting, we point to a small number of resources
(Martin, 2009; Prlić and Procter, 2012; Osborne et al., 2014;
Wilson et al., 2014), advising that there are many more available.

Packages
The R package as downloaded (section Acquisition and
Operation) is “Base R.” It contains the vast majority of functions
that are typically needed in most routine scenarios. However, the
R community is diverse and highly engaged; users are constantly
designing and sharing new functions that suit a particular
application. These functions are contained in packages available
for download from an R repository site. This can be from within
R using the Package Installer. Packages do not load automatically
in R, so if a certain function is needed, the package will have to
be summoned via the library function. For instance, consider the
summaryBy function which can be used to provide summary
statistics within categorical groups using syntax similar to that
used in R’s ANOVA or linear modeling function families. At
the command prompt, type install.packages("doBy")
to acquire the package, and then library(doBy) within any
R session where summaryBy is to be used. It is necessary to
install the package only once per R install: the package will only
ever need to be re-acquired if either a) a new version of R is
installed on the investigator’s computer, or b) a new version of
the package is posted on the online repository and the user seeks
to upgrade. Likewise, once an instance of R is created (i.e., once
the software is opened for a session), the library needs only be
called once. The library will not load again automatically when
R is closed and re-opened, but re-loading the library is a simple,
single command.

Directories
By default, R will point to its own location on the hard drive.
This is rarely where the user wants to work. When opening an

Frontiers in Education | www.frontiersin.org 4 September 2018 | Volume 3 | Article 80

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Prokop and Wininger R for Educational Researchers

TABLE 1 | Demographic data pertaining to students non-compliant with study

protocol.

ID Cohort Group GPA_UG GPA_G Skill

1 20 II T 3.50 3.20 83.000

2 23 II C 3.40 3.40 90.000

3 24 I T 3.71 3.03 18.875

4 27 I C 3.38 3.14 18.210

5 32 II T 3.73 3.68 94.000

6 34 I C 3.68 3.25 18.880

7 58 I C 3.93 3.92 19.500

8 63 II T 3.25 3.09 85.000

9 78 I T 3.76 3.70 19.580

10 83 II T 3.40 3.10 88.000

11 87 I T 3.90 3.85 19.460

12 89 I C 3.55 3.00 18.460

Cohort, curriculum cohort; GPA, grade point average (Undergrad or Graduate). Table is

captured in R dataframe “comp_data.”

R session, set the working directory using the setwd command.
Pass a string argument containing the folder where the work is to
be performed:

setwd("/Users/Smith/Desktop/Research/

Code_Files")

The forward slash character is the delimiter used by R in
directories.

EXAMPLES

Descriptive Statistics
We implemented an internal study on student performance using
two different pedagogical approaches. Students were randomized
to either “treatment” group (T) or “control” (C). Twelve students
signed the study’s informed consent, but did not complete the full
protocol, and therefore were removed from themainline analysis.
These students are described in Table 1.

Computing descriptive statistics for this sub-group is a
straight-forward three-step process: (1) set the working directory,
(2) read in the data from file, and (3) analyze.

# set the working directory

setwd("/Users/Docs/Frontiers_Manuscript/

Code")

# read-in the data from file

comp_data=read.csv("Frontiers_1

_SubSample.csv",

head=TRUE, stringsAsFactors=TRUE)

# analyze and report

print(paste(nrow(comp_data),

"non-compliant students"))

Note the two optional arguments in read.csv. By stating
head=TRUE, R recognizes that the dataset contains a header,
i.e., “ID,” “Group,” and so-on, are not mistaken for data
points; and stringsAsFactors=TRUE forces the columns

containing only character (and not numerical) data to be taken as
a factor, as might be relevant to statistical analysis. This is helpful
even in assessing descriptive statistics, given the summaryBy
command (among others).

We note that .csv (comma-separated values) is a common file
format for storing numerical data. While we refer to .csv files in
this manuscript, R has the ability to open data in a wide variety
of formats, included tab-delimited (.txt) and documents prepared
in common spreadsheet softwares (i.e., .xls and .xlsx).

The last line of code contains one command nested in the
other. This is an entirely legitimate maneuver, and may be quite
common amongst experienced coders. The R compiler will read
from the inside-out. The nrow(data) function counts the
number of rows in the dataset. The paste command attaches
a number variable (the number of rows) onto a string variable
(the characters in quotes). The print command displays this
information on the command line for easy viewing.

The result of this code is a single line report

"12 non-compliant students"

We report the average GPA in this group similarly:

# compute average GPA across sub-group

mean_gpa = round(mean(comp_data$GPA_UG), 1)

stdv_gpa = round(sd(comp_data$GPA_UG), 1)

print(paste("Average GPA:", mean_gpa,

"+/-", stdv_gpa))

which yields

"Average GPA: 3.6 +/- 0.2"

In just a few commands, we can visualize these data. For example,
suppose we wish to show grade-point distribution as a function
of cohort

# show GPA as box plots (break-out by

cohort)

boxplot(GPA_G∼Cohort, data=comp_data)

title(main = "GPA by Cohort")

title(ylab = "Grade-Point Average")

The plot can be seen in Figure 1A. And while accurate, the
visualization may not quite be suitable for publication. We can
add a few additional arguments to increase the visual appeal

# modify box-plot for visualization

boxplot(GPA_G∼Cohort, data = comp_data,

names = c("Cohort I", "Cohort II"),

ylim = c(1.9, 4.1), cex.axis = 1.5,

lwd = 3, col = c("grey50",

"grey80"))

title(main = "GPA by Cohort", line = 1,

cex.main = 2, font.main = 1)

title(ylab = "Grade-Point Average",

line = 2.5, cex.lab = 2)

We leave it to the reader to thoroughly inspect the code,
but summarize as follows: tick labels are customized for
interpretability, the limits of the y-axis is re-defined, the tick fonts
(cex.axis) are increased by 50%, the lines comprising the box
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FIGURE 1 | Default plot (A) and modified plot (B) depicting the distribution of graduate GPA amongst non-compliant students in box plot format.

plot are darkened, and shades of gray are added to the boxes; the
title and axis label are re-positioned and re-configured.

Lastly, we note that both the default axis and our own re-
definition, places the axis away from zero. In many cases, it
may be desirable to “force” the visualization that includes the
zero-point. While Base-R does not provide this functionality, the
plotrix library does.

library(plotrix)

axis.break(axis = 2, 1.925, style =

"slash")

The final graph can be seen in Figure 1B. Note that this figure
can be saved to file from within the R workspace by placing
png("Figure_1b.png") ahead of the boxplot command,
and dev.off() below the last plotting code.

Conditions
It is often desirable to subset the data somehow. Consider the set
of data pertaining to non-compliant students (Table 2). Suppose
we wanted to isolate just the students with Graduate GPA over
3.50. We first identify those students meeting the GPA criterion
with a single line of interrogative code

# test for students exceeding undergrad GPA

threshold

comp_data$GPA_UG > 3.5

This will return a series of Boolean responses (binary True or
False):

FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE

TRUE FALSE TRUE TRUE

In order to extract the rows where this condition is met, we use
the which function
# return rows reflecting to hi undergrad

GPAs

which(comp_data$GPA_UG > 3.5)

3 5 6 7 9 11 12

To find items exactly meeting a criterion, use the double-equals
(voices as “is equals to”)==

# find which students are in Cohort I

which(comp_data$Cohort == "I")

3 4 6 7 9 11 12

To find items within a range, it is useful to leverage some of R’s
set operators (e.g., intersect) and apply multiple conditions

# find students with both GPAs above 3.4

intersect(which(comp_data$GPA_UG > 3.4),

which(comp_data$GPA_G > 3.4))

5 7 9 11

Dataset Manipulation
There are several useful tools for creating and manipulating
categorical variables in R. Consider the same example of students
in Table 1. Suppose we wish to flag students with lower-tier
scores in skills check. Firstly, we observe that the two Cohorts
have scores reported in different scales. We re-scale using the
Conditions methods, as in section Conditions:

# convert skill from 20-points to 100%

scale in Cohort I

inds_coh1 = which(comp_data$Cohort == "I")

comp_data$Skill[inds_coh1] =

comp_data$Skill[inds_coh1] ∗ 5

We can then convert to a categorical variable via the cut

function. Suppose we have three tiers: <85 points (Failure),
between 85 and 90 points (Retest) and 90 or more points (Pass):

# convert skill to leveled variable

comp_data$SkillLevel = cut(comp_data$Skill,

c(0,85,90,100), labels = c("Fail",

"Retest", "Pass"))

Suppose further that we want to convert this into a 2-level
category: those who require follow-up (a Red Flag) and those who
do not. We can initialize an column of empty values (default: no
follow-up required), and then

# re-level factor variable

comp_data$Category = rep("",

nrow(comp_data))
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TABLE 2 | Demographic data with adjusted skill scores, factored skill level, and re-sorted based on Red Flag status.

ID Cohort Group GPA_UG GPA_G Skill SkillLevel Category

1 23 II C 3.40 3.40 90.000 Retest REDFLAG

2 83 II T 3.40 3.10 88.000 Retest REDFLAG

3 20 II T 3.50 3.20 83.000 Fail REDFLAG

4 63 II T 3.25 3.09 85.000 Fail REDFLAG

5 24 I T 3.71 3.03 94.375 Pass

6 27 I C 3.38 3.14 91.050 Pass

7 32 II T 3.73 3.68 94.000 Pass

8 34 I C 3.68 3.25 94.400 Pass

9 58 I C 3.93 3.92 97.500 Pass

10 78 I T 3.76 3.70 97.900 Pass

11 87 I T 3.90 3.85 97.300 Pass

12 89 I C 3.55 3.00 92.300 Pass

comp_data$Category[comp_data$SkillLevel

%in% c("Fail", "Retest")]

= "REDFLAG"

The %in% operator, posed as A %in% B returns Boolean
values according to whether each item in A appears
in B:

TRUE TRUE FALSE FALSE FALSE FALSE FALSE

TRUE FALSE TRUE FALSE FALSE

Thus, four students require follow-up. To sort these to the top,
we re-order the data-frame using

order(comp_data$Category) as a re-sorting vector:

# sort data-frame based on Red Flag status

comp_data = comp_data

[order(comp_data$Category,

decreasing = TRUE),]

The phrasing data[inds,] sorts all columns (the empty
space between the command and the closing square bracket)
according to the indices specified in inds. We can execute
a multi-layer sort by adding additional items serially within
order:

# sort on Red Flag; sub-sort on Skill Level

comp_data = comp_data

[order(comp_data$Category,

comp_data$SkillLevel,

decreasing=TRUE),]

This modified dataset is shown in Table 2.

Diagnostics
Outliers
Take as a new example the data collected by our group in
our studying the impact of video-guided self-reflection as an
adjuvant strategy in supplement to the conventional pedagogical
strategy in the graduate curriculum. Students from two graduate
cohorts were recruited, yielding 25 students with complete
results. Here, we show a subset of outcomes, viz. the Academic

Locus of Control–Revised questionnaire [ALC-R (Curtis and
Trice, 2013)], measured early- (ALC_1) and late (ALC_2) in the
semester. Cohort, undergraduate GPA and graduate GPA were
noted (Table 3).

Load in this dataset as follows:

# read-in alc dataset

alc_data = read.csv("Frontiers_2_

ALCData.csv", head = TRUE,

stringsAsFactors = TRUE)

It is typical to identify outliers in a dataset. R can do this efficiently
via sub-functionality on the boxplot command:

# identify outliers

boxplot.stats(alc_data$GPA_G)$out

boxplot.stats(alc_data$GPA_UG)$out

where the dollar sign retrieves the outliers (“out”) from the data
frame that resulted from the boxplot.stats command. As it
turns out, there are no outliers in our dataset with regard to GPA;
R returns numeric(0) in both cases. If this seems unlikely,
we can confirm by inspection of the data itself. Consider the “z-
normalization” transform, i.e., standardization by subtraction of
the mean and division by the standard deviation. R performs this
via the scale command. Taking the range (min and max) of
both datasets, we see:

# double-check outliers via standardization

range(scale(alc_data$GPA_G))

−1.642978 1.880937

range(scale(alc_data$GPA_UG))

−1.942531 1.458947

Thus, there are no GPA values that are more than two standard
deviations departed from the mean. There are no outliers to
remove.

Linearity

Single variables
While we might want to jump right into hypothesis testing, it is
prudent to perform some diagnostics first. For instance: while
we might wish to test for differential effects, but accounting
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TABLE 3 | Responses to academic locus of control (ALC) questionnaire 15 weeks apart.

ID Cohort GPA_UG GPA_G Group ALC_1 ALC_2

1 72 I 3.37 3.44 T 3 7

2 55 I 3.8 3.7 T 7 5

3 42 I 3.65 3.26 C 2 2

4 90 I 3.8 3.5 C 4 5

5 70 I 3.52 2.92 T 6 5

6 29 I 3.9 3.59 T 6 4

7 67 I 3.9 3.85 T 6 7

8 8 I 3.5 2.96 C 5 3

9 25 I 3.2 3.5 T 2 4

10 81 I 3.5 2.92 T 4 5

11 28 I 3.93 3.63 T 3 4

12 92 I 3.2 3.11 T 4 5

13 17 I 3.43 3.44 C 4 4

14 7 I 3.5 3.6 C 7 5

15 84 II 3.1 2.99 C 6 8

16 14 II 3.54 3.31 T 9 9

17 26 II 3.44 3.11 C 6 8

18 97 II 3.87 3.64 T 4 3

19 94 II 3.31 3.45 T 10 9

20 85 II 3.8 3.5 T 4 6

21 86 II 3.8 3.5 T 4 3

22 79 II 3.34 3.4 T 4 7

23 5 II 3.5 3.1 T 6 8

24 52 II 3.8 3.31 C 3 3

25 11 II 3.65 3.11 C 5 4

Cohort, Curriculum cohort, GPA, grade point average (Undergrad or Graduate). Table is captured in R dataframe “alc_data.”

for academic preparation as co-variate information. Our study
collected both undergraduate- and graduate GPA; if they are
highly collinear, it would be imprudent to account for them both.
We can assess collinearity visually (assessment for a straight-line
trend, by inspection), or numerically, via Pearson’s correlation.
Generating a plot is simple:

# generate a scatter plot of GPA datasets

plot(alc_data$GPA_UG, alc_data$GPA_G,

main = "",xlab = "",ylab = "")

title(main="Scatterplot of GPA")

title(xlab="Graduate GPA")

title(ylab="Undergraduate GPA")

This plot is shown in Figure 2A. Note that R will add default
labels to the data unless they are specifically overwritten as
empty values (main="",xlab="",ylab=""). It is possible
to integrate these commands (specifying our custom labels within
the plot() command; but we break these commands apart here
for clarity. While the figure itself is very helpful, it is not quite
publication-ready. We can plot with customized formats, and
overlay the correlation value with a few embellishments:

# modify scatterplot for visualization

plot(alc_data$GPA_UG, alc_data$GPA_G,

main = "", xlab = "", ylab = "",

pch = 21, lwd = 2, cex = 2,

col = "darkblue", bg = "lightgreen",

ylim = c(1.9,4.1))

title(main = "Scatterplot of GPA", line=1,

cex.main=2, font.main=1)

title(xlab="Graduate GPA", line=3,

cex.lab=2, font.main=1)

title(ylab="Undergraduate GPA",

line=2.5, cex.lab=2, font.main=1)

linmod=lm(GPA_G∼GPA_UG,data= alc_data)

abline(linmod)

axis.break(axis = 2, 1.925, style =

"slash")

rho_val=round(cor(alc_data$GPA_UG,

alc_data$GPA_G), 2)

text(3.1, 4, paste("Correlation = ",

rho_val), adj = c(0,0), cex=1.4)

This plot is shown as Figure 2B. Again, we leave it to the reader
to work through the code item-by-item, but we summarize as
follows: data are plotted as a scatter plot, with filled circles (#21
in the R plot character set, pch), with double the linewidth and
double the size vs. default. A linear model (lm) is created to
reflect Graduate GPA as a function of (“∼”) Undergraduate GPA,
and then plotted via abline. Next, the Pearson correlation is
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FIGURE 2 | Default plot (A) and modified plot (B) depicting scatter of relationship between undergraduate GPA and graduate GPA.

computed, rounded to 2 digits, and annotated on the plot at
position x = 3.1, y = 4.0, with a 40% larger font than default;
the text is adjusted so that the bottom-left of the first character
coincides with the specified position.

Multi variable
There are many convenient tools for diagnostics on multi-variate
data, as well. We extend the example of single-variate linearity
assessment by fabricating a few additional variables. LetGPA_R1,
_R2, _R3, and _R4 be randomly-generated number sets meant
to look like plausible GPA datasets.

# create two more GPA variables (for

exploration)

set.seed(311)

alc_data$GPA_R1=3.0 + runif(nrow(alc_data))

set.seed(311)

alc_data$GPA_R2=2.5 + runif(nrow(alc_data))

set.seed(331)

alc_data$GPA_R3=3.0 + runif(nrow(alc_data))

set.seed(156)

alc_data$GPA_R4=1.0 + runif(nrow(alc_data))

The random numbers are generated via runif; a random
sample of uniform distribution and range zero to one is generated
with compatible length (same as number of rows in alc_data).
The additive constant (3.0, 2.5, or 1.0) is there merely to re-scale
the data to a GPA-like dataset. Note the use of set.seed. Most
programming languages allow for random numbers sets to be
generated in a way that is reproducible. Soliciting runif(100)
will generate a new set of 100 random numbers every time
the command is entered. However, by setting a specific seed
before invoking the random numbers, the numbers will be called
from the same distribution each time. In this way, GPA_R1 and
GPA_R2, being of the same seed, will be identical; they will differ
from _R3 and _R4, which have different seeds.

We shall now subset the data for convenience:

# take as only those columns containing

"GPA" in their column names

gpa_data = alc_data[,grep("GPA",

names(alc_data))]

We used the grep function (grep = “globally search a regular
expression and print”). The grep function takes as its first
argument the text to be searched for, and as its second argument
the text to be searched in. Thus, within the names of alc_data,
find where “GPA” appears. Given that the names of alc_data
are ID, Cohort, GPA_UG, GPA_G, Group, ALC_1, ALC_2,
GPA_R1, GPA_R2, GPA_R3 and GPA_R4, the grep command
returns {3, 4, 8, 9, 10, 11}. Thus, our subsetting command
is equivalent to alc_data[,c(3, 4, 8, 9, 10, 11)],
and yields a 25 × 6 matrix of GPA values (some obtained
empirically, some fabricated).

We can perform our collinearity assessment through visual
means merely by plotting this data frame:

# show scatter

plot(gpa_data, main = "Collinearity Review

Scatterplot")

This plot is shown in Figure 3A. Notice that the plot ticks are
scattered: some plot panels show ticks along the top row, some
along the bottom; some along the left side, some along the right.
For this kind of descriptive assessment, we may prefer to turn off
the axis ticks (xaxt and yaxt) altogether. We can add optional
arguments to stylize the plot (Figure 3B):

# modify scatterplot for visualization

plot(gpa_data, pch = 21, lwd = 2,

cex = 1.5, col = "darkred",

bg = "pink", xaxt = "n", yaxt = "n")

title(main = "Collinearity Review

Scatterplot", line = 2,

cex.main = 2, font.main = 1)

Base-R provides the cor function for calculating the correlation
matrix. However, the result is in matrix form, and may
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FIGURE 3 | Default plot (A) and modified plot (B) of multi-variate scatterplots for assessing collinearity.

not yield easy visualization, especially if there are many
variables being compared simultaneously. We can leverage
the corrplot package to facilitate visualization of high-
dimensional correlation data.

# show correlation matrices

library(corrplot)

corrplot(cor(gpa_data))

title(main = "Correlation Heat Map")

This is shown in Figure 4A. We can add additional features
to make the plot more print-worthy. Notice that we add a
new library for the support of additional graphical devices, i.e.,
the color ramp palette, which ramps between any number of
designated colors (here: red to white to blue)
# modify correlation plot for visualization

library(grDevices)

clrs=colorRampPalette(c("red", "white",

"blue"))

corrplot(cor(gpa_data), col=clrs(10),

addCoef.col = "white", number.digits

= 2, number.cex = 0.75, tl.pos = "d",

tl.col = "black", type="upper")

title(main="Correlation Heat Map", line=1,

cex.main=2, font.main=1)

Again we leave it to the reader to fully explore the code as
presented, but summarize as follows: a three-color palette was
defined (clrs), and correlation coefficients were added in white
text with two-digit precision at 75% default font size. The text
label (tl) position was defined to appear along the diagonal (“d”)
in black text, and only the upper-triangle of the (symmetric)
matrix is shown. The modified correlation matrix is shown in
Figure 4B.

Hypothesis Testing
Univariate
A common approach to hypothesis testing for assessment of
a single factor is the t-test. Consider a pre- and post-test, for
example the Achievement Goal Questionnaire-Revised [AGQ-R
(Elliot and Murayama, 2008)], as shown in Table 4.

A first line of inquiry might be: do students –irrespective of
cohort– show an improvement in the AGQ-R after a 15 weeks
period. We read-in the data, and can assess statistical significance
straight away:

# read-in agq dataset

agq_data = read.csv("Frontiers_3_

AGQData.csv", head = TRUE,

stringsAsFactors = TRUE)

# paired t-test

pre=agq_data$AGQ_1

post=agq_data$AGQ_2

t.test(pre, post, paired=TRUE)

Note that the optional argument “paired=TRUE” enforces
that this is not merely a two-sample t-test with identical
sample sizes, but that the measurements are paired. The output
reports the t-value (2.24), the degrees of freedom (here: 24,
i.e., 25 minus 1), and p-value (0.034). Thus, by frequentist
conventions, there is a statistically significant difference post-
vs. pre. For more informative view, we compute the summary
statistics:

# report differences

print(paste("AGQ Pre = ",round(mean(pre),

1), "+/-", round(sd(pre),1)))

print(paste("AGQ Post = ",round(mean(post),

1), "+/-", round(sd(post),1)))
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FIGURE 4 | Default plot (A) and modified plot (B) of correlation matrices of multi-variate GPA data.

Which yields

"AGQ Pre = 46.2 +/- 7.6"

"AGQ Post = 43.6 +/- 6.8"

This is a curious result, so we assess each treatment group
independently:

pre=agq_data$AGQ_1[which(agq_data$Group ==

"C")]

post=agq_data$AGQ_2[which(agq_data$Group

== "C")]

t.test(pre, post, paired=TRUE)

and

pre=agq_data$AGQ_1[which(agq_data$Group ==

"T")]

post=agq_data$AGQ_2[which(agq_data$Group

== "T")]

t.test(pre, post, paired=TRUE)

yields, in both cases, a difference that is not statistically
significant: for the control group: difference onmeans of 4.0, 95%
Confidence Interval {-0.46, 8.46}, P = 0.07; for the treatment
group: 1.88 (-1.31–5.06), P = 0.23. This suggests there may be
some value to a multi-variate analysis.

Multivariate
Adding new dimensions to the data can provide greater insight
in cases where univariate analysis proves limiting. As a first step,
we modify our dataset slightly in order to make for efficient
coding:

# convert dataset for multi-variate

analysis

agq_data$Change = agq_data$AGQ_2 -

agq_data$AGQ_1

The only change here is in defining a single variable to report
change in score (post-minus-pre). For comfort, verify that the
single-sample t-test yields the same result as shown for the same
data in the paired-test configuration, i.e., difference on means of
2.64, P = 0.034.

# demonstrate that t-test is the same as

paired test

t.test(agq_data$Change)

Now, consider re-configuring as a one-way
ANOVA. We use the same functional notation:
aov(Change∼Group,data=agq_data), which produces
its own output report. But often, the information available
through the summary function is more direct, so we wrap aov
in the summary command, and name it so that we may extract
the p-value efficiently:

# report p-value
aov_summ=summary(aov(Change∼Group,

data=agq_data))

print(paste("P-value, for AGQ change=",

round(aov_summ[[1]][1,5], 3)))

Which yields P= 0.398.We note that the summary of anANOVA
in R is of class type list. Lists may contain matrices, but the
matrix contents cannot be extracted directly, the list item has to
be extracted first. The list item is extracted by double braces (first
list item by [[1]]; nth item by [[n]]. . . ). Since the first item
is a matrix (data frame, really), we can then reference it with the
conventional matrix references, i.e., [row, column]. Since the first
row, fifth column is the P-value associated with the group term,
we extract it as aov_summ[[1]][1,5].

In order to add new information, consider merging the co-
variates provided through the ALC-R dataset. R contains several
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TABLE 4 | Responses to achievement goal questionnaire (AGQ) 15 weeks apart.

ID Group AGQ_1 AGQ_2

1 42 C 47 41

2 90 C 53 54

3 8 C 38 40

4 17 C 57 45

5 7 C 48 46

6 84 C 38 35

7 26 C 49 51

8 52 C 60 46

9 11 C 39 35

10 72 T 39 39

11 55 T 55 53

12 70 T 48 48

13 29 T 48 51

14 67 T 37 36

15 25 T 60 60

16 81 T 36 37

17 28 T 48 33

18 92 T 41 45

19 14 T 51 42

20 97 T 40 42

21 94 T 36 39

22 85 T 45 48

23 86 T 55 40

24 79 T 39 37

25 5 T 48 46

Cohort, curriculum cohort, GPA, grade point average (Undergrad or Graduate). Table is

captured in R dataframe “agq_data.”

helpful tools for merging datasets. We highlight one here, the
merge function, available through base R.

# merge AGQ dataset onto ALC dataset for

co-variates

agq_data=merge(agq_data, alc_data)

We can now assess this more informative dataset with an
ANOVA where each variable is accounted for:

# test with full anova

aov(Change∼Cohort+Group+GPA_UG+GPA_G,

data=agq_data)

We see from the summary:

# report summary of the anova

summary(aov(Change∼Cohort+Group+

GPA_UG+GPA_G,data=agq_data))

Df Sum Sq Mean Sq F value Pr(>F)

Cohort 1 16.1 16.10 0.455 0.507

Group 1 25.7 25.74 0.728 0.404

GPA_UG 1 76.8 76.80 2.172 0.156

GPA_G 1 6.0 5.98 0.169 0.685

Thus it is evident that there are no main effects of significance
(P-values for all terms >0.05). It is beyond the scope of this

article to address the discrepancy between the two tests; rather,
the reader is referred on to more foundational statistics texts for
the assumptions of t-tests vs. ANOVA, and encouraged that R has
tools built in to help decide which test is most appropriate on a
given dataset. Rather, we emphasize here that ANOVA is easily
applied in R, and the results easily interpreted.

Lastly, we note that interactions are readily assessed in R, by
swapping the additive syntax (+) to multiplicative (∗): including
an interaction term between, say, Cohort and Graduate GPA is a
simple re-arrangement of terms:

# test with anova with an interaction term

summary(aov(Change∼Cohort+GPA_UG+

Group∗GPA_G,data=agq_data))

which yields

Df Sum Sq Mean Sq F value Pr(>F)

Cohort 1 16.1 16.10 0.441 0.514

GPA_UG 1 67.2 67.15 1.840 0.191

Group 1 35.4 35.38 0.970 0.337

GPA_G 1 6.0 5.98 0.164 0.690

Group:

GPA_G 1 13.8 13.81 0.378 0.546

Where the last row in the summary reports the summary for the
interaction term.

Categorical
There are a multitude of tools in R for facilitating hypothesis
testing in categorical data. For brevity, we discuss a simple
example, that of a 2 × 2 table. Consider the AGQ-R data, with
a grouping threshold of those who decreased in AGQ-R vs. those
who remained at the same score or improved over time. We start
by identifying students who meet each of the strata

# identify the students in each stratum

cohort_1=which(agq_data$Cohort == ”I“)

cohort_2=which(agq_data$Cohort == ”II“)

agq_incr=which(agq_data$Change < 0)

agq_decr=which(agq_data$Change >= 0)

and prepare each cell in the contingency table:

# determine cell values for a contingency

table

agq_cell1=length(intersect(cohort_1,

agq_incr))

agq_cell2=length(intersect(cohort_2,

agq_incr))

agq_cell3=length(intersect(cohort_1,

agq_decr))

agq_cell4=length(intersect(cohort_2,

agq_decr))

Lastly, we create the contingency table, furnish row- and column-
names for the sake of clarity, and perform our hypothesis test:

# create the contingency table, test two

ways

agq_table=matrix(c(agq_cell1,agq_cell2,

agq_cell3,agq_cell4),nrow=2)
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rownames(agq_table) = c("Cohort_I",

"Cohort_II")

colnames(agq_table) = c("Increase",

"Decrease")

chisq.test(agq_table)

fisher.test(agq_table)

Our contingency table had the structure of

Increase Decrease

Cohort_I 6 8

Cohort_II 7 4

And neither the Chi-Square test (P = 0.5293), nor its small-
sample alternative, Fisher’s Exact Test (P = 0.4283) yielded
significance. This matches expectation based on the highly non-
diagonalized nature of the contingency table.

Extraction of odds ratios and confidence intervals are straight-
forward. We note also that R can handle n-way contingency
tables (3× 3, 4× 4, etcetera).

Modeling
Linear Regression
Perhaps the most commonly-used methodology for modeling
the relationship between two- or more variables is through
regression. Here, we demonstrate regression models on these
datasets. Firstly, consider Figure 2, showing the relationship
between Undergraduate and Graduate GPA. These variables
appear to have an approximately linear relationship, so we model
as a linear regression:

# read-in alc dataset

alc_data = read.csv("Frontiers_2_

ALCData.csv", head = TRUE,

stringsAsFactors = TRUE)

# perform linear regression

linmod = lm(GPA_UG∼GPA_G,data=alc_data)

Calling this variable from the command prompt yields an output
with two items: a summary of the call function, and a listing of
the coefficients. Since we specified a simple regression equation,
there are only two coefficients: the slope (0.494) and the intercept
(1.917). Similarly to the ANOVA, a more informative review of
the model can be obtained through the summary command:

# summarize the linear regression

summary(linmod)

which yields, among other things,

Estimate Std. t Pr(>|t|)

Error value

(Intercept) 1.9174 0.5482 3.498 0.00194

GPA_G 0.4940 0.1630 3.031 0.00594

At the bottom of the output from the summary, it should
be noted that the p-value for the model is p = 0.005939. To
connect this to our first look at this dataset, recall that we
computed the correlation coefficient via cor (yielding 0.53).
We can obtain the statistical significance for that p-value via
cor.test(alc_data$GPA_G, alc_data$GPA_UG):

p = 0.005939, i.e., the same value obtained through linear
regression.

Of course, correlation is a one-dimensional calculation;
regression can include many parameters through use of the
addition (+) or multiplication (∗) notation, see again: section on
multi-way ANOVA including interaction terms (above).

Logistic Regression
Logistic regression is used to test predictors of a binary outcome.
Consider the very first example presented here, i.e., the sub-group
of non-compliant students. Suppose we wanted to determine
whether there were any factors that might predict participation
vs. non-compliance. We start by reading in the data brand new:

# merge compliant versus non-compliant

data_nonc=read.csv("Frontiers_1_

SubSample.csv", head = TRUE,

stringsAsFactors = TRUE)

data_comp=read.csv("Frontiers_2_

ALCData.csv", head = TRUE,

stringsAsFactors = TRUE)

and perform a brief quality-control assessment to ensure
that there are no common students between the group that
participated in the study vs. those that did not:

# verify that there is no overlap between

datasets

olap=intersect(data_nonc$ID, data_comp$ID)

if (length(olap)==0){

print("Data Quality Check OK")

}else{

print("Data Error: Non-distinct

datasets")

}

We note that this quality check used a new technique: control
structure. More about that in a subsequent section (see below).

Because we want to test compliance as a single parameter
shared between these two datasets, we must merge them into a
single dataset. Firstly, create a new parameter (call it “Status”)

# bind an indicator for compliant versus

non-compliant

data_nonc$Status = "Noncompliant"

data_comp$Status = "Compliant"

and subset the two datasets to the same variables

# re-configure variable lineups

data_nonc=subset(data_nonc,

select=c("ID","Cohort","Group","GPA_UG",

"GPA_G","Status"))

data_comp=subset(data_comp,

select=c("ID","Cohort","Group","GPA_UG",

"GPA_G","Status"))

These datasets are now ready for merger by row-binding:

# merge datasets

data_stat=rbind(data_nonc, data_comp)
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The Status variable is more likely than not going to be viewed
by R as a character variable, given that it was constructed by
entering strings. But a logistic regression requires the dependent
variable to be factor. Force this class through as.factor:

# enforce classes

data_stat$Status=as.factor(data_stat$Status)

Now, a logistic regression is possible.

# set up a logistic regression

logmod=glm(Status∼GPA_G+GPA_UG,

data=data_stat,family=binomial)

which yields (through summary(logmod)):

Estimate Std. z Pr(>|t|)

Error value

(Intercept) −2.3298 5.6412 −0.413 0.680

GPA_G −0.1772 1.5685 −0.113 0.910

GPA_UG 0.6109 1.9398 0.315 0.753

from which it can be concluded that neither undergraduate, nor
graduate GPA is significant in its association with compliance in
participation.

Mixed Effects
One additional approach worthy of mention is mixed effects
modeling, where a process is believed to contain both fixed
and random effects. Consider, for example, that our logistic
regression model contains graduate students from a diverse
set of backgrounds, i.e., various undergraduate institutions and
degree programs, and perhaps the students had various levels of
engagement during their undergraduate careers. In this setting,
and following the constructs of LaMotte (Roy LaMotte, 2006)
it is reasonable to believe that the undergraduate GPA might
be considered a random effect in slope. We load the library
containing mixed effects resources, and reconstruct the logistic
regression model with a slight rephrasing of the GPA_UG term:

# load library for mixed effects modeling

library(lme4)

# set up a mixed effects logistic

regression

logmod2=glmer(Status∼GPA_G+(1|GPA_UG),

data=data_stat,

family=binomial)

where the parentheses in the (1|GPA_UG) term flag that
variable for random effects, and the 1| indicates that the variable
is random in slope (0| would indicate random in intercept).
Otherwise, the syntax for performing and obtaining results from
mixed models is generally the same as for conventional models.
Note that the syntax for a mixed effects models is almost identical
to that of a conventional linear- or logistic regression: the first
argument in the Response ∼ Predictor(s), but with the addition
of a term in parentheses indicating random effects.

NOTES

Control Structures
While beyond the intended scope of this article, we briefly
follow-up on a concept introduced in section Logistic Regression,

i.e., control structures. It is possible to provide R with a
set of instructions, and for R to carry out only one action,
according to pre-defined criteria. The generic structure is
as follows: if (condition){action #1}else{action

#2}, however more elaborate, multi-conditional structures are
possible using else if. Consider a simplistic example

# simple conditional control structure

gpa_val=3.5

if (gpa_val < 3.6){

print("Med")

}else if (gpa_val < 3.0){

print("Low")

}else{

print("Hi")

}

Surely this loop would have no conceivable utility in an actual
analytical code, but as an example, it shows proper use of if-else,
a basic command structure in every coding language. The criteria
does not need to be numerical; any logical/Boolean cue will work,
"g" %in% c("a","b","c","d","e","f","g","h")

will yield a TRUE.
Perhaps the most common iterative loop structure is the for-

loop. The basic structure is for (sequence){action}. A
simple example would be

# simple for-loop

for (i in 1:5){

print(paste("This is loop number ", i,

sep=""))

}

This is loop number 1

This is loop number 2

This is loop number 3

This is loop number 4

This is loop number 5

The for-loop can be very powerful: it is possible to perform the
same action many times through use of a for-loop, especially
when a conditional logic is nested within. For instance:

# scroll through each record and report

red-flag students

for (i in 1:nrow(comp_data)){

if (comp_data$Category[i] == "REDFLAG"){

print(paste("Student ",

comp_data$ID[i],

": Red Flag", sep=""))

}

}

One last control structure bearing discussion is the while-loop:
while (condition){action}. This loop is, in some
respects, equivalent to a hybrid between the if-loop and the for-
loop: it iterates (like a for-loop), until a condition has been met
(like an if-loop). The major caveat here is that for a for-loop there
is a finite terminus: once the control sequence is exhausted, the
loop will cease; for a while-loop, it is possible for the criterion to
never be realized, leading the loop to continue ad infinitum (a
“runaway”). A runaway loop will seize R; the only remediation is
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to stop the calculation through the STOP button in the R console,
or to brute-force stop the software, e.g., Task Manager.

RStudio
R as described here is intended to convey primarily command-
line programming within the traditional R computing
environment. The reader may take interest, however, in
some of the tool suites available as augmentation or substitute
for R, including RStudio. RStudio offers the same functionality
of R in computation, but much more accessibility in terms of
user interface. Personal license for single-use RStudio or RStudio
Server remains free of charge, but there are Commercial packages
that unlock additional features including Priority Support.

Other Softwares
It is expected that new users to R will be “immigrating” from
other software platforms, ormay have need to interface with team
members who are utilizing other softwares. There are options
for this kind of transfer or exchange. Firstly, there are many
guides offering syntactic cross-walk between R and SPSS, SAS,
Matlab, etcetera (Muenchen and Hilbe, 2010; Muenchen, 2011;
Kleinman and Horton, 2014). But there are also some built-in
codeworks that allow for ease of transition. For example, the
SASxport library and sub-functions within the Hmisc library.
While some functions shall remain –by design– the singular
domain of their proprieter, a great many functionalities available
in the commonly available statistical softwares can be found in
R.

We note, also, that R is not the only open-source computing
environment that is popular among data scientists. For instance,
Python, is widely used, particularly in the engineering and
physical sciences. Historically, Python is considered a more
general-purpose language; R is almost always used for statistical
analysis. However, both packages have flexibility into both
analytical and technical application, and either present many
options for those seeking to add a computational edge to
their work. For proprietary environments, Matlab has grown its
statistical packages incredibly over the past 15 years, and has an
incredible plotting engine, and is a de rigueur skills set for nearly
every graduating engineer. SAS is considered by many to be the
mainline software in clinical trials design and primary analyses,
although the US Food and Drug recently clarified that they do
not explicitly require the use of any specific software for statistical
analysis (Statistical Software Clarifying Statement, 2015). We
find that among the commercially available softwares used for
statistical analysis, STATA and SPSS are popular with colleagues
in the fields of education and allied health. We urge that every

software has its plusses-and minuses, but that the open access of
R, and its thriving users community, make it highly attractive to
the intrepid investigator seeking a useful and portable analytical
tool.

CONCLUSION

In this article, we provide educational researchers with an
introduction to the statistical program, R. The examples provided
illustrate the applicability of R for use in educational research;
these vignettes are designed to be extensible to a broader set
of problems that interest those in educational research. While
numerical programming is not typically the province of the
educational researcher, we urge that it is easy to get started, and
that there is excellent support for those wishing to integrate R
into their analytical repertoire.
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