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Mathematics education continues to emphasize explorative proving, wherein proving

involves producing statements, producing proofs, looking back (examining, improving,

and advancing) at these products, and the interactions among these aspects. This study

aims to develop an intended explorative proving mathematics curriculum by focusing on

students’ ability to plan and construct proofs. We first set Levels 1 and 2 of “planning a

proof” and “constructing a proof,” respectively, and Level 0 as the starting point of the

learning progression where there is no differentiation between planning and constructing.

Next, we combined them, and set nine learning levels in addition to “looking back” as

the characteristics of explorative proving. Then, we elucidated two learning progressions

of explorative proving as a curriculum framework considering the relationship between

planning and constructing a proof. To develop the curriculum based on these learning

progressions, we made corresponding tables of units with these learning progressions

according to the units of Japan’s national Course of Study, and then showed an example

of localizing one of the progressions and its effects by the implemented curriculum.

By adopting the method of lesson study and a design experiment, we implemented

geometry lessons for 8th graders that aim to shift the progression through the learning

levels. The results clarify the advantages and limitations of the developed curriculum,

which enabled us to refine amore robust curriculum. Finally, we identify the characteristics

of this approach to curriculum development of explorative proving and the necessity of

the method of lesson study and design experiment as a realistic dimension of curriculum

development and improvement.
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INTRODUCTION

Understanding in mathematics develops through justification
and discovery, with proof and proving at the center. Teaching
and learning proofs is recognized internationally as a key
component of mathematics curricula (Stylianides et al., 2017).
For example, Mathematical Practice 3 of the Common Core State
Standards for Math (CCSSM) includes “Construct[ing] viable
arguments and critiqu[ing] the reasoning of others” (Standards
for Mathematical Practice, 2018). However, students at the junior
high school level (and beyond) still experience general difficulties
learning proofs in mathematics (e.g., Healy and Hoyles, 2000;
Hoyles and Healy, 2007), and Japan is no exception. Current
Japanese students learn deductive proofs in Grades 8 and 9,
mainly through geometry, but one of the issues, which has
not been fully addressed, is how to support students who have
difficulties in many activities related to proof and proving:
constructing deductive proofs and why they are necessary (e.g.,
MEXT, 2018), understanding logical structures of deductive
proofs (e.g., Miyazaki et al., 2017), and realizing explorative
proving by students (Miyazaki and Fujita, 2015).

Hanna and de Villiers(2012, p. 3) explained, “a narrow
view of proof [as solely a formal derivation] neither reflects
mathematical practice nor offers the greatest opportunities for
promoting mathematical understanding.” In school geometry,
proofs are often presented in an arrangement generally referred
to as the two-column format. However, as Herbst and
Brach (2006) demonstrated, this approach does not necessarily
support students in their construction of creative and reasoned
arguments. We consider that students’ difficulties in Japan might
be improved if we could re-organize a curriculum from a wider
view of proof and proving. For example, in contrast to this
rigid view of proof, we regard proving as a flexible, dynamic,
and productive activity (Komatsu, 2017). To teach this view of
proving, we are currently undertaking a study based on a design
experiment (Cobb et al., 2003), for developing a new explorative
proving curriculum in Japanese lower secondary school (Grades
7–9, 13–15 years old). This paper reports on the findings from
our experiment’s first cycle, which investigated the following
questions: (a) How can we make a curriculum framework based
on the idea of explorative proving? (b) How can we develop a
curriculum based on the framework?

FRAMEWORK FOR DEVELOPING AN
EXPLORATIVE PROVING CURRICULUM

Theoretical Underpinnings:
Explorative Proving
Concerning Question (a), we argue that proving activities
in mathematics are not limited to writing the proof. Some
previous studies specifically indicated the importance of modern
axiomatic methods (van der Waerden, 1967) and relative views
of truths (Fawcett, 1938), learned from the perspectives of
heuristics and fallibilism (Lakatos, 1976). Thus, proving activities
are flexible, dynamic, and productive in nature, and various
aspects of proving activities are interrelated and resonant.

We can see that proving activities involve the following:
producing statements inductively/deductively/analogically,
planning and constructing proofs, looking back over proving
processes and overcoming global/local counter-examples or
errors, and utilizing already-proved statements while working
on further proofs to reflect the mathematical nature of
proving (de Villiers, 1990).

We define explorative proving based on three components
and their relationships: producing propositions, producing
proofs, and looking back. To produce proofs, it is necessary
to plan how to prove the proposition, and construct the proof
along with the plan. However, to look back at the proving
process, it is necessary to examine the proving process, either
by improving the process and the product (proof), or by
advancing them through finding unproved propositions that are
deductively based on the proof, and so on. Thus, as shown in
Figure 1, producing proofs includes planning and construction,
and looking back includes examining, improving, and advancing
(Miyazaki and Fujita, 2015).

By making these aspects and their relationships more
explicit in the proving curriculum, we believe that proving
activities can be more productive and dynamic. This will
allow students to produce mathematical statements, produce
proofs, and examine/improve/advance statements and proofs
independently, advancing gradually in accordance with
grade level.

Levels of Planning and Constructing
a Proof
In developing explorative proving curricula, it is useful to
establish some theoretical learning levels as the scope of the
curriculum, which enables us to follow an achievable learning
progression for students. Due to the low performance in

FIGURE 1 | Explorative proving.
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FIGURE 2 | Examples of the learning levels of planning a proof.

producing proofs reported among Japanese junior high students
MEXT(2018, p. 121–127), we focus on how to support two
aspects that enable active production of proofs: planning and
constructing. The remaining aspect, looking back, is combined
appropriately according to the achievement of the other two
aspects (Figure 1). To succeed in our curriculum, students need
to reach the elemental sub-level of the partial structural level
of understanding a proof. At this level, a student begins paying
attention to each component of the proof, including singular
propositions (premises, conclusions, and the intermediate
propositions between them), universal propositions (theorems,
definitions, etc.), and the appropriate connectives between
singular and universal propositions (Miyazaki et al., 2017).

Levels of Planning a Proof
Planning a proof refers to students seeking ways to connect
premises and conclusions using deductive reasoning (Tsujiyama
and Yui, 2018) before construction. In this activity, necessary
conditions are deduced from premise to conclusion by thinking
forward. In contrast, sufficient conditions are deduced in the
opposite direction by thinking backward. The former proposes
a network of propositions that can be deduced from premises,
while the latter proposes a network of propositions that can
be deduced from conclusions. In planning a proof, common
propositions as joint points of the two networks need to be sought
while these networks expand (Heinze et al., 2008).

For planning a proof, what can be used to connect premises
and conclusions (object), and how it can be used (method),
should be considered carefully. Learning to plan a proof requires
differentiating the objects and methods, and then making use
of them to connect premises and conclusions. This is the first
learning level of planning a proof (P1).

As described above, planning a proof requires expanding
the two networks of propositions, and seeking the common
propositions within the two networks. Therefore, the advanced
learning of planning a proof requires differentiating the method
of P1 into thinking forward from premises to conclusions and
thinking backward in the opposite direction, and then making

use of them to connect premises and conclusions. This is the
second learning level of planning a proof (P2).

We can thus hypothesize the learning levels of planning a
proof as follows:

P1: Clarify what can be used and how to connect the premises
and conclusion.

P2: Consider how to think backward from the conclusion and
forward from the premises, as well as how to connect them.

For example, as shown in Figure 2 in planning a proof of the
proposition “if AB=AC in 1ABC, then 6 ABD= 6 ACD,” Level
P1 only shows what and how to use the congruent condition of
triangles, and the property of congruent figures. On the contrary,
Level P2 shows thinking backward from the conclusion “ 6 B=
6 C,” thinking forward from premises related to 1ABD and
1ACD, and prospects to connect them.

Levels of Constructing a Proof
Constructing a proof consists of finding common propositions in
two relational networks and expressing the deductive connection
between the premises and conclusion, which are suggested in the
planning level. This connection can be realized using two kinds of
deductive reasoning (i.e., universal instantiation and hypothetical
syllogism; Miyazaki et al., 2017). Finally, constructing a proof can
be achieved by expressing the realized connection with language,
diagrams, etc.

In the case of a geometrical proof, premise and conclusion
can be connected by hypothetical syllogism based on singular
propositions particular to the diagram. Therefore, learning to
construct a proof first requires students to express the connection
based on hypothetical syllogism, the first learning level of
constructing a proof (C1).

Furthermore, each proposition should be deduced from a
universal proposition (i.e., a theorem). This deduction can
be realized by universal instantiation. The student needs to
differentiate universal instantiation and hypothetical syllogism
from deductive reasoning, and clearly distinguish between
singular propositions and universal propositions for the second
level (C2).
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Thus, we can hypothesize the learning levels of constructing a
proof as follows:

C1: Form and express the deductive connection between the
premises and conclusion.

C2: Form and express the deductive connection between
the premises and conclusion by differentiating
universal instantiation and hypothetical syllogism from
deductive reasoning.

For example, for the proposition, “if AB=AC in 1ABC, then
6 ABD= 6 ACD,” which uses the angle bisector AD (see Figure 3),
students at Level C2 can produce a proof that shows singular
propositions (e.g., 1ABD ≡ 1ACD) deduced from a universal
proposition or theorem [e.g., “if two pairs of sides of triangles
are equal in length and the included angles are equal in
measurement, then these triangles are congruent” (SAS)], and
a chain of singular propositions by hypothetical syllogism.
However, students at Level C1 can produce a simpler proof than
at C2, which only shows a chain of singular propositions using
hypothetical syllogism, but without any explicit identifications of
which theorems are used to deduce them.

Learning Progressions in
Explorative Proving
Setting the Theoretical Learning Levels for

Curriculum Development
Planning and constructing are essential, interrelated aspects
of mathematical explorative proving. To develop school
mathematics curricula—assuming that students’ development
of planning and constructing are independent of each other—
combining the two levels of planning a proof and the two levels
of constructing a proof produces four learning levels: (P1, C1),
(P2, C1), (P1, C2), and (P2, C2).

Learning level “0” is the starting point of the learning
progression of explorative proving. At this level, even though
there is no differentiation between planning and constructing a
proof, a proof can be produced. Similarly, there are learning levels
focused on either planning or constructing a proof, despite their
differences. These learning levels are P1, P2, C1, and C2. Thus, we
can set nine theoretical learning levels: 0, (0, P1), (0, P2), (0, C1),
(0, C2), (P1, C1), (P1, C2), (P2, C1), and (P2, C2), to establish the
learning levels in our proposed explorative proving curriculum.

Two Kinds of Shifts in Learning Levels and

Their Processes
In lower secondary school geometry in Japan, our explorative
proving curriculum should start the shift from Level 0 to Level
(P2, C2) due to the correspondence with the current national
curriculum, the Course of Study. The shift needs to pass through
Level (P1, C1) to enhance planning and constructing a proof
reciprocally. Therefore, the shift can be divided into the former
[0⇒ (P1, C1)] and latter [(P1, C1)⇒ (P2, C2)].

The transition process of the former shift passes through
either Level C1 or P1. In the case of passing through C1, this level
aims for students to connect assumptions and conclusions by a
chain of singular propositions with hypothetical syllogism. Then,
at the next level (P1, C1), the learning of P1, that is, clarifying

what can be used and how it can be used to connect premises and
conclusions, can be realized. In contrast, in the case of passing
through Level P1, the learning of P1 cannot be realized because
students cannot learn to clarify what can be used and how it can
be used to connect the premises and conclusion (P1) without
having a chance to form and express the deductive connection
between them (C1).

For example, in producing the proof “if AB=AC in 1ABC,
then 6 ABD= 6 ACD,” students at Level 0, where they have
no differentiation between planning and constructing a proof,
cannot imagine the deductive connection of the premise
“AB=AC in 1ABC” and conclusion “ 6 ABD= 6 ACD” required
to make level P1 planning. Therefore, they first understand this
connection in the Level C1 proof (Figure 3), and form and
express by themselves by focusing on hypothetical syllogism. At
that time, they might be able to clarify what can be used and how
to connect the premises and conclusion of new proof problems.

The transition process of the latter shift passes through either
Level (P1, C2) or (P2, C1). In passing through (P1, C2), this level
aims to form and express the connection between the premises
and conclusion with differentiating universal instantiation and
hypothetical syllogism from deductive reasoning. Due to carrying
out deductive reasoning based on universal instantiation, at the
next Level (P2, C2), thinking backward from conclusions and
forward from assumptions can be differentiated and carried
out together. However, in passing through Level (P2, C1), the
learning of P2 is difficult to realize because students cannot
learn to distinguish thinking forward from the conclusion,
from thinking forward from the premises, and how to connect
these processes (P2) without the chance to form and express
the deductive connection based on universal instantiation and
hypothetical syllogism (C2).

For example, in producing the proof “if AB=AC in 1ABC,
then 6 ABD= 6 ACD,” students at Level (P1, C1) can clarify
what can be used and how to connect the premises “AB=AC
in 1ABC” and conclusion “ 6 ABD= 6 ACD” (P1), and form
and express the deductive connection between them. However,
they especially cannot think backward from the conclusion
“ 6 ABD= 6 ACD,” even if they can think forward from the
premise “AB=AC in 1ABC.” Therefore, passing through Level
(P2, C1) is difficult for students at Level (P1, C1). To think
backward from the conclusion, students first must understand
the proof structure with differentiating universal instantiation
and hypothetical syllogism in the Level C2 proof (Figure 3),
and form and express by themselves by focusing on universal
instantiation (Miyazaki et al., 2017). At that time, even to solve a
new proof problem, they might be able to consider how to think
backward from the conclusion and forward from the premises, as
well as how to connect them.

Framework for Developing an Explorative
Proving Curriculum
Concerning Question (a), we could specify the six learning
levels and establish the two transition processes as learning
progressions. The former is from Level 0 to (P1, C1) via C1,
and the latter is from Level (P1, C1) to (P2, C2) via (P1,
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FIGURE 3 | Examples of the learning levels of constructing a proof.

FIGURE 4 | Framework for developing an explorative proving curriculum.

C2). For each level, the looking back component [Examining,
Improving, and Advancing (EIA)] should be encouraged in
explorative proving (Figure 4). Depending on the objectives, it
should be decided whether looking back (EIA) is required or not.
Therefore, by regarding these learning progression transitions,
we can theoretically establish the following progressive model as
a framework for developing an explorative proving curriculum:

DEVELOPING A CURRICULUM BASED ON
THE FRAMEWORK

Making Correspondence Tables of Units
With Learning Progressions
To answer Question (b), we first examined the existing intended
curriculum and lessons in Japan’s Course of Study, to show
how we can make them more explorative based on our
theoretical framework.

TABLE 1 | Correspondence of intended units with local progressions in Grade 8

geometry.

Units in “Course of Study” Local Progressions

Properties of parallel lines and angles (P1, C1)→(P1, C2)

Congruence and properties of congruent triangles (P1, C2)→(P1, C2) + EIA

Proof and proving (P1, C2) + EIA→(P2, C2)

Properties of triangles and quadrilaterals (P2, C2)→(P2, C2) + EIA

In lower high school in Japan, the Course of Study requires
students to learn about the various properties of plane and
three-dimensional figures mainly based on congruency and
similarity, as well as the meaning of proof and how to prove
formally. Although the Course of Study encourages teachers to
introduce formal proofs gradually until the end of Grade 8 (14
years old), previous studies have proposed no clear method. To
improve this situation, we first considered the correspondence
of the intended units in the Course of Study with the two
learning progressions in our theoretical framework, as illustrated
in Figure 4.

For example, in Grade 8 geometry, the Course of Study
requires students to study the following units: the properties of
parallel lines and angles, the properties of angles of polygons,
congruence and the properties of congruent triangles, proof
and proving, and the properties of triangles and quadrilaterals.
Assuming that Level (P1, C1) is already attained by the
end of Grade 7, in Grade 8, the transition process from
(P1, C1) to (P2, C2) is the key progression, which can
be subdivided into the four following local progressions:
(P1, C1)→(P1, C2), (P1, C2)→(P1, C2) + EIA, (P1, C2)
+ EIA→(P2, C2), and (P2, C2)→(P2, C2) + EIA. EIA
plays important roles in supporting progressions I and II in
our model.

By combining the intended teaching units in the Course of
Study with the local progressions from (P1, C1)→ (P2, C2)+
EIA, we can make the following correspondence table for the
intended units with our local progressions (Table 1).

Frontiers in Education | www.frontiersin.org 5 April 2019 | Volume 4 | Article 31

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Miyazaki et al. Curriculum Development for Explorative Proving

Implementing Classroom Lessons Based
on the Correspondence Table
We have been designing and implementing junior high school
lessons in our correspondence table derived from our theoretical
examinations described above since 2009.We used themethod of
lesson study (Lewis et al., 2006) and a design experiment (Cobb
et al., 2003) to plan, implement, and reflect on these lessons.

Localizing the Correspondence Table According to

Learning Objectives
Every teaching unit in the Course of Study includes
many learning objectives. To realize lessons based on the
correspondence table (Table 1), it is necessary to localize each
pair with the unit contents.

For example, the unit “Properties of parallel lines and angles”
in Grade 8 includes seven learning objectives. Six aim to teach
students about the essential geometrical properties and apply
the learned properties. According to the correspondence table,
this unit aims to achieve the following local progression: (P1,
C1)→(P1, C2). Since achieving such progression for all learning
content is neither realistic nor effective, we should aim for
gradual student progress through the material as follows: Lesson
1: Vertical angles are equal (P1, C1); Lesson 2: Corresponding
angles are equal ⇒ Two lines are parallel (P1, C1)→(P1, C2);
Lesson 3: Alternate interior angles are equal ⇒ Two lines are
parallel (P1, C1)→(P1, C2); Lesson 4: The sum of the inner angles
of the same side is 180◦ (P1, C1)→(P1, C2); Lesson 5: The sum
of the inner angles of a triangle (P1, C2); Lesson 6: The relation
between the inner angles and an exterior angle in a triangle (P1,
C2); Lesson 7: Angles in slanting L-shaped lines between two
parallel lines (P1, C2); Lesson 8: The sum of the inner angles of
n-polygon (P1, C2); Lesson 9: The sum of exterior angles of n-
polygon (P1, C2); and Lesson 10: Angle of a concave quadrilateral
(P1, C2). In preparing the series of lessons, we worked with expert
mathematics teachers to design the local progressions. We then
designed the following local progressions.

Planning and Implementing Lessons: The Unit of

Properties of Parallel Lines and Angles
The lessons based on the local progressions in the unit
“Properties of parallel lines and angles” were implemented in a
Grade 8 class (16 boys and 19 girls) from December 10, 2014 to
January 20, 2015, including winter vacation, in a public junior
high in Nagano Prefecture. This school is in the city center and
has six Grade 8 classes. At that time, the teacher had 15 years of
experience teaching junior high mathematics.

In planning lessons, researchers explained our curriculum
framework with the correspondence of intended units with local
progressions in Grade 8 geometry (Table 1), and showed our plan
for “Properties of parallel lines and angles” achieving the local
progression (P1, C1)→(P1, C2) as above. Along with the plan,
the teacher prepared lessons. After implementing each lesson,
the teacher and researchers reflected on the implemented lessons,
and refined the next lesson plan.

According to the local progressions in the unit, the first
to fourth lessons aimed to shift the learning level from
(P1, C1) to (P1, C2). Concerning P1 in every lesson, the

teacher always asked students how to solve the problem
from the perspective of what could be used and how.
Conversely, the shift from C1 to C2 must differentiate
universal instantiation and hypothetical syllogism from
deductive reasoning.

Due to space limitations, we introduce the implementation of
Lesson 4 corresponding to the local progression (P1, C1)→(P1,
C2), that is, aiming to shift students’ understanding of the
proof construction from C1 to C2. Before Lesson 4, the six
properties of angles in lines were found inductively, proved
using simple deductive reasoning, and shared as theorems.
Each of these theorems was written on a paper numbered
from 1 to 6, and then listed accumulatively on the student
worksheet and blackboard in every lesson: À A straight angle
is 180◦, Á Vertical angles are equal, Â Corresponding angles
are equal if the two lines are parallel, Ã The two lines are

parallel if the corresponding angles are equal, Ä Alternate
interior angles are equal if the two lines are parallel, and
Å The two lines are parallel if the alternate interior angles
are equal.

In Lesson 4, for students to explain why the sum of interior
angles on the same side is 180◦, a problem was proposed with the
following diagram (see Figure 5, upper image).

Confirming that the six theorems can be used to solve
the problem, the teacher refined the problem: “By using the
learned theorems, write the reason why 6 c + 6 h =180◦.”
With this instruction, the students managed to clarify what
can be used and how it can be used to connect the premises
and conclusion, which corresponds to planning level P1. After
individual and collaborative solving, the teacher selected Student
K’s explanation, and K wrote it on the blackboard as follows:
“Combining 6 h with 6 g makes 180◦, and 6 g is equal to 6 c, then
6 c + 6 h=180◦” (Figure 5, middle image). This only showed

singular propositions peculiar to the diagram and a chain of

them using hypothetical syllogism. After K finished writing, the
teacher asked him, “Which theorems did you use and how?”
Through classroom discussion, the teacher confirmed that the

theorems in the order of “À → Ã” were used and wrote it on

the blackboard. This suggestion encouraged students to show
not only how to connect singular propositions with hypothetical

syllogism in their proofs but also which universal propositions

were necessary to deduce singular propositions from universal
instantiations. This encouragement supported their shift from

Level (P1, C1) to (P1, C2).
Next, the teacher selected two other students’ explanations.

After they finished writing their explanations, respectively, the
teacher interacted with them as follows:

T: Both of you wrote À, Ã, and Ä before the calculation
expressions. Why?

S1: I think the properties used are necessary to calculate angles
as reasons, as we learned.

T: The same, S2?
S2: In my opinion, only by the number À, and Ä, it is difficult

to be reminded which property is used. Then, I added the
meaning of À, and Ä, respectively.

T: Great!
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FIGURE 5 | Problem and students’ explanations with the teacher’s comments in yellow chalk.

Thus, the teacher praised these students for correctly embedding
the numbers of the theorems (e.g., Ä), and drew wavy lines
in yellow (Figure 5, lower image) to emphasize the importance
of recognizing and writing the theorems. Through praise, the
teacher again encouraged the students to indicate which universal
propositions (theorems) were necessary to deduce singular
propositions from universal instantiations. Finally, the teacher
defined the relation of two angles “同内角” (interior angles on
the same side), and wrote the theorem on a piece of paper as
follows: “Æ The sum of interior angles on the same side is 180◦ if
two lines are parallel.”

Effects of the Implemented Curriculum
In Lesson 10, students tackled finding Angle “X” of a concave
quadrilateral and explaining the reason. In this lesson, students
are requested to explain why the size of Angle “X” is 145◦ in Level
(P1, C2). This is a typical problem in the traditional curriculum.
All students could easily find that the size of Angle “X” is 145◦,
and most could write their explanation including the number
of theorems before the calculation expressions, and the order of
applying theorems “Ç → À → È” (Figure 6). The number Ç

means the property of the sum of the inner angles of a triangle
learned in Lesson 5, and È means the property of the relation
between the inner angles and an exterior angle in a triangle
learned in Lesson 6.

Generally, in the traditional curriculum, students do not
attempt to recognize the used theorems or the order of applying
theorems nor represent them, although they can also find the

size of Angle “X” and write the calculation expressions without
the numbers of the properties. However, in the explanation,
each calculation expression is drawn by universal instantiation
using a geometrical theorem, and the order of applying theorems
shows the deductive connection between the premises and
conclusion by hypothetical syllogism. Therefore, it is clear
that most students’ ability could reach Level C2 proof by the
implemented curriculum.

Refining the Curriculum Through
Lesson Reflection
After implementing the seven lessons, we found it possible to
realize Level “(P1, C2)+ EIA” in Lessons 6 and 7. For example, in
Lesson 6, students focused on the relation between inner angles
and an exterior angle in a triangle, and deducting reasons why
based on the proof constructed in Lesson 5, “The sum of the inner
angles of a triangle.” In addition, Lesson 7, in which students
learn about angles in slanting L-shaped lines between two parallel
lines, can advance students’ proving skills by changing two
parallel lines to intersect each other. This encouraged us to
modify the original local progression (P1, C2) of Lessons 6 and 7
to (P1, C2)+EIA. As a result, Lesson 6 will focus more on how to
discover the relation between inner angles and an exterior angle
from the proof constructed in Lesson 5, and Lesson 7 will deepen
students’ learning at the level of (P1, C2)+EIA.

By the reflections, we refined the correspondence of intended
units with local progression (Table 1). The unit “Properties of
parallel lines and angles” accepts the local progression “(P1,
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FIGURE 6 | Typical explanation by students.

C1)→(P1, C2)+EIA” instead of “(P1, C1)→(P1, C2),” and the
unit of “Congruence and properties of congruent triangles” does
not need to shift to “(P1, C2)+EIA.”

DISCUSSION

Although gradual shifts in producing proofs in curriculum have
been recognized as important, it can be realized by introducing
local progressions corresponding to unit learning objectives
based on the theoretical framework of explorative proving.
Moreover, our curriculum will encourage students to plan,
construct, and look back at their proof and proving. In particular,
the learning levels of looking back provide opportunities to
examine, improve, and advance their proving activities more
creatively and logically. Our idea for realizing a gradual shift is
rooted in hypothetical learning trajectory (Clements and Sarama,
2004) and learning progression (Empsom, 2011). Our theoretical
curriculum development can be achieved by setting two levels
of “Planning a proof” and “Constructing a proof,” respectively,
combining them with “examining, improving, and advancing”
as the characteristics of explorative proving, elucidating the
two target progressions while considering the relationship of
the three components of explorative proving, and then making
connections between the units and the target progressions. The
theoretical process of curriculum development can thus proceed
as follows: identifying the key components of the learning
objectives, setting their gradual levels, respectively, combining
them, elucidating the target progressions, and connecting the
units with the progressions.

Furthermore, with adopting themethod of lesson study (Lewis
et al., 2006) and a design experiment (Cobb et al., 2003),
we implemented classroom lessons based on the connections
between the units and one of the target progressions. By
implementing and reviewing these lessons, we could find the
advantages and limitations of the curriculum, and proceed
with developing a more robust curriculum by refining the

correspondence of intended units with local progressions.
We will continue to develop and improve the curriculum
by reconstructing the theoretical framework by refining the
target progressions, and adjusting the corresponding unit tables,
to ensure that both theoretical and realistic dimensions are
considered, thereby ensuring that it is practical and valuable for
teachers (Davis et al., 2014).

Concerning our research activity, we have already made the
correspondence tables of units with our target progressions for
Grades 7–9 geometry along with the Japanese Course of Study.
Under the fruitful collaboration with expert teachers, these tables
will be subdivided into local progressions according to unit
learning contents, and then lesson planning and implementation
will also proceed. We will conduct another cycle of our design
experiment, and by reflecting on the lessons implemented in the
first cycle, it is expected that by the end of the second cycle,
we will be able to develop a more implementable curriculum.
However, we should evaluate our curriculum from the point
of learning explorative proving (e.g., How can students achieve
explorative proving with our curriculum?), which remains one of
the most crucial problems. For this purpose, we should develop
appropriate standards and methods for evaluation.
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