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Research has demonstrated that when data are collected in a multilevel framework,

standard single level differential item functioning (DIF) analyses can yield incorrect results,

particularly inflated Type I error rates. Prior research in this area has focused almost

exclusively on dichotomous items. Thus, the purpose of this simulation study was

to examine the performance of the Generalized Mantel-Haenszel (GMH) procedure

and a Multilevel GMH (MGMH) procedure for the detection of uniform differential item

functioning (DIF) in the presence of multilevel data with polytomous items. Multilevel

data were generated with manipulated factors (e.g., intraclass correction, subjects per

cluster) to examine Type I error rates and statistical power to detect DIF. Results highlight

the differences in DIF detection when the analytic strategy matches the data structure.

Specifically, the GMH had an inflated Type I error rate across conditions, and thus

an artificially high power rate. Alternatively, the MGMH had good power rates while

maintaining control of the Type I error rate. Directions for future research are provided.

Keywords: multilevel, differential item functioning, invariance, validity, test and item development

INTRODUCTION

Measurement invariance (MI) is recognized as a critical component toward building a validity
argument to support test score use and interpretation in the context of fairness. At the item-level,
MI indicates that the statistical properties characterizing an item (e.g., difficulty) are equivalent
across diverse examinee groups (e.g., language). As such, it represents a critical aspect of the validity
of test data, particularly for ensuring the comparability of item and total scores to guide decisions
(e.g., placement) across examine groups. Differential item functioning (DIF) is a direct threat to
the MI of test items and occurs when item parameters differ across equal ability groups, resulting
in the differential likelihood of a particular (e.g., correct) item response (Raju et al., 2002). DIF
detection generally focus on the identification of uniform and nonuniform DIF, where uniform
DIF refers to differential item difficulty across equal ability groups, and nonuniform DIF refers to
inequality of the discrimination parameters across groups, after matching on ability. DIF studies
are encouraged by the Standards for Educational and Psychological Tests (American Educational
Research Association et al., 2014), and follow sound testing practices.
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Considerable attention has been focused on the development
and evaluation of DIF detection methods to identify potentially
biased test items (Osterlind and Everson, 2009). The outcome
of this work, for example, has provided a basis to judge the
efficacy of these methods to detect DIF among dichotomously
(Holland and Thayer, 1988; Narayanan and Swaminathan, 1996)
and polytomously (French and Miller, 1996; Williams and
Beretvas, 2006; Penfield, 2007) scored items. An extension
of this work is testing their effectiveness to detect DIF
under multilevel data structures (Luppescu, 2002; French and
Finch, 2010, 2012, 2013; Jin et al., 2014). Hierarchical data
structures, such as students nested in classrooms, are common
in educational testing settings (O’Connell and McCoach,
2008). Consequently, the non-independence of observations
in multilevel data can result in inflated Type I error rates
(Raudenbush and Bryk, 2002), which can result in invalid
inferences of DIF detection methods. Whereas adjusted DIF
detection procedures (e.g., Mantel-Haenszel [MH], logistic
regression [LR]) have been evaluated for dichotomously scored
test items (French and Finch, 2012, 2013; Jin et al., 2014),
the purpose of this study was to address the literature
gap on the use of the generalized Mantel-Haenszel (GMH)
procedure for DIF detection of polytomously scored test items
in multilevel data.

DIF ASSESSMENT FOR POLYTOMOUS
ITEM RESPONSE DATA USING THE
GENERALIZED
MANTEL-HAENSZEL STATISTIC

There exist a large number of DIF detection methods for diverse
types of item data, several of which have been studied and
compared (e.g., Narayanan and Swaminathan, 1996; Penfield,
2001; Kistjansson et al., 2004; Finch, 2005; Woods, 2011; Oliveri
et al., 2012; Jin et al., 2014). In the context of polytomous item
response data, which is the focus of this study, one of the most
proven of these methods is the GMH statistic. Holland and
Thayer (1988), and Narayanan and Swaminathan (1996), applied
the MH to DIF detection with dichotomous items. Subsequently,
it has been used for investigating the presence of DIF with
polytomous items, and been shown to be a useful tool for that
purpose (Penfield, 2001). The MH procedure is an extension of
the chi-square test of association, allowing for comparison of item
responses between the focal and reference groups conditioning
across multiple levels of a matching subtest score. When testing
the null hypothesis of no DIF, theMHχ

2 statistic is used (Holland
and Thayer, 1988):

{|
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∑
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[Aj − E(Aj)]| − .5}2

S
∑

j=1
Var(Aj)

, (1)
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Var(Aj) =
nRjnFjm1jm0j

T2
j(Tj − 1)

, (2)

In Equations (1) and (2), Aj – E(Aj) is the difference between the
observed number of correct responses for the reference group
on the item being studied for DIF (A) and the expected correct
number, nRjand nFj are the sample sizes for the reference and
focal group, respectively, at score j of the matching subtest, m1j

and m0jrepresent the number of correct and incorrect responses,
respectively, at j matching subtest score, and T represents the
total number of examinees at matching subtest score j. This
statistic is distributed as a chi-square with one degree of freedom
and tests the null hypothesis of no uniform DIF. This statistic can
be readily extended to accommodate items with more than two
categories (Penfield, 2001).

ADJUSTED MH TEST STATISTIC METHOD

French and Finch (2013) identified a promising set of
adjustments for the MH statistic for DIF detection in the context
of multilevel data. Their work was based on an earlier effort
by Begg (1999) who demonstrated how the standard MH test
statistic could be adjusted to account for multilevel data. The
Begg MH (BMH) technique is based on the observation that
the score statistic obtained from logistic regression is equivalent
to the MH test statistic when the intraclass correlation (ICC) is
equal to 0 (see Begg, 1999). Therefore, the variance associated
with the logistic regression score statistic is proportional to the
variance of the MH test statistic used for DIF detection. Notably,
it is the variance and standard error of the MH test statistic
that is underestimated in the presence of multilevel data. Given
this relationship between the score statistic MH variances, BMH
adjusts the MH test statistic by the ratio of the score statistic
variance estimated using a logistic regression model accounting
for the multilevel data structure with the generalized estimating
equation (GEE) to the naïve score statistic variance that does
not account for the multilevel nature of the data. The naïve and
GEE-based logistic regression models both take the form:

ln
(

Pki
1−Pki

)

= β0 + β1Xi + β2Yi

where,
Pki = probability of a correct response to item k
β0 = intercept
Xi = group membership for subject i
Yi = matching subtest score for subject i
β1 = coefficient for group variable
β2 = coefficient for matching subtest variable

(3)

For the naïve LR model, the covariance matrix for the dependent
variable with respect to clusters is the identity matrix, in which
the off-diagonal elements are 0, reflecting no clustering effects
on the outcome (i.e., ICC = 0). The GEE model estimates the
off-diagonal elements of the covariance matrix, thus accounting
for within cluster correlations among responses. In this case,
the unstructured covariance matrix is estimated, meaning that a
unique covariance was estimated for each cluster. For both naïve
LR and GEE, the variances of the score statistic are obtained
and used to calculate their adjustment factor, which appears in
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Equation (4) below.

f =
σ 2
GEE

σ 2
Naive

where,

σ 2
GEE = GEE adjusted variance of the score statistic

accounting for clustering

σ 2
Naive = Naive variance of the score statistic ignoring

clustering; proportional to the variance of MH

(4)

If the ICC is 0 in the population, then this ratio will be near 1
for the sample. However, as the within cluster correlation among
observations increases so does σ 2

GEE, f will also increase in value,
reflecting the overestimation of the score statistic variance in the
presence of multilevel data. The f ratio can then be used to adjust
the MH test statistic as seen in Equation (5).

MHB =
MH

f
(5)

MH is the standard MH chi-square test statistic. As noted above,
when the within-cluster correlations are large, σ 2

GEE will be larger
than σ 2

naive, leading to a value of f that is relatively large and
positive, which, will lead to a larger value of f, which when applied
in Equation (5) will decrease the size of MHB relative to MH.
This will correct for the within cluster correlation induced by the
multilevel data structure.

The use of the MHB statistic for dichotomous DIF detection
demonstrated that while it was very effective at controlling
the Type I error rate in the presence of multilevel data, it
exhibited markedly lower power for relatively small sample sizes,
and lower levels of DIF (French and Finch, 2013). Thus, it
was suggested that alternative adjustments to f be considered.
These alternatives included multiplying f by 0.85 (BMH85),
0.90 (BMH9), or 0.95 (BMH95) to reduce the amount of the
correction. These adjustments were selected through an iterative
process of experimentation with the method, and validation
using Monte Carlo simulations (French and Finch, 2013).
Empirical results of the simulation study involving dichotomous
data showed that the standard BMH statistic, as well as the
BMH95 and BMH9 statistics, were able to maintain the nominal
Type I error rate across all study conditions. However, they also
demonstrated lower power than MH across many of these same
data conditions. On the other hand, MH consistently displayed
inflated Type I error rates in the presence of multilevel data
for testing DIF with a between clusters variable. The BMH85
statistic offered a reasonable compromise for DIF in the presence
of multilevel data, particularly when the ICC was 0.25 or greater
given Type I error inflation never exceeded 0.093 (compared to
Type I error rates in excess of 0.20 for MH), and it maintained
power rates close to MH.

GOALS OF THE CURRENT STUDY

The goal of this study was to examine the performance of the
Begg adjusted methods for MH in the context of polytomous
item data and build upon the foundation laid with dichotomous
items. Given that the GMH approach has been shown to be an

effective DIF detection tool for polytomous data, it was of interest
to ascertain how well an adjusted version of the statistic would
work in the context of multilevel data, using the Begg adjustment
based methods outlined above (i.e., BGMH85, BGMH9, and
BGMH95). It was expected that BGMH85 would perform best
of the options compared. Thus, the current simulation study
examined the Type I error and power rates for DIF detection
with polytomous items using GMH, BGMH85, BGMH9, and
BGMH95 across manipulated factors (e.g., grouping variable,
ICC, subjects per cluster).

METHODS

A simulation study (1,000 replications) using SAS (V9.3)
compared the performance of the BGMH adjustments to
standard GMH for DIF detection with polytomously scored
items. Outcome variables of interest included Type I error and
power rates across manipulated factors, including: grouping
variable, ICC, number of clusters, sample size per cluster, and
DIF magnitude. We note that the standard equation for the ICC
is different for ordinal variables where the within variance is a
constant (i.e., 3.29, Heck et al., 2013). Data were simulated using
a multilevel graded response model (MGRM; e.g., Fox, 2005;
Kamata and Vaughn, 2011), with item threshold parameters and
discrimination values appearing in Table 1. The model can be
defined using Kamata and Vaughn’s general example:

Pxi
(

θjk, θ.k
)

=
e

(

α
(s)
i θjk+α

(c)
i θ.k−δxi

)

1+ e

(

α
(s)
i θjk+α

(c)
i θ.k−δxi

) (6)

Where

θjk = Latent trait for student j in cluster k or the amount of

deviation from the group mean ability for student j in
cluster k.

θ.k = Latent trait for cluster k or group mean ability

α
(s)
i = Discrimination parameter for item i at student level

α
(c)
i = Discrimination parameter for item i at cluster level

δxi = Threshold for item i for category boundary x

The latent traits are assumed to be distributed as follows:

θjk ∼ N
(

0, σ 2
θ (s)

)

θ.k ∼ N
(

0, σ 2
θ (c)

)

This would give the probability of obtaining a certain score or
higher and the probability of obtaining a certain category would
be computed as the difference between this probability of x or
higher and the probability of responding in category x + 1 or
higher (e.g., Natesan et al., 2010; Kamata and Vaughn, 2011).

For all simulations, 20 items were simulated, each with 4
response levels, and a purified scale score was used for matching
purposes. This latter condition was used to allow for the isolation
of the impact of multilevel data, exclusive of other factors that
might influence the performance of GMH and the adjustments
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TABLE 1 | Data generating parameters for the graded response model.

Item Discrimination T1 T2 T3

1 0.89 −1.22 0 1.37

2 1.03 −1.50 −0.67 1.19

3 0.78 −1.41 0.14 1.20

4 1.44 −0.87 0.5 1.06

5 1.71 −1.87 0.89 1.49

6 0.99 −1.16 −0.29 1.13

7 1.36 −0.89 0.35 0.87

8 1.05 −1.09 0.2 1.58

9 1.29 −1.14 0.22 1.64

10 1.65 −1.25 0.17 1.46

11 0.88 −1.00 0.32 1.38

12 0.93 −1.75 −0.59 1.34

13 1.04 −0.77 0.08 1.49

14 0.91 −1.81 0.22 1.15

15 1.55 −1.10 0.04 1.98

16 0.87 −1.16 −0.29 1.13

17 1.32 −0.89 0.35 0.87

18 1.47 −1.09 0.20 1.58

19 0.90 −1.14 0.22 1.64

20 1.63 −1.25 0.17 1.46

(e.g., contaminated scale). DIF was simulated for a target
item, with magnitudes as described below. In the calculation
of the MH statistics, purified raw test scores were used for
matching purposes.

MANIPULATED FACTORS

Grouping Variable
Two grouping variable conditions were simulated: (1) within-
cluster (e.g., examinee gender), or (2) between-cluster (e.g.,
teaching method, teacher gender), consistent with previous
research on DIF detection within multilevel data structures
(French and Finch, 2013; Jin et al., 2014).

Intraclass Correlation (ICC)

For the studied item and total score, the ICCs were set at five
levels: 0.05, 0.15, 0.25, 0.35, and 0.45. These values were in accord
with estimates obtained from large national databases (Hedges
and Hedberg, 2007), and reflect values observed in practice
(Muthén, 1994).

Number of Clusters
The number of simulated level-2 clusters included: 50, 100, and
200. Prior studies (Muthén and Satorra, 1995; Hox and Maas,
2001; Maas and Hox, 2005; French and Finch, 2013) have used
similar values.

Number of Subjects Per Cluster
Clusters were simulated to be of equal size, taking the values 5, 15,
25, and 50. These values match those used in previous research
(Muthén and Satorra, 1995; Hox and Maas, 2001; Maas and Hox,
2005; French and Finch, 2013).

DIF Magnitude
Four levels of DIF magnitude were simulated for the target
item, based on prior DIF simulation for polytomous items
(Penfield, 2007), and included: 0, 0.4, 0.6, and 0.8. Uniform DIF
was specified by simulating differences in item each threshold
parameter value for the target item, between the groups. In
other words, the DIF magnitude value was added to each of
the threshold values (Table 1) on the target item for the focal
group. The focus was on uniformDIF as theMH procedure is not
accurate with non-uniform DIF. In addition, uniform DIF tends
to occur with greater frequency in assessments compared to non-
uniform DIF, as reflected in simulation work (Jodoin and Gierl,
2001; French and Maller, 2007), and applied work (e.g., Maller,
2001). Each replicated dataset per condition was analyzed using
standard GMH and the MGMHmethods outlined above.

Analysis
To determine which manipulated factors influenced the power
and Type I error rates, repeated measures analysis of variance
(ANOVA) was used, per recommendations for simulation
research (Paxton et al., 2001; Feinberg and Rubright, 2016). A
separate such analysis was conducted in which the Type I error
or power rates averaged across replications for each combination
of conditions served as the dependent variables. Themanipulated
factors described above, and their interactions, served as the
independent variables in the model. In addition to statistical
significance of these model terms, the η2 effect size was also
reported. We also focus on a visual display of the results to
enhance comprehension and efficiency (McCrudden et al., 2015)
compared to displaying many tables.

RESULTS

Type I Error Rate
The ANOVA results identified two terms significantly related to
the Type I error rate of the GMH and Begg adjusted procedures.
These included the 3-way interaction of the test statistic by ICC
by grouping variable for whichDIF was tested [F(12, 219) = 33.749,
p < 0.001, η2= 0.646], and the 3-way interaction of test statistic
by cluster size by grouping variable for which DIF was tested
[F(12, 219) = 8.752, p < 0.001, η2 = 0.324). Figure 1 shows the
Type I error rates of the statistical tests by the ICC and the
grouping variable being tested for DIF. When this variable was
at the within-cluster level (e.g., gender), the Type I error rate of
the GMH test adhered to the nominal 0.05 level, regardless of
the size of the ICC. Similarly, error rates of the Begg adjusted
statistics were conservative, fell below the 0.05 level, and were not
affected by ICC level. For the between-cluster grouping variable,
GMH had inflated Type I error rates well beyond the 0.05 level
and increased with ICC values. For the Begg adjusted values,
Type I error rates increased slightly across ICC conditions but,
nonetheless, were at or below the nominal level.

Figure 2 displays the Type I error rates for each statistical
test by cluster size and grouping variable. As shown, when the
grouping variable was within-cluster, the Type I error rates of
all statistical methods, including the standard GMH, were at
or below the nominal level of 0.05. For the Begg corrected
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FIGURE 1 | Type I error rates of GMH and BGM test statistics by ICC and level of variable.

tests, the error rate was always below 0.05, and declined with
increases in the sample size per cluster. In contrast, when
the variable was between-cluster, the Type I error rate for
GMH was always greater than the 0.05 level, and increased
concomitantly with increases in sample size per cluster. Contrary,
the Begg corrected tests maintained error rates below the
0.05 level and decreased with increases in the sample size
per cluster.

Power
As with the Type I error rate, a repeated measures ANOVA was
used to identify the significant main effects and interactions of
the manipulated factors in terms of their impact on power rates.
The interaction of ICC by method [F(16, 1,160) = 6.147, p < 0.001,
η2 = 0.078], the interaction of level of variable by amount of DIF
by method [F(8,576) = 15.368, p < 0.001, η2 = 0.176], and the
interaction of number of clusters by sample size per cluster by
method [F(24, 1,160) = 4.492, p < 0.001, η2 = 0.085] were each
significantly related to power.

Table 2 reports power rates by method and ICC. Importantly,
given the inflated Type I error rates in the between-cluster
variable condition, power results for GMH must be interpreted
with caution. Only when the ICC= 0.05 were the power rates for
the Begg adjusted methods >0.80. Consequently, across the test
statistics, power to detect DIF decreased with higher ICC values.
Specifically, for the standard GMH, the decline in power from an

ICC of 0.05 to 0.45 was approximately 0.045, whereas the Begg
adjusted methods decline was 0.11.

Figure 3 reports power rates by the level of the variable

(between, within), amount of DIF, and statistical test. As shown,

for each test statistic, power increased concomitantly with
increases in the amount of DIF present in the data. Furthermore,

power rates were lower for the between-levels variable for all

methods, except for GMH with DIF = 0.80, in which case power
was approximately 1.0 across conditions. The GMH statistic had

a distinct power advantage over the Begg adjusted methods for

between- and within-level variables when DIF = 0.40, and for
between-level variables when DIF = 0.60. At the two highest
DIF levels, power for BGMH85 (the adjusted method with
the highest power rates) was approximately equal to that of
GMH for the within-cluster variable. However, power for all
of the adjusted methods was at least 0.07 lower than that of
GMH in the between-cluster variable condition. As previously
noted, however, power rates for GMH in the between-cluster
condition must be interpreted with caution, due to inflated Type
I error rates.

Figure 4 displays power rates by statistical test, number of
clusters, and sample size by cluster. Again, given the Type I
error inflation for GMH that was reported earlier, these results
must be interpreted with caution. For all of the methods studied
here, power was higher with larger sample sizes and, for most
conditions, power was greater for GMH when compared to
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FIGURE 2 | Type I error rates of GMH and BGM test statistics by sample size per cluster and level of variable.

TABLE 2 | Power by method and ICC.

ICC GMH BGMH BGMH95 BGMH9 BGMH85

0.05 0.907 0.788 0.800 0.811 0.823

0.15 0.895 0.764 0.776 0.787 0.799

0.25 0.895 0.752 0.762 0.776 0.789

0.35 0.880 0.723 0.728 0.744 0.757

0.45 0.862 0.673 0.682 0.700 0.710

the Begg adjusted methods. In addition, with more clusters the
difference in power between GMH and the adjusted methods
declined. For example, for the 100 clusters with 25 members
per cluster condition and the 50 clusters with 50 members per
cluster, both had a total sample size of 2,500. In both conditions,
power for the GMH statistics was ∼0.98. However, for the Begg
adjusted methods, the power in the 50 clusters condition was
∼0.20 lower than in the 100 clusters condition, despite that the
total sample sizes for the two cases were identical. Indeed, for
the 100 clusters with 25 members per cluster case, the power for
BGMH85 was 0.08 lower than that of GMH, whereas it was 0.27
lower in the 50 clusters with 50 members per cluster condition.
This example demonstrates the nature of the interaction among
method, number of clusters, and cluster size; namely, that with
more clusters the power of the Begg adjusted methods was
greater, regardless of total sample size. Finally, in the presence of

200 clusters, the difference in power rates of the GMH and Begg
adjusted methods were always <0.05, regardless of cluster size.

DISCUSSION

The goal of this study was to investigate the performance of
the GMH and adjusted Begg methods for the detection of
uniform DIF for polytomous test items in the presence of
multilevel data. As such, it sought to extend the availability
of DIF procedures to the context of multilevel data gathered
on examinees grouped in clusters (e.g., classrooms, schools).
The availability of multilevel statistical procedures ensures that
analyses align with the data structure to ensure valid inferences
to guide decisions (Raudenbush and Bryk, 2002; O’Connell
and McCoach, 2008). Screening educational tests for DIF is
an important step toward ensuring the accuracy of inferences
based on between-group score differences within (e.g., language)
and/or between clusters (e.g., schools). Furthermore, it is a critical
step toward promoting fair testing practices in that tests function
similarly across diverse examinee groups (American Educational
Research Association et al., 2014). Therefore, it is crucial that
appropriate DIF detection procedures exist to identify items that
perform differentially for subgroups, when item response data are
collected in a multilevel framework.

The Type I error rates of GMH and the Begg adjustedmethods
differed according to the manipulated factors. In particular, the
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FIGURE 3 | Power by method, amount of DIF, and level of variable.

statistical significance of separate 3-way interactions indicated
that the GMH procedure had inflated Type I error rates for
specific conditions, whereas the Begg adjusted methods were
more conservative and, in general, adhered to the nominal alpha
level. Specifically, the procedures differed based on the grouping
variable and ICC. For the within-cluster condition, all procedures
reported Type I error rates at or below the nominal level, with
the Begg adjusted methods being slightly more conservative than
the GMH procedure. When the grouping variable was between-
cluster (e.g., examinee gender), the collection of Begg adjusted
methods reported acceptable Type I errors rates, whereas the
GMHmethod was considerably more liberal. Notably, the Type I
error rates for all procedures increased with associated increases
of the ICC. The methods were also found to differ when
combined with the grouping variable and number of subjects
per cluster. As previously reported, when the grouping variable
was within-cluster, all procedures adhered to the nominal 0.05
error rate, although the GMH procedure was slightly higher than
the Begg adjusted methods. Additionally, the Type I error rates
were found to decrease as the number of subjects per cluster
increased. Conversely, when the grouping variable was between-
cluster (e.g., schools assigned to different treatment conditions),
the GMHprocedure reported inflated Type I errors and increased
when the number of subjects per cluster increased. On the other
hand, the Begg adjusted methods adhered to the nominal 0.05

level, with their Type I error rates decreasing as the number
of subjects per cluster increased. These findings contribute to
the body of literature that standard DIF procedures (MH, LR)
have inflated Type I error rates in the presence of multilevel
data (Jin et al., 2014).

The statistical power of the GMH and Begg adjusted methods
were also found to vary depending on manipulated factor.
Although the statistical power of the GMH procedure exceeded
0.80 across ICC levels, it should be interpreted with great caution
due to its inflated Type I error rates. Therefore, in the presence
of multilevel data, the GMH procedure would be expected to
erroneously report the presence of DIF among test items. Only
when the ICC was 0.05 did the Begg adjusted methods report
power estimates above the desired 0.80 level. As the variance
associated to the cluster increases (ICCs 0.05–0.45), the statistical
power of the methods decreased approximately 0.11 across the
Begg adjusted procedures. Power rates also varied by level of
the grouping variable (within or between) and amount of DIF.
Notably, regardless of level of variable, power rates were lowest
for the lowest level of DIF condition (i.e., 0.40), whereas GMH
power was near 0.80. Again, despite the GMH procedure yielding
power at or above 0.80 across conditions, the corresponding
Type I error rates demand cautious interpretation. For both the
within- and between-cluster conditions, power rates of the Beggs
adjustedmethods increased approximately to or above 0.80. Only
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FIGURE 4 | Power by method, number of clusters, and sample size per cluster.

when the DIF magnitude was 0.60 did the Begg methods report
statistical power above 0.80, irrespective of the grouping variable.
Finally, across GMH procedures, power rates increased with the
number of clusters (e.g., 50, 100) and the number of subjects per
cluster. Notably, all procedures reported power rates <0.50 with
50 clusters and five subjects per cluster. Only when the number of
clusters was 100 or 200 did the Beggmethods report an acceptable
level of power for DIF detection.

Empirical findings of the current study provide a framework
for the application of the GMH and Begg adjusted procedures for
DIF detection. In applied settings, the GMH procedure should
be restricted for consideration in the absence of multilevel data.
Even with an ICC of 0.05 and at the between-level, its Type I
error rate was ∼0.10. This is similar to results with the MH and
logistic regression procedures which are less precise in identifying
DIF in multilevel data structures (French and Finch, 2010, 2013;
Jin et al., 2014), particularly at the between-group level. On the
other hand, the Begg adjusted values have generally reasonable
power (>0.67) to detect DIF under varying multilevel conditions
while maintaining an error rate at the nominal 0.05 level. One
caveat is that when the number of clusters may be small (50
or less) and the sample size per cluster is also small, power for
the Begg methods was found to be attenuated. Therefore, the
collective set of Begg adjusted methods examined in this study
seem most favorable for multilevel level data, although their
power rates are expected to be slightly lower when the number of

clusters is smaller. Study findings also provide a basis for ongoing
investigations of DIF procedures under various conditions that
may be found in applied testing contexts. For example, Jin et al.
(2014) extended the work of French and Finch (2010, 2013)
regarding the performance of hierarchical LR, LR, andMHunder
multilevel data structures when the ICC of the item was less
than the ICC of the latent trait, in addition to other manipulated
factors (e.g., item type, model type).

The confluence of results supports the need for continued
research to identify DIF procedures that are accurate at
identifying various types of DIF items under various multilevel
structures expected in applied testing settings. For the
practitioner, this work should allow one to screen for DIF
items when multilevel data are present while maintaining control
of Type I error and having adequate power to detect DIF.
This increase in DIF accuracy, due to analyses matching the
data structure, should guard against resources being wasted on
reviewing items for problems as a result of in inflated error rate
if an adjustment was not employed. In addition, software to
implement these methods easily is needed. A SAS package with
an easy to use interface is available from the authors for the Begg
method for the dichotomous conditions. SAS and R packages are
in development, which move the ideas presented here through
simulation into practice.

This study contributes to the literature on the effectiveness of
adjusted statistical methods for DIF detection in the presence of
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multilevel data. In particular, under multilevel data structures,
the Begg adjusted methods performed most favorably in the
detection of DIF for polytomous items. Nonetheless, the extent
to which the methods examined in this study compare to other
DIF detection methods proposed for polytomously scored items
( e.g., French andMiller, 1996; Penfield, 2008) within a multilevel
framework offers directions for continued research. Likewise, the
manipulated factors examined represent a step toward examining
additional factors that may contribute to the functioning of these
methods in applied settings. The development and evaluation of
DIF detection methods with multilevel data will contribute to the
psychometric tools available to ensuring accurate item and total
test scores to guide test-based decisions.
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