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Learning and assessment systems have grown and taken shape to incorporate concepts

from both models for assessment and models for learning. In this paper we argue

that a third dimension is necessary. Not only is it important to understand what the

capabilities of a learner are, and how to grow and expand these capabilities, but we must

consider where the learner is headed; we need to consider models for navigation. This

holistic perspective of learning and assessment systems is encapsulated in the extended

learning and assessment system, a framework for conducting research. Fundamental to

this framework is the role of computational psychometrics to facilitate the abstraction

from raw data to conceptual models. We provide several examples of research projects

and describe how they fit into the described framework.

Keywords: assessment, learning, navigation, framework, computational psychometrics

1. INTRODUCTION

Many of the characteristics of today’s classrooms would be familiar to our great-grandparents: A
teacher lecturing to students sitting in rows of organized desks; The teacher instructing from a
prepared lesson plan, and the students listening attentively. This traditional education system has
been in place with almost no perceptible change since the dawn of the previous century. Students
are grouped into various hierarchical aggregations such as classrooms, grades, and schools. The
education that students receive is then primarily tailored to these groups as a one size fits all
approach rather than a personalized and adaptive experience. The fiction author William Gibson
said, “The future is already here, it is just not very evenly distributed” (Rosenberg, 1992). In his
quote Gibson alludes primarily to the fact that progress is simply the spread of what is niche
to something that is ubiquitous and equitable. This could be said of the state of learning and
assessment systems in the current era. Recent advances in computing technology have given us the
tools to realize many innovative ideas previously beyond our grasp. Many of these innovative ideas
are in the various fields associated with education, learning, and assessment. The new discipline
computational psychometrics (von Davier, 2015, 2017) sits squarely in the intersection of these
fields. Computational psychometrics describes the blend of the analytical tools from the machine
learning (ML) arsenal with cutting edge work in theoretical psychometric research. Advances inML
and big data analyses have allowed psychometric researchers to incorporate these tools to form the
computational psychometrics paradigm. Computational psychometrics is currently being applied
to a range of learning and assessment research topics, from collaborative problem solving skills
(Polyak et al., 2017) to the impact of interpersonal communications on reciprocity in economic
decision making (Cipresso et al., 2015) and to learning as we describe here. Computational
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psychometrics explores not only novel models for new data
types, such as complex process data, but also how these models
can integrate and make components of teaching, learning, and
assessment more holistic and connected.

In this paper we highlight the need for a framework for
educational applications and practices which takes a holistic
approach to assessment. Such an approach needs to not only
blend together models for assessment with models for learning,
as has been previously suggested (see for example Tomlinson,
2004), but also include models for navigation, which, broadly
speaking, refer to the management of the educational options
available to the learner at any particular point in time. We
begin by describing the eXtended Learning and Assessment
System (XLAS) which is our proposed framework for blending
these three disciplines, assessment, learning, and navigation, in
a holistic manner. Within the XLAS framework computational
psychometrics provides (1) theoretical and practical foundations
(e.g., learning theory, measurement rubrics, developmental
trajectories, etc.) for the ongoing development of the framework
and (2) computational and analytic tools for using evidence
collected from the applications of the framework, to validate and
improve the framework and its underlying theory, curriculum,
and algorithms. Next we enumerate several concrete and ongoing
projects that live in the XLAS space. Each project utilizes
various aspects of computational psychometrics to bring together
independent systems and blend at least two of the three
components within the XLAS. We will highlight specific aspects
of these projects that utilize computational psychometrics. We
conclude with a brief summary along with a vision for the future
of educational research.

2. EXTENDED LEARNING AND
ASSESSMENT SYSTEMS

We are all experienced learners. From our earliest experiences
grasping the concepts of movement and basic language
acquisition, to our forays into arithmetic, grammar, and later,
more complex constructs such as time management and
teamwork, we spend a significant portion of our lives learning
the skills necessary to navigate our world. The systems and
frameworks that encompass and define how our learning occurs
are called learning systems. Learning systems take on a variety of
forms, from traditional examples such as classrooms, textbooks,
and apprenticeships, to more modern adaptations such as
computers and online forums.

Learning and assessment are intricately linked in a person’s
journey of acquiring new skills or expanding one’s abilities. While
learning is the process by which a person gains knowledge or
skills, assessment is a way to observe the performance in a
learner and produce data in such a way that inferences may be
made about what the learner has learned. A particularly succinct
description of the relationship between learning and assessment
is that effective assessment supports learning by providing
evidence (1) of learners achieving learning goals, (2) to inform
teachers’ decisions, and (3) that informs future instructions
(Suskie, 2018). The relationship between the learning system

and the assessment system may range from being completely
independent to intimately related and tied together in a feedback
loop in which one system provides information to the other. We
call this joint system of learning and assessment the Learning and
Assessment System (LAS).

In the current paper, the authors propose that there is one
additional critical component in the learning and assessment
loop: Navigation. Navigation is the ability to find a path from
one’s current state to a goal state. Navigation includes social
emotional learning (SEL) skills and decision making skills,
which together with the academic skills, support one’s success in
education and workforce in a holistic manner. In the context of
the XLAS, navigation refers to the ability of the learner to utilize
the affordances available from the system to make the “right”
choices during the process of learning.

A model for navigation also defines what is meant by “right.”
The right choices may be dependent on the purpose of the
assessment or learning system, the goals of the learner, or
on some other stakeholder requirements. What’s right for one
person at one time may not be for someone else, or the same
person at another time. In educational assessment we often make
assumptions about what the goals of the examinees are (e.g.,
to do as well as they can on the assessment) which may not
hold at all. However, the framework does not prescribe one
particular solution to identifying what “right” means, but rather
to highlight its importance and make it clear that the goals of the
system should not only be an explicit part of how assessment and
learning systems are developed, but the systems should be able to
accommodate a variety of goals.Whether this means allowing the
learner to choose a goal, or allowing the system to try to identify
a trajectory for the particular learner using learning analytics,
or something else entirely is up to the particular system and
designers of the system to decide on.

Examples of education and career navigation skills may
include time management skills, self-knowledge of abilities and
interests, knowledge about academic major and occupations, and
skills related to planning and decision-making (Camara et al.,
2015). Navigation components of an XLAS could include teachers
as the curators of knowledge, virtual agents, or system-based
affordances, such as recommendations and learning analytics.
This navigation component may interact with both the learning
and assessment subsystems by curating or designing learning
experiences or designing and administering an assessment.

We have worked to develop models and systems that integrate
these three components of the XLAS in a holistic manner.
Figure 1 illustrates the interactions among the XLAS subsystems
and possible components in an XLAS. Learning, assessment,
and navigation all interconnect. Each subsystem interacts and
informs the other two. The center of the graph portrays lower-
level features and direct derivatives of these lower-level features
including multimodal data, content, taxonomies, and analytics
(see section 3.1). The outer ring of Figure 1 portrays the
three main subsystems of the XLAS: learning, assessment, and
navigation. These subsystems correspond to higher level abstract
models. Examples include Item Response Theory (IRT) for
assessment (van der Linden, 2018), Knowledge Space Theory
(KST) for learning (Doignon and Falmagne, 1999), and Holland’s
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FIGURE 1 | Extended Learning and Assessment System (XLAS) Framework.

Theory of Career Choice for navigation (Holland, 1958). The
inner ring represents the paradigms that allow researchers to link
the lower-level features and derivatives to higher level abstract
models (Khan, 2017). These paradigms include computational
psychometrics and machine learning.

Not all data collection is equal or collected with intention.
For example, computer based testing (CBT) nowadays collects
an abundance of timing information and process data (e.g.,
click stream data) which is all collected indiscriminately and
few consider how to design the experience so that the data
collected is useful. Outside the psychometric field, say in
computational social science, the big social data that have been
amassed by various social media groups are analyzed post-
facto. There is no design in what/how to collect the data to
obtain a particular result. von Davier (2017) argues that the
main feature of computational psychometrics is that the data
collection is intentional and by design, hence theory-based. In
this way computational psychometrics allows researchers to form
links between the higher level abstract models to the concrete
components at the center of the XLAS in a top-down manner.
The machine learning paradigm on the other hand allows one
to abstract the concrete components in a bottom-up manner
by utilizing algorithms to build predictive models given all
available data at hand. A note on the term “computational”
in computational psychometrics: In this context, computational
does not mean estimating model parameters by computer, which
is what all disciplines (including psychometrics) have been
doing since computers have become ubiquitous. In this context,
computational means that in order to successfully analyze the
multimodal big data, and to form the links from this data to

higher order abstract constructs, additional analyses that utilize
computational models (as opposed to statistical/psychometric
models) are required. Thus, computational psychometrics
represents an interdisciplinary field which fuses together theory
based psychometrics with the tools developed to analyze
multimodal data in order to establish how information and
evidence can be derived from themultimodal data and connected
to higher order constructs.

In the current paper we will illustrate each of the subsystems
of the XLAS framework by using current literature and research
projects as examples. In each example we highlight how we
connect lower-level features to high-level abstract models. We
will also further explore specific building blocks of the XLAS and
summarize use cases that address these intersections among the
XLAS components.

3. BUILDING BLOCKS AND USE CASES

3.1. Data, Taxonomies, Content, and Social
Engagement
Here we delve deeper in explaining the XLAS from as portrayed
in Figure 1. The subsystems of learning, assessment, and
navigation in the XLAS represent high-level, complex constructs
and models. In the center of the framework are lower-level
features and derivatives of lower-level features, which include
multimodal data and metadata. Examples of multimodal data are
audio, video, and sensor-based data as well as more traditional
assessment data such as response data. Metadata includes
additional covariate information; for response data it may include
which particular taxonomic learning standards an item has been
tagged to and the demographic information for the learner.
Derivatives of lower-level features include content, taxonomies,
and analytics.

Lower-level features are connected to higher level complex
constructs through a series of hierarchical abstractions. From
the data, content, and taxonomies particular relevant features
are extracted. These features are combined into mid-level
representations. These mid-level representations are then used
directly in the models of complex abilities such as learning or
navigation. Computational psychometrics through psychometric
models, machine learning, and social engagement solutions,
serves as the paradigm which connects these lower-level features
to higher level features. One focus of the research on the
XLAS framework revolves around identifying, constructing, or
obtaining useful low-level features from the multimodal data
and content; another focus is on feedback and analytics. In
the following sections we provide two examples of research
associated with these aspect of the XLAS.

3.1.1. Theory-Based Taxonomies and Standards
The most important difference between computational
psychometrics and machine learning is that the data collection
in computational psychometrics is intentional and aligned with
a theoretical framework (von Davier, 2017). Within a theoretical
framework, a taxonomy specifies how specific knowledge, skills,
abilities and other characteristics connect to broader domains
of learning. Such a taxonomy is a key abstraction which allows
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low-level features such as response data to be connected to
higher level constructs such as learning and educational success.
A recent example of the development of such a taxonomy at ACT
is the Holistic Model of Education and Workplace Success, also
known as the Holistic Framework (HF) by Camara et al. (2015).

Policymakers and accountability systems have for a long
time focused on academic measures when discussing college
and career readiness. However, it is becoming increasingly clear
that performance in college and in the workplace depends not
only on the traditional academic measures, but also on other
SEL and behavioral skills. Camara et al. (2015) identified the
need for a framework which gives structure and organization
to the knowledge and skills necessary to succeed. Based on a
comprehensive review of relevant theory, education and work
standards, empirical research, input from experts in the field,
and a variety of other sources, they have developed the HF, a
comprehensive framework that states what people need to know
and be able to do to be successful throughout the course of their
education and careers.

The framework is organized into four broad domains: core
academic skills, cross-cutting capabilities, behavioral skills, and
education and career navigation skills. One of the major facets
of the HF is the core academic skills. This section of the
HF defines the hierarchical relationship of skills that learners
are expected to learn during high school in the domains of
language arts, mathematics, and science. This provides a core
lower-level feature in the XLAS framework, namely a taxonomy
of knowledge, skills, and abilities, which allows researchers to
build complex models of learning, assessment, and navigation.
Another key aspect is the developmental nature of the HF. This
is important because the precursors of success emerge early
in life and development continues well beyond the confines of
traditional education systems.

The development of the HF was fundamental to help
bootstrap research in the XLAS framework. For example,
developing a set of content related resources for learning that
allows for best practices should rely on the HF to define the goals
for learning, the knowledge structure, and scaffolds that should
guide the students through the learning process. With the advent
of such a taxonomy, researchers are able to connect response data
from students to particular models of learning, assessment, and
navigation. See Section 4.1 for an example of such research which
harnesses the HF.

3.1.2. A Data Cube for Educational Data
In the previous section we saw how computational psychometrics
built upon the development of a taxonomy of hierarchical
standards which is a key fundamental lower-level feature that
helps bootstrap model development in the XLAS framework.
Further research has utilized computational psychometrics to
refine the analysis of multimodal data to extend the models
used in traditional psychometrics to identify lower-level features
that are primed for use in the XLAS framework. This research
was sparked by the fact that, in recent years, the work with
educational testing data has changed due to the affordances
provided by the technology, the availability of large data sets,
and by the advances made in data mining and machine

learning. The computational psychometrics paradigm allows
researchers to create new connections between theoretical
models and these new data features. However, the traditional,
static, and flat representations of data (e.g., a spreadsheet) do
not lend themselves well to these new real-time, data intensive
computational psychometric and analytics methods. To promote
the use of computational psychometric methods in order to
reveal new patterns and information about students, von Davier
et al. (2019) propose a new way to label, collect, and store data
from large scale educational learning and assessment systems
(LAS) using the concept of the “data cube” to relate and align
multiple databases. The “data cube” idea has evolved over time,
but the paradigm remains easy to grasp.

One of the ideas proposed by von Davier et al. (2019) is to
rewrite the taxonomies and standards as mathematical vectors,
and add these vectors as dimensions to the “data cube.” Similarly,
they recommend vectorizing the items’ metadata and align
them on different dimensions of the “cube.” Psychometricians
and data scientists can interactively navigate their data and
visualize the results through slicing, dicing, drilling, rolling, and
pivoting. A simple example of these various operations can be
seen in Figure 2. The drilling-down operation illustrates that
the data cube is not necessarily just a multidimensional vector.
It can be seen in Figure 2 that dimensions in the data cube
can also hold other metadata regarding that dimension. For
example the “subject” dimension Math has associated metadata
that corresponds to the hierarchical topics associated with
mathematics (in the example this includes Calculus, Algebra,
and Topology).

The data cube structure works well with data exchange
standards, such as the IMS Global set of standards. In principle,
these standards propose data schema for various data features
that the users agree upon. For example, the IMS Global Caliper
standard is a template for event data collected during the process
of a performance task or a learning session. Recent papers such
as Rayon et al. (2014) highlight the importance of building
standards and frameworks, not just for research (such as the topic
of this paper) but for data itself.

The data cube and the data standards allow for real-time big
data analyses, including the use of ML and computational
psychometric techniques for the alignment of testing
instruments, real-time updates of cognitive diagnostic models
during the learning process, and real-time feedback and routing
to appropriate resources for learners and test takers. The
fundamental ideas behind the data cube guide many of the
authors’ current research projects. Specifically in sections 4, 4.1
we will see how two projects, the ACT Recommendation and
Diagnostic API and the ACTNext Educational Companion App,
use the various dimensions of the learning and assessment data
to provide learners with deeper insights into their skills and help
them navigate educational learning resources.

3.1.3. Social Engagement
Additionally, social engagement in learning, assessment and
navigation refers to the degree that an individual participates
in these systems within a particular community or society.
Such participation can further help define and refine the
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FIGURE 2 | Data Cube for Educational Data. Adapted from von Davier et al. (2019) and used with permission under the Creative Commons Attribution (CC-BY)

license.

links and connections between lower-level features and higher
level abstract models. An example of collaborative problem
solving research which utilizes social engagement to help
define the links between the data and the abstract model is
presented in Stoeffler et al. (2017). The data collected from
the social interactions have often other features, such as the
interdependence among the learners. This interdependence
translates in a violation of the assumption of identically
independently distributed (iid) observations, which in turn, need
appropriate computational models.

3.2. Learning and Assessment
Next, we will focus on the outer ring of the XLAS framework,
which consists of the three subsystems: learning, assessment, and
navigation. Rather than describe in detail each subsystem we will
describe the possible overlaps between these three subsystems
of the framework since the framework allows research to be
multifaceted. The first overlap we will discuss is the overlap
between learning and assessment. Research that falls under
this umbrella focuses on defining the feedback loops between
systems of learning and systems of assessment. A large amount
of literature is available for each of these systems on their own,
but only within the past few decades have researchers started to
discuss how the models in learning and the models of assessment
can inform each other. Part of this work is theoretical in
nature. Note that theoretical models for learning and models for
assessment data have diverged and grown to leverage the salient
features and distinct assumptions that embody their respective
data sets. Assessment models were built to analyze cross sectional
data, whereas learning models were built to analyze longitudinal
data. Yet, despite the divergent development of these models
there is an intimate connection between the two prominent
models in these fields: Bayesian Knowledge Tracing (BKT) and
Item response Theory (IRT) (Deonovic et al., 2018).

Other work on this overlapping relationship blends theory
with practical need. To further explicate the overlap between
systems of assessment and systems of learning we consider an
extension of the well-known evidence centered design (ECD)
framework for designing assessments (Mislevy et al., 1999).
This extension, the extended ECD (Arieli-Attali et al., 2019),

provides room for designing systems in which learning and
assessment ico-exist.

3.2.1. Extended Evidence Centered Design
As mentioned before, the most important difference between
computational psychometrics and machine learning is that the
data collection in computational psychometrics is intentional and
aligned with a theoretical framework (von Davier, 2017). Several
theoretical frameworks have been developed for assessments.
ECD is one such framework designed to place priority on the
collection of validity evidence from the onset of the design of
the assessment (Mislevy et al., 1999). The three core components
of the ECD framework include the Student Model, Task Model,
and Evidence Model. The Student Model specifies the latent
competencies that are the target of the test, the Task Model
specifies the task features that will elicit the observed data
which will allow for inference about the latent competencies,
and the Evidence Model makes the connection between the
latent competencies specified by the Student Model and the
observed data from the Task Model. This framework however
does not specify how the learning component of an LAS should
be designed and developed in order to properly elicit validity
evidence. An extension of the ECD framework, the Extended
Evidence Centered Design (e-ECD) framework broadens each of
the three core components of the ECD as well as draws upon data
driven techniques and computational psychometrics to power
these extensions (Arieli-Attali et al., 2019).

The extended model includes a static layer, corresponding to
the original components of the ECD, and a dynamic layer which
addresses learning, see Figure 3. The extended components
include: (1) the extended Student model, or the Knowledge-
Change model, which specifies learning processes as the latent
competency that the system is targeting; (2) the extended Task
model, or the Task-Supports Model, which specifies principles
and features of learning supports (scaffolds, feedback, hints, etc.)
that guide the design of tasks; and (3) the extended Evidence
model, or the Knowledge-Skills-Abilities Change model, which
specifies the links between the students’ responses, scaffold usage,
and the target learning processes. These links allow for inference
from behaviors to latent learning.
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FIGURE 3 | Extended Evidence Centered Design (e-ECD). Adapted from Arieli-Attali et al. (2019) and used with permission under the Creative Commons Attribution

(CC-BY) license.

Using computational psychometrics and empirical data we
can monitor the use and impact of learning supports and
dynamic models of ability. This data driven approach combined
with the theoretical perspective will help us to create a relevant
and well-designed framework for the development of learning
and assessment systems.

3.3. Navigation and Assessment
Another overlap we are considering is between navigation
and assessment. If navigation can broadly be described as
determining where one should go, the subsystem of assessment
in this context revolves around knowing were one is at currently.
Preparing individuals for the decisions they will be making
throughout their educational and career journeys, along with
optimizing these decisions, are important areas of study that
have the potential for significant impact. We are looking at these
aspects from many perspectives that reflect the computational
psychometrics paradigm.

We reached out to our colleagues who worked on the
navigation part of the ACT Holistic Framework to understand
the role of navigation for success. Educational success depends on
many factors, including what individuals know about themselves
and their environments, and how they use this information
to make choices, plan actions, optimize resources, and move
along their education and career paths (Becky Bobek, personal
communication, December 14, 2018). The literature on decision
making processes related to critical navigation decision points
such as educational and occupation choices is scant, and we have
been working to uncover some of these processes. For example,
economists (Wiswall and Zafar, 2015) refer to “unobserved
tastes” as a dominant factor in the choice of major and reinforce
the need to investigate these more heterogeneous aspects of
major choice.

Bobek and Moore (2017) refer to the four dimensions
critical to navigating education and career transitions
effectively encompass

1. Self-knowledge (understanding of one’s abilities, interests,
skills, values, attitudes, and beliefs),

2. Environmental Factors (education/work knowledge,
experiences, supports, barriers),

3. Integration (exploration, goals, congruence, education/career
choice making, action plans),

4. Managing Career & Education Actions (college/job search,
roles, implementation).

Research concerning the first three dimensions mentioned
above is found in Paek and Bobek (2018). Separately, research
has been conducted on learning analytics, recommendations,
notifications, and data display (Whitmer et al., 2017) and on
how to model the choices that people make (Kruis, 2018).
Additional research is being conducted on the optimization
of decision making process for individuals and their goals
(von Davier and Arielli-Attali, unpublished).

3.4. Learning and Navigation
The final overlap on the XLAS framework we will consider is
between learning and navigation. Navigation refers to knowing
were one wants to go and determining how to get there. This is
quite abstract as it can apply to many situations. Navigation can
refer to deciding on which career to pursue and how to pursue it,
deciding which college to go to and what major to enroll in, or
even on a more day to day basis navigation can refer to a teacher’s
lesson plan, the goals they want their students to achieve and how
to achieve them.Navigationwith respect to learning is the process
of going from where one is to where they want to go in terms of
the further development of one’s knowledge, skills, and abilities.
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Research involved in the subsystem of learning in the XLAS deals
with constructing theoretical models for how learning occurs,
building educational tools, and promoting learning.

There has been heavy investment into exploring the
intersection between these two subfields in the last few decades
in both the theoretical side and on application. On the
theoretical side, the field of learning science works to understand
learning and design, implement, and improve instructional
methodologies. An example of research from learning theory that
lives in the intersection of learning and navigation comes from
mastery learning theory (Bloom, 1968). This theory states that
complex skills can be broken down into parts and learning is
improved if each of these parts is first mastered in turn. The
main assumption is that if a student fails to learn a required
prerequisite skill, then he or she will likely not be able to learn
the subsequent skills. From this theoretical model of how a
learner moves toward their goals researchers have built models
for tracking and assessing students, such as knowledge tracing
(Corbett and Anderson, 1994) which involves the overlap of
assessment and learning, has been discussed in previous sections.
More recent literature which analyzes mastery learning includes
work by MacLaren and Koedinger (2002) in which simulation is
used to study the impact of mastery learning.

On the application side of research in learning and navigation
there has been an increase in interest in learning analytics.
In education, Aguilar (2018) writes that learning analytics has
emerged as the discipline associated with analyzing and reporting
big data. Stakeholders in education utilize learning analytics as a
way tomake learning and learners’ navigationmore personalized.
Aguilar (2018) points out that most learning and navigational
infrastructure is primarily built to serve the “average” student,
e.g., students are grouped into classrooms, grades, and schools
and teachers provide instruction one class at a time. More
personalized instruction has been shown to be impactful, but can
be difficult to scale. Aguilar (2018) argues that learning analytics
provides a solution to this problem by using computational
methodology and visualizations to allow personalized learning
and navigation at scale. Methods for learning analytics include:

1. Resource Analytics - resources which students use (e.g., video,
quiz) and create (e.g., essay).

2. Behavior Analytics - time on task, persistence, curiosity,
participation, etc.

3. Social Learning Analytics - social interaction in learning,
participation in learning networks, forums, etc.

4. Predictive Analytics - within student: timely identification
of at-risk behavior; and across students: identify at-risk
students in terms of engagement and retention for meaningful
intervention before they go off-track.

One platform which has successfully utilized learning analytics to
bridge navigation and learning is the ASSISTments project. The
ASSISTments project (Heffernan and Heffernan, 2014) provides
a system for teachers and researchers to work together. It is a
project that is perfectly situated in the learning and navigation
overlap. One particular functionality which allows ASSISTments
to combine learning and navigation is the ability for teachers
to try out various instructional content, learning resources, and

interventions on groups of children and monitor and track
their learning. This allows researchers and instructors to observe
the impact of the content, resources, and interventions on
student learning.

However, Aguilar (2018) points out learning analytics is not a
silver bullet for the problem of providing personalized learning.
The data that are collected and the procedures for processing
and creating visualizations needs to be thought through ahead
of time. Despite the large amount of data that is collected by
learning analytics systems, not every facet and dimension of a
person will be captured. Thus, important decisions regarding
student learning and their trajectory through the system may be
ill informed. Thismeans that at a particular point in time, the data
necessary to truly provide an insightful personalized experience
for a student is not available. Furthermore, many learning
analytics approaches utilize machine learning techniques such
as clustering or visualizations that compare particular students
to other aggregates, both wash out individual characteristics and
seem counter to the goals of personalized learning analytics. The
insights and personalization provided by learning analytics also
requires trained experts. For example, Teasley (2017) points out
that providing learning analytics dashboards directly to students
has not been fruitful and requires further research. Finally,
Aguilar (2018) points out potential data privacy concerns, which
remain to be comprehensively addressed.

4. XLAS USE CASE: THE ACTNEXT
EDUCATIONAL COMPANION APP

The XLAS framework successfully links learning, assessment and
navigation by managing the relationship of learners’ data to
content (assessment and instructional), taxonomies (knowledge,
skills) and analytics. The authors applied this management
strategy in the development of one of our recent research-based
prototypes, the ACTNext Educational Companion App. The app
was designed to assist learners by providing information on
their learning goal progress and to identify areas needing review
by continuously processing measurement data and providing
personalized instructional recommendations, all delivered in an
anytime/anywhere mobile experience.

The goal of this app was to develop a prototype, designed with
the XLAS inmind, which supports learning through personalized
recommendations, based on the mastery theory of learning
(Bloom, 1968), and through free agency given to the students,
based on the theory of self-directed learning (Knowles, 1975).
The app also provides students with navigational opportunities
to explore their career interests. In this section, we will describe
how computational psychometrics principles are used to guide
the development of this app.

The app leverages multiple sources of data from ACT’s
portfolio of learning and assessment products. Beginning from
its college readiness assessment, the ACT, the app identifies
the underlying links from learners’ measurement data to the
taxonomic skills in English, Math, Reading and Science such
as those defined by the HF (see section 3.1.1), but is general
enough to be applicable to any taxonomic classification of
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skills. The app gathers additional academic skills evidence
from a workforce skills assessment (Applied Math, Reading for
Information, Locating Information) where available. Beyond the
core academic skills, the app evaluates Social Emotional Learning
(SEL) data from the learner’s SEL assessment results, that is the
results from ACT’s Tessera test. Blending these data, the app
generates analytics that can predict mastery of skills at multiple
levels in a taxonomy such as the HF.

Through the alignment of instructional content to taxonomic
structures conducted withMLmethods, the app is able to identify
recommended resources to drive learning activities. The app
makes targeted recommendations for learners at any selected
or prescribed level in a taxonomy. It uses its knowledge of
the learner’s predicted abilities along with the understanding
of hierarchical, parent/child relationships within the content
structure to produce personalized lists of content.

With additional practice activity (e.g., like that found in
test preparation quiz/test sessions) the app is able to continue
to update and refine its predictive analytics and adapt its
recommendations to learners over time. The app uses a clearly
presented, three star rating system for the top level areas of a
taxonomy (e.g., subject, domains) to communicate achievement
to the learner and to encourage and highlight the next areas
for review.

The Companion App also features access to navigational tools
that were developed by ACT researchers, e.g., Cruce and Mattern
(2018). These tools provide learners with insights about their
career interests and the relationship of their personal data (e.g.,
assessment results, grade point average) to potential areas of
study in college based on longitudinal, higher education outcome
studies.

The Companion App was piloted with group of Grades 11
and 12 high school students in Clinton, South Carolina, USA
between Fall 2017 and Spring 2018. The results were presented
in an unpublished report (Polyak et al., unpublished).

4.1. Enabling a Personalized Learning
Experience: Recommendation and
Diagnostics (RAD) API
The development of the ACTNext Companion App led to the
insight that the underlying capabilities could be packaged into
an application programming interface (API) that can offer the
diagnostic and recommendation engines as a service to other
products or platforms. ACT Academy, built using a collection
of free online resources from OpenEd, is one such system. ACT
Academy is a free online platform designed to help students
master the skills they need to improve their test scores and
succeed in college and career. Students can take authentic
practice quizzes and receive personalized video lessons, games,
and interactive resources whenever they miss a question. ACT
Academy provides a free personalized path for students to help
them prepare for the ACT test. Instead of teaching to the test
and going through similar questions, ACT Academy videos
help students learn the actual concepts being addressed in the
questions. ACTNext defined a set of API methods that:

• Accepts measurement data for a learner using a well-defined,
open standard, IMS Global’s Caliper for learning events1. The
Caliper AssessmentItemEvent format is used to identify
who the learner is, which item they responded to and the
dichotomous outcome of their interaction.

• Ingests the definition of hierarchical standard definitions using
the IMS Global CASE standard. The CASE standard provides
a machine-readable expression of the individual standard
statements and conveys the hierarchical relationships (e.g.,
subject, domain, strand, sub-strands, etc.).

• Automatically caches instructional content resources from
any learning object repository (LOR) using the IMS Global
LTI resource search API. By caching the LOR content that
has been aligned to the standards, RAD can efficiently build
personalized lists dynamically with up-to-date diagnostic data.

• Continuously tracks learners’ mastery of taxonomy skill/skill
areas using modular, configured algorithms. As learner
evidence is processed, RAD uses the algorithm that has
been configured for the LAS to update new predictions of
skill mastery.

• Offers diagnostic engine results for learners based on any
collection level in the taxonomy. RAD method calls allow
for the parameterization of requests that can indicate an area
of interest with respect to the taxonomy, e.g., return current
estimates of Geometry skills within Math.

• Offers recommendation engine generated, personalized lists of
instructional content for any collection level in the taxonomy.
RAD method calls allow for the parameterization of requests
that can indicate an area of interest with respect to the
taxonomy, e.g., return personalized resources for Geometry
within Math.

• Allows human curators to add content rules that require
selected content for specified taxonomy areas. If human
curators want to promote known resources for an area, they
can boost the importance of selected instructional content
items at any level of the taxonomy (e.g., subject, domain,
strand, etc.).

• Permits bootstrapping of diagnostic estimates using prior
assessment results. This feature allows learners to present
results from a prior assessment (e.g., ACT score category
report ratio data) in order to estimate skill knowledge prior
to taking LAS assessments.

All of these methods are delivered from the secure, highly
scalable, cost-effective, manageable platform, Amazon Web
Services (AWS).

The initial integration of this API was completed in
September 2018 with ACT’s free test preparation web-based
platform, ACT Academy. ACT Academy uses a customized
version of the TAO open source test delivery platform
capable of generating the IMS Global Caliper events (e.g.,
AssessmentEvent, AssessmentItemEvent) that the
RAD API uses to continuously track learner data. ACT
Academy’s dashboard/progress areas use RAD API’s diagnostic

1For the specification see IMS Global Learning Consortium, Inc. Caliper Analytics

Specification, version 1.1.
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FIGURE 4 | ACTNext Recommendation and Diagnostics (RAD) API.

methods to present learners with the same star-based progress
report that was described above in the Companion App.

As learners navigate to the resources tab in ACT Academy,
they are presented with personalized lists of instructional
content that use their RAD diagnostic record to select the
most relevant content based on the learner’s needs. RAD
effectively links assessment content and instructional content via
the configured taxonomy while generating useful insights and
analytics to help learners navigate their test preparation and skill
practice goals.

We refer to this continuous cycle of activity between the
learner in an LAS and the RAD API as the RAD life-cycle as
shown in Figure 4. Learners generate evidence via assessment
data which RAD then uses for its analysis. The analysis itself
uses techniques from computational psychometrics. Essentially,
RAD connects low-level evidence data up to high-level estimates
of learner abilities by applying algorithms (see section 4.1.1),
coupled with an item response model, to take into account a
learner’s prior estimate of ability alongside the system-derived
estimate of skill difficulty. Other examples of the application
of computational psychometrics for this project involve the
machine learning techniques used to ascertain taxonomic tagging
of resources and items. Today, a semi-automatic process is used
to suggest tags to human curators who can then confirm or reject
proposals, helping the system to better learn the classifications in
the future.

The initial results of applying this computational
psychometrics solution to learner diagnostic tracking has
demonstrated that this is an important tool supporting our
vision for unifying learning, assessment and navigation. We are
currently expanding our approach to incorporate performance
metrics that will:

• Report continuous classification accuracy, i.e., how
well is RAD predicting that learners would get items
correct/incorrect based on its diagnostic data?

• Use additional Caliper events such as MediaEvents to
measure platform usage learning analytics, e.g., how many
RAD recommended resources are learners reviewing?

• Evaluate the fairness of the algorithms, by investigating the
population distributions of star ratings and recommendations
for an LAS. We want to provide aggregate analytics that
show e.g., how many 1,2,3 star ratings have been made for
specified populations.

4.1.1. Diagnostic and Recommendation Models
To further detail the theoretical models, we focus next on
psychometric models. Traditionally models for assessment relied
on unidimensional models of latent ability. Such models are built
to be able to correctly rank a set of learners from highest relative
ability to lowest relative ability. However, these unidimensional
models, such as models in Item Response Theory (IRT), are
unsuitable for determining the source of these differences in
ability. In other words they are incapable of diagnosing the
underlying skills which the learners have or are lacking. Cognitive
Diagnostic Models (CDMs) are built specifically for this purpose.
Rather than modeling a unidimensional latent ability, CDMs
equip each learner with a multidimensional latent variable where
each dimension corresponds to a particular skill.

One particular project that we are working on and which
utilizes concepts from CDMs is the Recommendation and
Diagnostics (RAD) engine delivered through an API that was
described above. The RAD API defines how a learning and
assessment system can interact with the RAD engine. The RAD
engine is built to be able to continuously track and update
the skills in some hierarchical skill taxonomy, such as the
ACT Holistic Framework. In ACT Academy a learner is able
to choose a category from the Holistic Framework (HF; see
section 3.1.1) to practice. The skills in the HF are organized
in a hierarchical tree structure called a knowledge graph. The
knowledge graph is composed of a set of nodes, where each
node corresponds to a skill in the HF, along with their direct
relationships represented by edges between the nodes. For each
node k in the knowledge graph a learner has a proficiency
value or profile value πk, representing the probability that the
learner has mastered this node. Together the knowledge graph
along with a specific learner’s proficiency values is called the
Personal Learner Knowledge Graph (PLKG). The RAD API
models the bottommost nodes (leaf nodes or nodes without
any children) of each learner’s PLKG. Estimates of a learner’s
proficiency in these bottom nodes are then percolated up the tree
by averaging (see Figure 5).

The learners in ACT Academy see a relatively high-level
part of the HF known as the reporting category. Although the
probability of nodemastery is stored internally as a value between
0 and 1, it is presented to the learner in a discretized fashion as a
star value (between 1 and 3 stars). Based on the learner’s interests
or evaluation of their HF mastery, as presented by the RAD API,
the learner selects one of these categories to practice. They are
then given a short set of items in the form of a quiz. The RAD
API processes these responses in real-time, updates the mastery
of the leaf nodes, percolates the information up the HF tree, and
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FIGURE 5 | An illustration of the Personal Learner Knowledge Graph (PLKG) along with the process of percolating information up the hierarchical tree. T1 and T2
represent two topics under the category of Algebra. S1, . . . ,S4 are the skills that are estimated by the RAD API, where πk represents the proficiency the learner has

for skill k. The right hand side of the figure explains how information from the estimated skill or proficiencies percolate up the tree.

the whole process is repeated again when the learner selects a new
topic to practice.

From the above high-level overview of the RAD API
diagnostic framework we can see that the statistical model
underpinning the diagnostics and the algorithm used to update
the parameters in the model needs to have several key features

1. The algorithm needs to be able to process data in real-time,
updating learner profiles after either every response, or after a
small set of responses have been accumulated.

2. The model needs to be able to quantify a learner’s mastery
of every leaf node in the HF (and convert this into a value
between 0 and 1).

Additionally, we require that one learner’s activity should not
change another learner’s profile. Ideally the model would only
have parameters that are updated in real-time, however we
will allow some hyper-parameters that are considered fixed but
allowed to be updated on a longer term schedule with a batch
process of the data.

We studied several algorithms. One of the algorithms selected
to power the RAD API diagnostic engine was the Elo algorithm.
First, we describe the basic Elo algorithm and then we present
how we adapted the Elo algorithm to fit into the RAD API. The
Elo algorithm was developed to track and calibrate the rankings
of players in competitive games. Its origins are from competitive
chess (Elo, 1978). An example of the use of the Elo algorithm
in an educational context can be found in Pelánek (2016). The
model underlying the Elo system is quite simple. Every player
is associated with rating θp. The probability that player p beats
player q is modeled as follows.

Epq = Pr(p beats q) =
1

1+ e−(θp−θq)
= σ (θp − θq) (1)

After every match the parameters for the players involved are
updated taking into account the probability that player p wins
and the actual outcome of the game.

θ∗p = θp + K(Xpq − Epq) (2)

θ∗q = θq − K(Xpq − Epq) (3)

where θ∗p and θ∗q are the updated values, Xpq is the result of the
game (1 if p betas q and 0 otherwise), and K is a scaling factor. In

practice K is usually fixed at some point depending on how the
practitioner wants the algorithm to behave; small K will make the
algorithm less variable but take longer to converge to the correct
values while larger values of K will make the algorithm converge
faster but be much more variable.

For the RAD API we adopted a similar algorithm to estimate
the values in a model that is inspired by the multidimensional
Rasch model and the log-linear test model (LLTM) (Pelánek,
2016; Pelánek, 2017). From the LLTM we use the idea of
deconstructing the item difficulty to be linear in the difficulties of
each skill. This allows us the ability to directly track skill difficulty.
Let Xsi be the response of student s to item i. We model the
probability of a correct response as specified below,

Esi = Pr(Xsi = 1) = σ (msi) (4)

msi = θs +
∑

k

qikθsk −
∑

k

qikβk (5)

where θs is a general measure of ability of student s, θsk is a skill-
specific measure of ability for student s on skill k, qik is a vector of
1’s and 0’s corresponding to which skills item i is tagged to, and
βk is the difficulty of skill k.

The update formulas are adapted from the original Elo
algorithm to correspond to this model as follows.

θ∗s = θs +
as

1+ bs × ns
(Xsi − Esi) (6)

θ∗sk = θsk +
ask

1+ bsk × nsk
(Xsi − Esi) (7)

β∗

k = βk −
ai

1+ bi × nk
(Xsi − Esi) (8)

where θ∗s , θ
∗

sk
, and β∗

k
are the updated values, n• are hyper-

parameters controlling the sensitivity (speed) of the values’
update, ns is the number of prior items answered by student s,
nsk is the number of items on skill k that student s answered,
and nk is the number of students that have answered an item
utilizing skill k. Here we have chosen the Elo scaling factor to
be of the form recommended by Pelánek (2016). In this form
the scaling factor gets smaller as the number of observed items
on a student increases so that the algorithm quickly gets around
the right neighborhood of the student ability parameters and
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then becomes less variable over time. In the RAD API the n
parameters were chosen by cross-validation of an initial sample of
students with the objective of minimizing predictive error. Initial
values for all parameters θs, θsk, and βk were set to 0. Once the
parameters of the model have been updated the profile values,
πsk, of the learner’s PLKG are updated as follows.

πsk = σ (θs + θsk) (9)

After which the rest of the learner’s PLKG is updated by
percolating the information up the tree. This blend of a
psychometric model with an algorithmic/rating system is being
described in Yudelson et al. (2019).

5. DISCUSSION AND CONCLUSIONS

In this paper we outlined a comprehensive holistic learning
and assessment system and indicated how the computational
psychometrics paradigm integrates all these complex pieces.
This framework stems from the idea that when learning,
assessment and navigation are developed together there will
be an enhancement to the students’ opportunities for a
successful, holistic educational experience. A holistic learning
and assessment system has many interdisciplinary components
in which each individual component is an area for research
and development: from the design, to data structures for
big data, to mobile platforms, recommendation engines, the
development of APIs and psychometric and ranking models
for learning. Each of the areas described here include
innovations, or at least extensions, of existing capabilities.
Several papers are now being written simultaneously where
the details of these approaches and their evaluations are being
presented.

While significant progress has been made on the research
and development of holistic learning and assessment systems,
more work is needed to refine themethodologies, to continuously
evaluate them for fairness, efficacy, and validity, and to scale them
up. For example, the RAD API has been live since September
2018 and has guided over 100,000 students’ choices so far;
research on its efficacy and validity is in progress. The goal is to
be able to provide all learners with access to quality educational

resources and feedback, regardless of their background and
geographic location.

Future XLAS research includes the development of new types
of dynamic cognitive diagnostic models that are appropriate
for learning and of artificial intelligence (AI) and multimodal
analytics to enhance these psychometric models. Another area
of interest is how to estimate the reliability and validity of the
output from such Elo models. We also need to continue to work
on more accurately aligned testing instruments and instructional
resources via taxonomies.

For the authors, one of our future projects includes refining
and enhancing the scalability of the Companion App. We are
also developing additional micro-services to support multiple
ways of personalizing and adapting the learning environment.
Our goal is to integrate our research and prototypes with LAS
partners and researchers, and extend the current XLAS work
beyond the authors’ organization with our Software as a Service
(SaaS) model.
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