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Multiple kinds of manipulatives, such as traditional, virtual, or technology-enhanced

tangible objects, can be used in primary education to support the acquisition of

mathematical concepts. They enable playful experiences and help children understand

abstract concepts, but their connection with cognitive development is not totally clear.

It is also not clear how virtual and physical materials influence the development of

different strategies for solving instructional tasks. To shed light on these issues, we

conducted a 13-day intervention with 64 children from first grade, divided into three

groups: Virtual Interaction (VI), Tangible Interaction (TI), and Control Group (CO). The VI

group played a fully digital version of a mathematics video game and the manipulation of

the blocks took place on the tablet screen. The TI group played the same video game

with digitally augmented tangible manipulatives. Finally, the CO group continued with their

classroom curricular activities while we conducted the training, and only participated

in the Pre and Post-Test evaluations. Our results highlighted that the use of tangible

manipulatives led to a positive impact in children’smathematical abilities. Of most interest,

we recorded children’s actions during all the training activities, which allowed us to

achieve a refined analysis of participants’ operations while solving a number composition

task. We explored the differences between the use of virtual and tangible manipulatives

and the strategies employed. We observed that the TI group opted for a greater number

of blocks in the number composition task, whereas the VI group favored solutions

requiring fewer blocks. Interestingly, those children whose improvement in mathematics

were greater were the ones employing a greater number of blocks. Our results suggest

that tangible interactive material increases action possibilities and may also contribute to

a deeper understanding of core mathematical concepts.

Keywords: digital manipulatives, tangible manipulatives, technology-enhanced learning activities, mathematics,

additive composition
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1. INTRODUCTION

Learning mathematics at an early age is fundamental to ensuring
academic success in STEM (science, technology, engineering, and
mathematics) disciplines and maximizing future integration into
professional life (Wang and Goldschmidt, 2003). Research has
been concerned with how to foster this core cognitive ability
and enable a deep understanding of mathematical concepts. This
research explores how virtual and tangible manipulatives can be
used to strengthen math learning at 6 years of age.

In the current study, we used the activity of composing
and decomposing sets of manipulatives representing numbers,
an exercise that has been traditionally practiced with concrete
material in order to foster an understanding of numerosity
(Geary et al., 1992; Morin and Franks, 2009). We focused on a
set of three properties (additive composition, commutativity, and
associativity) and the mastery of the basic number combinations.
Additive composition is the knowledge that larger sets are
made up of smaller sets; the commutative property implies that
changing the order of the operands doesn’t affect the result; the
associative property allows us to add (or multiply) numbers,
no matter how the factors are grouped [(a + b) + c = a + (b
+ c)]; while mastering the basic number combinations leads to
understanding how numbers can be composed. These properties
are crucial for cardinality and number concept acquisition;
and lead to the development of key strategies in arithmetical
problem solving, such as addition and subtraction (Fuson, 1992;
Verschaffel et al., 2007).

In mathematics curricula, teaching is frequently supported

by tangible objects (three-dimensional models of geometrical

shapes, etc.) that help young students to better understand

abstract concepts, for instance in the acquisition of cardinality
(Geary et al., 1992; Morin and Franks, 2009). The pioneer in
this tradition was Maria Montessori who developed materials
for geometry and mathematics specifically aimed at providing
children with autonomy during the learning process (Montessori,
1917). Georges Cuisenaire, in turn, created a special set of tiles
for arithmetics learning known as Cuisenaire rods (Cuisenaire,
1968). His proposal was based on the relationship between size
and number and exploited the possibility of different spatial
arrangements to exemplify mathematical principles like number
composition. A new version of these materials can be found in
Singapore Math’s tiles (Wong, 2009; Wong and Lee, 2009); which
is considered one of the more influential methods for teaching
basic mathematics nowadays (Deng et al., 2013).

Following this vein, the acquisition of the number concept—
one of the building blocks of mathematical learning—would
benefit from direct interaction with objects (Dienes, 1961; Chao
et al., 2000; Anstrom, 2006; McGuire et al., 2012). Interaction
with objects may facilitate the passage from a concrete construal
(I can see/manipulate three things in front of me) toward an
abstract one (3 = * * *). This transformation begins with a process
which is strongly based on perceptual, non verbal operations and
turns into a symbolic one supported by an abstract association
(Feigenson et al., 2004). The first stage has to do with the
understanding that a given group of objects has a certain quantity

of components (Gelman and Gallistel, 1978); the second with
associating this quantity (of objects) to an exact number and its
symbolic expression, and then understanding that any time the
number is seen or heard it means that an exact quantity is being
referred to (Kilpatrick et al., 2001).

The sensitivity to numerosity is improved gradually as the
infant develops (Izard et al., 2009). Infants even just a few hours
old are already sensitive to numerosity (e.g., Antell and Keating,
1983; Izard et al., 2009). Allegedly, this is possible due to two
innate parallel number systems (see Feigenson et al., 2004; for
a review see Piazza, 2010): an object file system (Feigenson and
Carey, 2003) which accounts for the immediate identification of
a discrete quantity of elements—subitizing (Kaufman and lord,
1949)—and is limited by the capability to attend to different
objects at the same time; and an approximate number system
(ANS) which accounts for a non-symbolic continuous numerical
representation involving large numbers (Gallistel and Gelman,
1992; Dehaene, 2011).

Nevertheless, children are not able to explicitly identify simple
quantities involving numbers from 1 to 4 until 4 years old,
and up to 5 until 5 years old. To do so, different skills must
be developed such as counting and conceptual subitizing; the
combination of two “subitizable” numbers, for e.g., recognizing
the presence of a 3 (***) and a 4 (****) and implicitly composing
a set of 7 (*******) (Steffe and Cobb, 1988; Clements, 1999).
Toddlers recognize that sets can be combined in different
ways, but this understanding is based on nonverbal, perceptual
processes (Sophian and McCorgray, 1994; Canobi et al., 2002).
Commutativity is only acquired later between 4 and 5 years
old, as also the understanding that commutativity of added
groups leads to associativity (Gelman and Gallistel, 1978; Canobi
et al., 2002). Thus, associativity reflects conceptual reasoning
about how groups can be decomposed and recombined (Sarama
and Clements, 2009). Further, as children learn basic number
combinations, they can master a broad set of heuristics when
faced with addition and subtraction problems.

To foster the conceptualization of unit items childrenmay rely
on hand actions such as pointing or grasping (Steffe and Cobb,
1988). For instance, in the case of subtraction, small children
often represent the minuend with the fingers (or objects) and fold
their fingers (or remove objects) for the value of the subtrahend
(Groen and Resnick, 1977; Siegler, 1984). In fact, most children
cannot solve complex numerical problems without the support
of concrete objects until 5.5 years old (Levine et al., 1992).
Later on, children acquire retrieval strategies, accessing results
directly from long term memory (Rathmell, 1978; Steinberg,
1985; Kilpatrick et al., 2001). For this to be possible, children need
to master basic number combinations (Baroody and Tiilikainen,
2003), but also understand associativity (Sarama and Clements,
2009). Children typically progress throughout three phases to
achieve mastery on basic number combinations: (a) Counting
strategies—using object counting (e.g., with blocks, fingers)
or verbal counting (b) Reasoning strategies—using known
information (facts and relationships) to deduce the answer of an
unknown combination; (c) Mastery-efficient responses [i.e., fast
and accurate (Kilpatrick et al., 2001)].
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Children’s addition and subtraction strategies also evolve
during childhood. For instance, in order to solve 9 + 8, 4 to
5-year-old children would count from 1 to 9 for the first addend
and then from 9 to 17 for the total sum (“counting all strategy”;
Fuson, 1992; Verschaffel et al., 2007). Later on between 5 and
6 years old children would develop the more refined strategy
of “counting on” in which the count starts from the cardinal
of the larger addend (i.e., from 9 to 17; Carpenter and Moser,
1982; Siegler and Jenkins, 2014). More sophisticated part-whole
strategies are developed with the achievement of associativity and
the knowledge of how numbers from 1 to 10 can be composed (6–
7 years old; Canobi et al., 2002). To solve 9 + 8 children would be
able to retrieve that 9 + 1 is one of the forms to compose 10, and
then solve the problem by the easier 10 + 7 (also retrieving that
8−1 equals 7; Carpenter and Moser, 1984; Fuson, 1992; Miura
and Okamoto, 2003).

Interaction with objects may supports the development of
different strategies by diminishing cognitive load and freeing
up working memory, given that the perceived entities are
cognitively available through the objects that represent them
in space (Manches and O’Malley, 2016). Object manipulation
gives rise to operations that can work as analogies of abstract
operations. For example, joining 2 elements to a group of
another 3 forms a new group of 5. This concrete activity
would be a metaphor of act of addition: 2 + 3 = 5. These
conceptual metaphors work as scaffolding that allows children
to grasp abstract ideas such as commutativity or associativity
(Manches and O’Malley, 2016).

With the appearance of digital technologies, researchers have
been exploring how the manipulation of digital (Yerushalmy,
2005; Moyer-Packenham and Westenskow, 2013) and/or
technology-enhanced concrete material (Tangible User Interfaces
or TUIs; Manches, 2011) can benefit learning processes, finding
promising results (see Sarama and Clements, 2016). Beyond
the encouraging results obtained in several technology-based
interventions, it has been claimed that the application of digital
technology in the classroom posits the risk of replacing rich
physical interactions with the environment by much more
constrained interactions such as the use of the mouse–keyboard
or multi-tactile interfaces (Bennett et al., 2008). In this vein,
theories like constructivism, embodied cognition (Wilson,
2002; Anderson, 2003) and physically distributed learning
(Martin and Schwartz, 2005) support the idea that physical
interaction plays a key role in the learning process (Antle and
Wise, 2013; for a review in this matter see Sarama and Clements,
2016).

In this study, we focus on the kinds of actions virtual and
physical manipulatives offer and their impact on numerical
learning. On one hand, interaction with virtual manipulatives
is limited to dragging objects on the screen, but it still allows
children to displace, join and isolate objects as traditional
manipulatives allow (Moyer-Packenham and Westenskow,
2013). On the other hand, classic manipulatives offer interactive
advantages (to grasp the object, for instance) that could
have relevant consequences for educational activity (Martin
and Schwartz, 2005; Manches and O’Malley, 2016). Several

studies have been dedicated to this comparison, providing
results which are slightly favorable to physical manipulatives
(Martin and Schwartz, 2005; Schwartz et al., 2005; Klahr et al.,
2008).

Technology-enhanced tangible manipulatives offer several
advantages when compared with traditional or virtual
manipulatives (Moyer-Packenham and Westenskow, 2013).
They allow autonomous and active learning by using physical
material and enable us to record a child’s performance. In
addition, they enable us to explore which kind of actions are
relevant in specific learning activities. Importantly for the
present research, our system permits analyzing and comparing
the use of physical and virtual manipulatives to solve a task of
additive composition. This comparison is of special theoretical
interest given that it makes possible to explore the role of
physicality/three-dimensionality in learning mathematics. In
other words, the present research aims to investigate if it is
indispensable that objects may be grasped, lifted, and explored
or would it be enough to interact with virtual manipulatives?
And specifically, we ask how the objects’ affordances (i.e., the
possibility to grasp physical objects or drag virtual ones) will
shape and constrain children’s composing strategies.

2. MATERIALS AND METHODS

2.1. Participants
We recruited participants from one state school in Montevideo
(Uruguay) with a medium-high sociocultural status consisting
of 64 children (three classrooms) from first grade. All children
had an informed consent form signed by their parents or legal
guardians. A research protocol was approved by the Local
Research Ethics Committee of the Faculty of Psychology, and is in
accordance with the 2008 Helsinki Declaration. We employed a
quasi-experimental design and each classroom became one of the
following experimental groups: Control (CO), Virtual Interaction
(VI), and Tangible Interaction (TI).

Four children (two from the VI group and another two
from the TI group) failed to correctly answer 25% of the trials
in our training game. Therefore, we performed subsequent
analyses with the remaining 60 children (33 girls and 27
boys). Group descriptive information is shown in Table 1.
We examined the effect of age and sex by conducting
separated t-tests on assessment scores, but we did not find
any effect.

TABLE 1 | Mean and standard deviations at pre- and post-tests by groups.

TEMA-3

n Age

(years)

Sex

(*girls)

Pre Post

Passive Group (PA) 20 6.6 (0.3) 13 25.6 (5.7) 28.8 (4.6)

Virtual Interaction Group (VI) 20 6.8 (0.5) 11 31.8 (9.6) 35.1 (9.3)

Tangible Interaction Group (TI) 20 6.8 (0.6) 11 30.2 (10.3) 34.4 (10.5)
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2.2. Procedure
To evaluate the impact of both gamemodalities in the acquisition
of mathematical abilities, we planned an intervention with three
phases. A first and last phase of evaluations (Pre- and Post-Test),
and a training of 13 days in between.

2.2.1. Pre-test
To evaluate children’s mathematical abilities before and after
training we used the third edition of the standardized Test of
Early Mathematics Ability (TEMA-3, Bliss, 2006) for children
between 3 and 8 years of age. The test was verbally administered
and consisted of 72 items to assess: counting ability, number
comparison facility, numeral literacy, mastery of number facts,
basic calculation skills, and understanding of mathematical
concepts. This test has high content validity (Baroody, 2003)
and high reliability ranging from 0.82 to 0.97. Indeed, we found
a high test–retest reliability measured by calculating TEMA-
3 correlation between Pre-Test and Post-Test measures across
children within each training group (TI: 0.94; VI: 0.94; CO:
0.78). We calculated scores by the sum of all the correct answers
(taking into account ceiling and floor effects that are part of
the test administration). Two trained evaluators conducted the
evaluation and it took about 30 min per participant. This phase
took one week, with 12 children evaluated per day.

2.2.2. Training/Playing
The three classes selected to participate in the study continued
with their regular formal learning activities as part of the school
curriculum. Apart from the fact that each class had a different
teacher, teachers followed the same program and protocol, and
were committed to giving the same math curricula information
for the three classes. Both the TI and VI group played over 13
days (3 weeks). Sessions had a duration of 20 min each, from
Monday to Friday. Two researchers were present in every session
to help with any technical problems that may have arisen. In the
first session, we introduced the game dynamics and made explicit
the relation between size and value of each tangible and virtual
block to facilitate effective use of manipulatives. The CO group
continued with their regular curricular activities while the other
two groups had 20 min per day of training. The CO group only
participated in the Pre- and Post-Tests assessments.

2.2.3. Post-test
The same evaluators assessed the groups again with TEMA-3
and the scores were analyzed in the same manner as in the
Pre-Test evaluation.

2.3. Training Game BrUNO
The video game BrUNO was developed to give the learning
activity a more attractive and playful format. We took
gamification theory into consideration in order to incorporate
some gamification elements in BrUNO, such as: microworlds,
a main-character, a tutorial, several types of prizes, and
funny sounds. During the development of BrUNO, we carried
out two informal user tests to inform the game design
(Marichal et al., 2017a).

BrUNO is a video game designed to work on additive
composition. Children played BrUNO by using five types of
blocks whose length and color were associated with their value
(see Figure 1). The block of 1 represents the number “1”; the
block of 2 represents the number “2,” and so forth until 5. Each
block has a different length which is proportional to the value that
it represents).

To facilitate visual recognition of the location of the number
required to build, a horizontal or vertical number line (depending
on the scenario) is shown on the screen (see Figure 2). It is known
that as numerosity develops, a hierarchical mental representation
of how numbers should be ordered arises in the form of a number
line. This line, which is based on a spatial analogy, represents the
numbers from lowest to highest and locates them according to
their cardinality. Thus, to reinforce this mental representation
and to facilitate the additive composition task, we presented a
number line to guide the players while they compose the required
number. It helps to count the missing/spare units and deduce

FIGURE 1 | Block values, dimensions, and color.

FIGURE 2 | Fully virtual version of BrUNO. Prize placed in number three (as

indicated by the orange color). The player has already introduced 1 block of

value 2. To reach the prize, he must add one block of value 1. In this example,

a horizontal number line is present to help children locating numbers and to

help in adding and subtracting operations.
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how the target number can be correctly composed. If the child
has to build the number 4 and she has already put one block of
3, she can observe that the game character is 1 unit away from
the prize and compose the target number by adding the block
of 1. This way, the child can learn that 3 + 1 = 4. Additionally,
the game helps to demonstrate that, for example, the distance
between 1 and 3 is the same as between 21 and 23—a fact that
is not so obvious for young children (Siegler and Booth, 2004).

We developed two conditions for the evaluation of
manipulatives: the Tangible Interaction Group (TI) and the
Virtual Interaction Group (VI). In both cases, children played
BrUNO, but the interaction with the blocks differed. In the
first case, children manipulated technology-enhanced tangible
blocks, and in the second case, virtual blocks.

2.3.1. Tangible Interaction Device
We designed a low cost tangible interaction device named
CETA (Marichal et al., 2017a), with three main components (see
Figure 3): a mirror that changes the webcam’s viewing direction,
allowing the system to detect objects over the table; a wooden
holder that keeps the tablet vertically in portrait orientation; and
a set of tangible blocks of different sizes similar to Cuisenaire
Rods (representing numbers from 1 to 5; see Figure 1).

We used the webcam of the tablet and a mirror to capture
the image of the surface in front of the tablet holder in real-time.
This image is constantly analyzed to detect blocks in the detection
zone (for more details see Marichal et al., 2017b). The limits of
the detection zone are determined by the webcam hardware and
height of the holder. Blocks outside the detection zone are not
visible to the computer vision system.

FIGURE 3 | Tangible setting for BrUNO. Figure reproduced with author’s

permission (Marichal et al., 2017a).

We designed a set of 25 blocks for 3D printing. The handling
capabilities of the children at target age, the dimensions of
the detection zone of the computer vision system, and the
numeric quantities required by the different game challenges
determined the dimensions of the blocks. All blocks contain
magnets at their extremities, providing an affordance that
increases the probability of joining blocks imitating the
number line representation. Every block has a positive and a
negative extremity. The concave and convex block’s terminations
constrain the way it can be joined. On the top face of each block
we placed a set of colored markers (TopCodes; Horn, 2012) used
by the computer vision system. The number of markers on each
block corresponds to the block value.

2.3.2. Virtual Interaction Device
The virtual version allows to play BrUNO without CETA device.
The blocks are virtual and the child has to place them in the
detection zone to submit its answer to the system (Figure 2).

2.3.3. Data Collection
We recorded the children’s actions to trace the quantity and the
type of blocks employed in children’s solutions over time. This
allowed us to analyze the game strategies developed by each
group and follow the performance of every single participant.
After each response our system recorded the following data: (1)
the number required to form, (2) the number actually formed,
and (3) the blocks used to form the number.

We assumed that if the child wanted to respond with two
blocks but put the first block in the detection zone while
looking for the other, then we should develop a strategy to avoid
considering this incomplete answer as a child’s final solution.
Thus, to avoid recording partial solutions we implemented what
we call “action submit,” which consists of two steps. The first
step is to wait for a stable solution. By stable solutions, we mean
invariant responses by children for 1.5 s meaning that the blocks
placed in the detection zone were not moved for 1.5 s and no
blocks were added or removed. If this condition was completed,
then we move to the second step in which the game character
prepares itself for 1 s to execute the movement. If, during this
time the child changed his or her answer, the time counter resets
and “action submit” starts over again. If the answer did not
change, the game character moves and the system records the
blocks that composed the child’s solution. To avoid duplicate
responses (e.g., the child leaves the blocks in the detection zone
and goes to the bathroom) we only registered the solutions that
differed from the last recorded solution.

3. RESULTS

3.1. Differences Between Groups
To test the effect of playing our training game over 13 sessions, we
assessed the children’s mathematics performance using TEMA-3
before and after training or without training as in the case of the
CO group.

While we had a quasi-experimental design in which the groups
were non-randomized at baseline, there were no significant
differences between groups on Pre-Test, p = 0.84. To test for
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conditional differences, we used an ANCOVA with the Post-
Test scores as the dependent variable, the Pre-Test as the
covariate, and the Group as the independent variable. ANCOVA
is advocated in this type of context because it controls for
minor variations in the Pre-Test scores (Oakes and Feldman,
2001; Schneider et al., 2015). The assumptions of the ANCOVA
were satisfied (as noted above, the covariate levels did not
differ between conditions, and homogeneity of slopes held, as
verified by running an ANOVA and customizing the model to
include the interaction between the covariate and independent
variable, p = 0.5). The ANCOVA identified a significant effect
of Group, F(2, 54) = 20.9, p < 0.001, r = 0.44. We followed
up this analysis with pairwise comparisons between Post-Test
scores adjusted by the ANCOVA with the baseline Pre-Test
scores. Both experimental groups obtained higher Post-Test
scores than the control group (VIMean: 32.54, VISD = 0.77; TIMean:
33.27, TISD = 0.74 and COMean: 30.93, COSD = 0.86). However,
only Post-Tests scores significantly differed when comparing
TI vs CO (p = 0.044). We found no other significant effects
between groups.

3.2. Virtual and Tangible Interaction Groups
and the Minimum Blocks Coefficient (MBC)
We focused on the possible problem-solving strategies employed
by the children when resolving the number composition task,
and how the type of interaction could have affected their
actions. To do so, we carried out exploratory analysis using
participants’ log files. It allowed us to observe which blocks were
used to compose each number by all the participants, at every
successful trial.

Firstly, we analyzed whether the number of blocks used
to build the correct solution was different across groups. For
example, to build the number 3, it is possible to use three blocks
of 1 (“1-1-1”), one block of 1 and one block of 2 (“1-2”), or
directly use one block of 3 (“3”). To evaluate how close the
child was to using the minimum number of blocks that were
necessary to build a number (one block in the case of numbers
from 1 to 5, two blocks in case of numbers from 6 to 10, or
three blocks if the number is greater than 10), we developed
a score called the “Minimum Blocks Coefficient” (MBC). MBC
is a metric that allows us to observe the different solutions in
composing numbers while training additive composition. We
aim to explore how children compose numbers using different
types of manipulatives. For each correct solution it takes the
minimum number of blocks necessary to build the number
requested, and divides it by the number of blocks actually used.
For example, in the case of number 3 the variant “1-1-1” becomes
the score 1/3 = 0.33, because just one block is necessary to build
the number (block of 3), and in reality, three blocks were used.
The combination “1-2,” becomes 1/2 = 0.5, and “3,” becomes the
score of 1.0. To calculate the MBC for one particular number
and one particular group (TI or VI), we take all the correct
solutions of the number formed by the participants of the group
and calculate the mean value. Error rates were not analyzed
because we observed that the tangible system required more time
for the physical manipulation and during that time some partial

solutions were recorded as errors before the child’s final answer.
For example, if the child wanted to respond with two blocks, but
he or she put the first block in the detection zone while looking
for the other and no changes occur in the detection zone for
2.5 s, the system registered the child’s uncompleted solution as
a response (error in this case). The algorithm is explained with
more detail in the section “2.3.3.” For the aforementioned reasons
we decided to only analyze the correct answers, so we were
confident that we analyzed explicitly correct answers rather than
random solutions.

3.2.1. Minimum Blocks Coefficient by Numbers (1–13)
We applied a two-way ANOVA considering the MBC as the
dependent variable and Group and Numbers as the independent
variables. Numbers is the variable that represents the number the
child is asked to build. We divided all the Numbers that appear
in the game (1–13) into three ranges based on the theoretical
MBC that could be used for those numbers. Specifically, the
theoretical MBC for numbers ranged from 1 to 5 is one block
(i.e., they have the possibility to respond with a minimum of
one block); for the numbers ranged 6–10 is two (i.e., they
have the possibility to respond with a minimum of two blocks)
and for the numbers ranged from 11 to 13 is three blocks
(i.e., they have the possibility to respond with a minimum of
three blocks).

The results showed that the type of manipulatives (TI or VI
group) [F(1, 126) = 6.21, p = 0.014, r = 0.076] and the Number
[F(2, 126) = 10.8, p < 0.001, r = 0.060] (see Figure 4) significantly
influenced the MBC. We found no further interaction. The TI
group used significantly more pieces (lower MBC) comparing
with the VI group (TIMean = 0.65, TISD = 0.19, VIMean = 0.72,
VISD = 0.15). These differences between TI and VI may be a
result of the diverse composing strategies used when solving the
number composition task.

Considering the variable Number, the number of blocks used
were significantly fewer for the numbers ranging from 1 to 5
compared to the numbers ranging from 6 to 10 (p = 0.0002)
and also compared to the numbers ranging from 11 to 13
(p = 0.0003).

FIGURE 4 | The Minimum Blocks Coefficient (MBC) for each number the child

was asked to build. We applied a linear model to data points with a 95%

confidence level for each Experimental Group: Virtual Interaction (VI) and

Tangible Interaction (TI).
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FIGURE 5 | Minimum Blocks Coefficient (MBC) for each session and

experimental group. We applied a linear model to data points with a 95%

confidence level.

3.2.2. Minimum Blocks Coefficient Over Time
Participants reduced the number of blocks used during the 13
sessions that our intervention lasted (see Figure 5). We found
a significant positive correlation (ps < 0.0001) between the
MBC and sessions for VI (0.84) and for TI (0.87) groups. We
also explored whether the number of blocks employed was
significantly different at different moments of our intervention
by analysing the MBC Mean for the first and last three sessions
for both groups. Interestingly, in the first three sessions, the MBC
was greater for the VI group, i.e., children used fewer blocks (p <

0.0001). In contrast, when analysing the last three sessions, the
MBC did not differ between either group.

3.2.3. Minimum Blocks Coefficient and Mathematics

Improvement
We explored the relationship between the number of blocks
employed during the intervention (measured by MBC) and the
amount ofmathematical improvement (dScores: Post-Test scores
− Pre-Test Scores) and found no correlation (p > 0.05). Neither
TI nor VI groups showed a significant correlation between MBC
and dScore when analyzed separately (p > 0.05).

Further, we decided to analyze the differences in the number
of blocks employed comparing the performance of the Better
and Worse Improvers. Thus, we divided all participants by
the median of the dScore comprising two groups. The Better
Improvers were the children with a dScore above the median,
while the Worse Improvers were the ones whose dScore was
below the median (see Figure 6). We found a significant
negative correlation between MBC and dScores for the Better
Improvers (cor = −0.50, p = 0.021), but not for the Worse
Improvers. In conclusion, the children that had a greater
improvement were the children using more blocks than the
minimum blocks necessary to build the numbers required by
the game. In contrast, we did not observe any change in the
number of blocks used by the children who did not improve
in mathematics.

3.2.4. Minimum Blocks Coefficient and Mathematics

Performance
We were also interested in the relationship between the
Minimum Blocks Coefficient (MBC) and mathematical

FIGURE 6 | Minimum Blocks Coefficient by mathematics improvement for

better and worse improvers. We applied a linear model to data points with a

95% confidence level.

FIGURE 7 | Minimum Blocks Coefficient (MBC) by math performance (pre-test

scores). We applied a linear model to data points with a 95% confidence level.

performance (Pre-Test scores). Analysis indicated that Pre-Test
scores were positively correlated with the MBC (cor = 0.41, p =
0.009; see Figure 7). Children who had greater Pre-Test scores at
the beginning of this study had the tendency to use less number
of blocks during the game.

4. DISCUSSION

4.1. Impact of Manipulatives on
Mathematical Learning
Our results indicate that the tangible manipulative group
showed an advantage in mathematics scores after training
compared to the control group. Our findings highlight
the possibility of improving mathematical ability by
practicing implicit number composition tasks assisted by
tangible manipulatives.

We did not find significant differences either between the
two types of manipulatives (virtual and tangible), or between
virtual manipulatives and the control group when considering
mathematical improvement tested by TEMA-3. It may be the
case that virtual tangibles also have an impact in Post-Test scores,
which was not observed due to the lack of statistical power of the
present study.

Frontiers in Education | www.frontiersin.org 7 September 2019 | Volume 4 | Article 81

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Pires et al. Building Blocks of Mathematical Learning

4.2. Virtual and Tangible Manipulatives Led
to Different Strategies in Number
Composition
We analyzed children’s behavior during our intervention to look
for possible differential profiles in their evolution during training.
Our tablet-based intervention allowed us to record the children’s
responses every time they submitted a block to compose a
number. Our results enabled us to reflect on the role of specific
actions performed by children affecting the learning process, and
how learning could be influenced by the interactive properties
of the blocks rendered as a representational assistance (Manches
and O’Malley, 2016).

It was observed that the TI and VI groups significantly
differed in the numbers of blocks used to compose a number.
VI employed significantly fewer blocks compared with TI,
showing that the different type of manipulatives could have
led to different problem solving strategies. TI children opted to
compose numbers using more varied combination of blocks, i.e.,
they used more number composition strategies. This suggests
that the affordances of physical objects do trigger more diverse
solutions (Manches and O’Malley, 2016), which have been
advocated to prompt better learning experiences in numerosity
knowledge (Alibali and Goldinmeadow, 1993; Chi et al., 1994;
Siegler and Shipley, 1995) and specifically foster mastery of basic
number combinations (Baroody and Tiilikainen, 2003; Sarama
and Clements, 2009).

Our results are in accordance with Manches et al. (2010)
results that found that children employed a significantly
greater number of solutions when they used plastic blocks as
manipulatives, comparing with a condition in which children
were aided with a visual representation drawn on paper. For
instance, it is easier to detect the “reversion” strategy (5-2, 2-
5) when you can hold and displace objects representing these
quantities (2 and 5). This finding supports the view that objects
affordances implicitly carry information that could be relevant
to reflect on abstract concepts, through conceptual metaphors.
In our study, we compared tangible blocks (TI group) against
virtual blocks (VI group). The use of virtual blocks allowed the
children to drag, transform, and move blocks which allows a
richer interaction compared to blocks drawn on paper. However,
when compared to virtual blocks, tangible blocks enabled a
more diverse combination of blocks to compose numbers as also
observed elsewhere (Manches et al., 2010).

4.2.1. Strategies Evolution in Number Composition
When we analyzed strategies during training sessions we
found that at the beginning of the training both groups
employed more blocks to compose numbers with a tendency
to diminish in the last sessions. This tendency to diminish
may represent an approach to optimal performance (when the
number is composed by the minimal quantity of possible
blocks), probably reflecting learning toward increasing
efficient and fastest strategies in number composition
(Baroody and Dowker, 2003).

This is in line with the fact that composing and decomposing
strategies becomes semiautomatic or automatic with effective

and faster answers to basic number combinations. Children may
automatize some combinations of a number through practice,
resulting in an association with their counting knowledge.
This association encourages efficiency, preventing children from
repeatedly practicing all the possible combinations (Baroody,
2006). In our study, children at the beginning started by
practicing various combinations of numbers. For instance, in the
first sessions to form the number 5 children might use several
combinations as 1+1+1+1+1, 2+2+1, 2+1+1+1, reflected by low
MBC scores. Nevertheless, at the end of the training sessions
children were able to answer more effectively, reflected by high
MBC scores. For instance, to form the number 5 they answered
with the block 5 or by adding just two blocks as 2+3 or 4+1, which
is quicker and more direct.

Analyses showed that the mean of blocks used in the first
three sessions was significantly smaller for the VI group, whereas
both groups employed the same number of blocks in the
last three sessions. This suggests that besides the tendency of
both groups to optimize responses, they presented a different
profile in their evolution during training. Children who used
tangible manipulatives had the tendency to use more blocks and
showed a more pronounced decrease in the number of blocks
used during the intervention compared to children who used
virtual manipulatives. This finding may be connected to the
observed improvement in maths scores (measured by TEMA-
3) for the TI group. The number of combinations used in the
TI may have contributed to achieving mastery in mathematical
knowledge, since mastery in basic number composition is
enriched by experiencing more varied possibilities (Markman,
1978; Bowerman, 1982; Karmiloff-Smith, 1992). In this study,
physical object affordances offered the user a richer set of action
possibilities, and most probably also a more comprehensive
understanding of the phenomenon explored.

4.2.2. Strategies in Additive Composition Task and

Mathematical Improvement
We did not find a correlation between the number of blocks
employed by children and mathematical improvement in general
(all children analyzed together). Nevertheless, when children
were divided according to their improvement in mathematics
(Post-Test− Pre-Test) after the intervention, it was observed that
the greater improvement group showed a positive correlation
between number of blocks employed and gain in mathematical
knowledge, which was not found for the Worse Improvers.

Therefore, children who showed a greater improvement
tended to use more blocks. This outcome may suggest that an
optimal performance in number composition (understood as
fewer pieces used to form a number equals better performance)
would not necessarily lead to a better learning experience.
Another hypothesis would be that children who do not already
have this mastery in number combinations, i.e., efficient, fast
and accurate responses, would benefit more from employing
manipulatives to solve additive composition and this might be
the case for the “Better Improvers.” Children who improved at
maths during training were the ones using more varied block
combinations. This is connected to the fact that the use of a
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greater variety of strategies can result in a better learning outcome
(Markman, 1978; Bowerman, 1982; Karmiloff-Smith, 1992).

4.2.3. Strategies in Additive Composition Task and

Mathematics
Interestingly, a negative correlation was found between
mathematical scores at the Pre-Test (how good the children
were at the beginning of the study) and the number of blocks
employed. That is, being better at mathematics at Pre-Test
implied the use of fewer manipulative blocks, probably due
to a better knowledge of retrieval strategies while composing
numbers (Rathmell, 1978; Steinberg, 1985; Kilpatrick et al.,
2001). Children who were good at maths at the beginning of
the training will not necessarily use more strategies because
they already have a deeper knowledge in number concept and
composition. That is to say, children who have already learned
basic combinations of numbers have the ability to use such
knowledge to answer quickly and efficiently in a familiar and
unfamiliar learning context (Baroody, 2006).

It may seem contradictory that children who obtained the best
scores at TEMA-3 (better at mathematics at baseline) used fewer
blocks whereas the Better Improvers tended to employ more.
However, according to Sarama and Clements (2009), despite
seeming paradoxical, those who are better at solving problems
with objects, fingers or counting are less likely to persist in these
strategies in the future—as already reported by Siegler (1993)—
but this is because they trust their answers and therefore move
toward more precise strategies based on the retrieval of number
combinations, leaving behind what once served as a scaffolding.

These results also suggest that children who will benefit
more from the use of manipulative blocks are the children
who do not have already mastery in number combinations.
The use of enhanced manipulatives may be more suitable for
younger children who need to practice and automatize simple
number combinations.

4.3. Limitations
The present study has several limitations that should be
considered when interpreting the results. It may lack statistical
power since the number of participants in each group is small
and for such reason, a larger confirmatory study is needed to
strengthen the conclusions of the present study. The quasi-
experimental design of the current study has more ecological
validity (children were kept in their school groups), but it is
susceptible to threats on internal validity compared to controlled
experimental designs and for that reason we consider our results
as exploratory and conclusions are drawn carefully.

4.4. Conclusions
Current findings indicate that the use of tangible manipulatives
had a positive impact on mathematical learning. We were
able to observe interesting relationships between the level of
mathematics and the kind of manipulative strategies chosen
by the children when solving number composition tasks.
Our results suggest that tangible manipulatives increase action
possibilities and may also contribute to a deeper understanding
of core mathematical concepts. Playing the game BrUNO
with tangible manipulatives promotes meaningful practice of

more varied number combinations by encouraging children
to focus on patterns and relationships in basic number
combinations. In addition, we were able to observe how their
responses pattern changed throughout the training leading to
the use of less but efficient strategies in the last sessions
which may reflect that they achieved mastery in doing such
combinations. Thus, training in this basic combinations led to an
improvement in mathematics and hopefully may lead children
to effectively apply this knowledge in new and unfamiliar
number combinations.

From an interaction design perspective (for more details
regarding this research and perspective, see Marichal et al.,
2017a), the most relevant observation is how the objects’
affordances (i.e., the possibility to grasp physical objects
or drag virtual ones) somehow shape and constrain users’
strategies. In our study, tangible blocks meant a richer
interaction, providing the opportunity to explore more number
composition possibilities. This possibly led to an improvement
in mathematical performance. Thus, depending on the learning
task objective (context), we might take advantage of this
phenomena, by choosing either tangible, virtual or mixed
learning environments. The current study invites researchers to
delve deeper in the exploration of the potential for designing
interactive activities aimed at fostering learning of specific
target content.
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