
MINI REVIEW
published: 26 September 2019
doi: 10.3389/feduc.2019.00105

Frontiers in Education | www.frontiersin.org 1 September 2019 | Volume 4 | Article 105

Edited by:

Angela Jocelyn Fawcett,

Swansea University, United Kingdom

Reviewed by:

Martin McPhillips,

Edge Hill University, United Kingdom

Giovanna Bubbico,

G. d’Annunzio University of Chieti and

Pescara, Italy

*Correspondence:

Anya Doherty

anyadoherty@gmail.com

Specialty section:

This article was submitted to

Educational Psychology,

a section of the journal

Frontiers in Education

Received: 07 May 2019

Accepted: 11 September 2019

Published: 26 September 2019

Citation:

Doherty A and Forés Miravalles A

(2019) Physical Activity and Cognition:

Inseparable in the Classroom.

Front. Educ. 4:105.

doi: 10.3389/feduc.2019.00105

Physical Activity and Cognition:
Inseparable in the Classroom

Anya Doherty* and Anna Forés Miravalles

Facultat d’Educació, Universitat de Barcelona, Barcelona, Spain

Traditional education has tended to compartmentalize abstract thought, emotion, and

physical activity. However, neuroscientific evidence suggests that these are completely

interlinked in the learning process. The traditional lecture-style lesson relegates students

to a passive and sedentary role, precluding physical movement. In addition, the current

trend of schools reducing recess hours, dropping physical education classes, or subjects

that involve the whole body—theater, music, outdoor activity—further limits the scope

for physical movement within the learning milieu. Neuroscientific evidence suggests

that sedentarism impacts negatively on brain health, and not only physical well-being.

Humans are designed to be on the move, to interact with their environment through

movement: physical activity is a key contributing factor to healthy brain function. This

mini review presents and analyzes evidence from diverse studies and meta-analyses

showing the strong link between movement and cognition in primary and secondary

school students. There is a growing body of neuroscientific evidence of the benefits

that movement and physical activity have for cognition. In the research examined, the

authors identify diverse types and degrees of physical activity and their impact on the

brain. The neurological impact of movement on the brain can be understood at three

levels: increased vascularization—oxygen and glucose to the brain—augmenting brain

activity; the release of neurotransmitters and Brain Derived Neurotrophic Factor (BDNF)

which favor neurogenesis, memory, attention and motivation; and the development of

complex movement-related neural circuits and their interconnection with the executive

brain functions. This article proposes a set of concrete applications for educators to bring

movement into their classrooms and/or learning contexts, thus favoring cognition. Based

on this evidence and given the current educational reality which generally approaches

learning as an abstract activity divorced from our corporality, the authors argue for the

need to incorporate physical activity and movement into the learning context.
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INTRODUCTION

Neuroscientists, such as Immordino-Yang and Damasio, in their paper “We feel therefore we
learn” (Immordino-Yang and Damasio, 2007) allude to the need in education for a shift in
paradigm from that of Descartes “I think therefore I am”—an aggrandization of rational, abstract
thought—toward a paradigm that recognizes the social and emotional components of human
cognition. In classrooms around the world there is a growing recognition of the need to
incorporate socioemotional learning into pedagogical practice, based on a broader conception of
the learner as a “whole person”—a social being with emotions. If classroom practice is beginning
to recognize the place of emotion in learning, possibly the next challenge to educators is the
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recognition of the body as a key element in cognitive
development and processing. Teaching and learning cannot
focus purely on the brain, to the exclusion of the body. The
traditional lecture-style lesson relegates students to a passive
and sedentary role, precluding physical movement. The current
trend of schools toward reducing time allocated for physical
activity, prioritizing instead the focus on academic subjects
that feature in standardized tests, exacerbates sedentarism in
schoolchildren (Chaddock-Heyman et al., 2018). A 2018 World
Health Organization (WHO) report established that “in 2016
almost 340 million children and adolescents (aged 5–19 years)
or almost one in every five (18.4%) were overweight or obese
globally”—a more than 10-fold increase in the past 4 decades1.
Moreover, WHO statistics for 2010 revealed that 80% of
school-going adolescents were insufficiently physically active2.
Evidently, this has major health implications, as well as an
impact on cognition and academic achievement. Neuroscientific
evidence suggests that sedentarism not only hinders learning,
but that it flies in the face of how the human anatomy
and brain have evolved: from the perspective of evolutionary
neurobiology, authors, such as Bramble and Lieberman (2004),
Lieberman (2010), and Raichlen and Polk (2013) propose
that long distance running and walking molded the human
anatomy and brain size. Vorkapic-Ferreira et al. posit that
“The evolutionary hypothesis of endurance running states that
movement played a crucial role in the emergence of typically
human anatomical features, as well as in the shaping and
structure of the human brain (. . . ). Effectively, the human
body, including the brain, has evolved to withstand extended
periods of cardiovascular stress. Movement is so essential to
the brain that regular physical activity is imperative for it to
function properly. Studies have shown that aerobic exercise
increases neuron proliferation, neurotrophic factors synthesis,
gliogenesis, synaptogenesis, regulates neurotransmission and
neuromodulation systems, and reduce systemic inflammation.
All of these effects have a significant impact on improving mental
health, reducing age-related gray matter decline, and improving
cognitive functions” (Vorkapic-Ferreira et al., 2017). We are
designed to be on the move, we interact with our environment
through movement: physical activity is the foundation of brain
functioning, as asserted by Llinás (2001), Ratey and Hagerman
(2008), and Wolpert (2011). Diamond observes that “The same
or substantially overlapping brain systems are important for
both cognitive andmotor functions (Diamond, 2000; Rosenbaum
et al., 2001). The brain does not recognize the same sharp
division between cognitive and motor function (or cognitive and
emotional functioning, or social and emotional functioning, and
so on) that we impose in our thinking” (Diamond, 2010).

Neuroscience research over the past 10 years has produced
significant evidence that movement and cognition are favorably
linked (Diamond, 2000; Cotman and Berchtold, 2002; Hillman
et al., 2005, 2009a; Chaddock et al., 2010a; Castelli et al., 2014;

1World Health Organization. Retrieved from: https://www.who.int/gho/

publications/world_health_statistics/2018/en/ (accessed September 03, 2019).
2World Health Organization. Retrieved from: http://apps.who.int/gho/data/view.

main.2463ADO?lang=en (accessed September 03, 2019).

Erickson et al., 2015; Mandolesi et al., 2018). Today, a growing
body of studies points to the wide-ranging benefits of physical
activity for cognition: neurophysiological and neurochemical
changes improve brain function, alter brain structure, lead to
greater well-being and improve learning. However, some studies
produce mixed results—of a neutral, insignificant or negative
relationship—and researchers urge the refining of research
parameters and greater methodological rigor in order to identify
contextual variable/s involved (age-range, intensity, duration or
type of exercise, etc.) (Marques et al., 2017). Overall, however,
it would appear a relevant challenge for educators to explore
how to implement this knowledge of a favorable association
between physical activity and cognition, in order to improve the
teaching-learning process.

In what ways does physical movement favor cognition?
Through increased blood reaching the brain (vascularization),
the release of neurochemicals, and neural networks. Referring
to a selection of research studies, let us examine each of these:
the human brain represents just 2% of human body mass
yet it requires 20% of energy consumed (Hart, 1975). With
physical activity, blood-flow (vascularization) is augmented,
thereby augmenting the oxygen and nutrients reaching the
brain, enhancing brain activity (Delp et al., 2001; Hillman
et al., 2009b). In the classroom, if teachers simply ask students
to stand up and stretch, the brain receives 7% more oxygen
(Krock and Hartung, 1992). Thus, by incorporating movement
activities into the lesson plan, or inserting brief movement
breaks teachers are enhancing brain activity. There are numerous
studies on this—to cite a few: research with 9 to 11-years-old
showed that 4-min physical activity intervals during class-time
improved selective attention, which is crucial for learning (Ma
et al., 2015). Another study (Mahar et al., 2006) showed how a
daily 10-min movement break (“Energizers”) in class improved
attention and on-task behavior, andmost notably in students who
habitually showed “off-task” behavior. In a study on embodied
cognition (Kontra et al., 2015), college physics students who
physically participated in doing an experiment on the mechanics
of movement forces of a bicycle wheel, demonstrated greater
activation of sensorimotor regions during learning and during
recall, and achieved notably better results than sedentary peers
in a test on the subject matter. These sensorimotor circuits are
adding kinetic detail and meaning to their thinking (Glenberg,
1997; Barsalou et al., 2003; Zwann and Taylor, 2006; Beilock et al.,
2008). Diamond (2010) makes the analogy of driving a car: when
do you remember a route better, when you are driving the car,
or when you are a passenger? Clearly, when students have an
active, multisensorial role in their learning—and increased brain
regions are involved—learning is enhanced. Physical activity
can be incorporated into lessons themselves, or into the school
day. Castelli et al. (2014), in a meta-analysis, explain how
including physical activity in lessons yielded improved academic
achievement in scores and tests (Ahamed et al., 2007; Donnelly
and Lambourne, 2011), and that incorporating vigorous PA
into the school day (dance routines, tag, running, PE lessons)
improved memory, concentration and academic performance
(Carlson et al., 2008; Pesce et al., 2009; Castelli et al., 2011; Gao
et al., 2013).
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Physical activity triggers the release of neurochemicals
that favor learning and memory. These neurotransmitters
include dopamine, associated with motivation, focus and
learning; serotonin which enhancesmood, norepinephrine which
improves attention, perception and motivation (Basso and
Suzuki, 2017). Emotional well-being is vital for learning. When
the amygdala in the “emotional brain” or limbic system detects
emotional states, such as stress, fear or anger, it is overwhelmed
by excessive levels of norepinephrine and dopamine, and
“freezes” in an “amygdala hijack” (Goleman, 2005; Willis, 2009),
impeding the processing of new information in the hippocampus,
i.e., learning is impeded (Willis, 2009). The prefrontal cortex,
where higher-order cognitive functions (the executive functions,
EF) are concentrated, is also highly vulnerable to stress-related
norepinephrine and cortisol release, which lead to prefrontal
dysfunction (Birnbaum et al., 1999; Liston et al., 2009). As
Lavados (2012) and Mora (2017) observe: we learn what we
love, positive emotion smooths the way for learning. Or, to
paraphrase Amanda Céspedes—more effective learning requires
more affective learning (Céspedes, 2008). Negative emotional
states in students effectively hamper learning—and the opposite
is true: when teachers are aware of the affective state of their
students, and work to cultivate a positive, safe socioemotional
classroom environment, learning and memory are enhanced
(Diamond, 2010). Thus, when teachers incorporate physical
activity into the learning process—with the subsequent release
of the abovementioned neurotransmitters they are potentially
fostering positive mood states, lowering stress and favoring
learning and memory (Willis, 2009; Lavados, 2012).

Furthermore, because movement activities usually include
interaction and eye-contact, this stimulates the “social brain,”
causing the activation of mirror neurons which favor empathy;
the release of feel-good endorphins; the social-bonding
neurotransmitter oxytocin; and motivational neurotransmitters
like dopamine (Rilling et al., 2002; Willis, 2008). Diamond
and Ling emphasize that our emotional, social and physical
well-being impact heavily on cognition. They explain how EFs
are the first to suffer if a subject feels stressed, sad, lonely,
not in good physical health and lacks sleep (Diamond and
Ling, 2015). Physical exercise combats these damaging states,
enabling higher-order cognitive functions (Carmack et al.,
1999; Williamson et al., 2001; Haslacher et al., 2015) and
improves sleep (Yang et al., 2012; Chen et al., 2015; Wachob
and Lorenzi, 2015). Gould points out the 2-fold impact of
physical exercise: it reduces stress along with the negative
consequences stress has for brain function while it also favors
neurogenesis and brain performance (Gould, 2015). Given that
students are habitually exposed to stress (the demands of tests,
time limits, etc.), physical activity may be playing the role of
stress-reducer that consequently improves the brain’s capacity
for cognitive processing (Mora, 2017). Studies also point to the
importance of movement activities being voluntary or joyful
(the attitude of the student toward the activity matters): when
exercise is collaborative, unthreatening and fun (vs. a boring
obligation), brain-function is enhanced (Diamond and Ling,
2015). Ratey and Hagerman present the case study of a high
school which integrated motivational, fun, non-competitive
physical education sessions into the school day. When the school

took the international standards test, Trends in International
Mathematics and Science Study (TIMSS) it came out in first
place in science and sixth in math in the world—the US average
is at eighteenth and nineteenth place (Llinás, 2001). Nevertheless,
although this data appears encouraging, it warrants mention
that this was a school-wide change in policy on physical activity,
not an experiment conducted by a research team. Hence, this
evidence, though potentially positive, should be taken with
caution, and rigorous follow-up studies would be warranted
in order to narrow down variables involved and to clarify the
interpretation of results.

The favorable impact of voluntary aerobic exercise on the
size and function of the hippocampus (region associated with
learning) in rodents has been much studied (Van Praag et al.,
2005; Vivar et al., 2013). Voluntary aerobic exercise is an
excellent trigger of Brain Derived Neurotrophic Factor (BDNF)
which stimulates the growth of new neurons (neurogenesis),
new connections between neurons (synaptogenesis) and the
protection of existing neural circuits in the hippocampus (Voss
et al., 2013; Jeon and Ha, 2015; Basso and Suzuki, 2017) (in older
adults it counteracts hippocampal shrinkage Voss et al., 2013—
a burgeoning research field, but beyond the scope of this mini
review). It is remarkable that PA should cause these structural
changes particularly in the part of the brain where learning
occurs—and not in the sensorial or motor regions. Ratey explains
that it makes evolutionary sense: “. . . the reason we need an
ability to learn is to help us find and obtain and store food.
We need fuel to learn, and we need learning to find a source
of fuel . . . ” (Ratey and Hagerman, 2008). As posited by Gómez-
Pinilla et al., “these findings suggest that BDNF is part of a
central mechanism through which physical activity integrates
with elements of energy metabolism to impact aspects of
hippocampal function. These findings support the evolutionary
contention that learning ability is intimately related to energy
balance, an attribute that may have developed to maximize motor
operations that increased the chances of obtaining food and the
probability of survival” (Gómez-Pinilla et al., 2008). Physical
activity is effectively “growing the brain” through BDNF release
and increased hippocampal size.

Let us consider a few of these structural changes: research
demonstrates that individuals who exercise more have greater
cortical mass (Anderson et al., 2002). Children who are
more physically active have greater volume of gray and
white matter: the hippocampus, region of the brain where
learnings become stored as memories, is larger in fitter children
as are the basal ganglia (Chaddock et al., 2010a,b)—brain
structures are associated with learning. These children showed
better academic achievement in tasks related with EFs and
associative memory (Castelli et al., 2014). Chaddock-Heyman
et al. show evidence that children who are more physically
active undergo changes in their white matter (corpus callosum)—
which integrates cognitive, motor and sensory information
between left and right hemispheres (Chaddock-Heyman et al.,
2018). Fitter individuals show differences in brain structure
and function (Hillman et al., 2009a; Castelli et al., 2014). With
regards brain function, studies show greater brain activity,
greater connectivity between hippocampus, prefrontal region
and cingulate (Chaddock-Heyman et al., 2018) and academic
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results or cognitive performance can show improvement related
with physical activity (Pesce et al., 2009; Chaddock et al., 2010a;
Donnelly and Lambourne, 2011; Castelli et al., 2014; Rama
Kranthi et al., 2014; Erickson et al., 2015).

A longitudinal study by López-Vicente (the first of this nature)
followed 1,400 children from the age of 6 through to their teens.
Their conclusions indicated that children with a lower level of
physical activity at age 6 showed significantly poorer results
in memory tests as adolescents than their fitter peers (López-
Vicente et al., 2017). This would appear to imply that greater
levels of PA in developing years has long-term cognitive benefits.
Research studies by Hillman et al. show how children with higher
aerobic-fitness levels showed better neurocognitive function,
evidenced in greater attention and working memory levels as
well as brain response speed to cognitive tasks (Hillman et al.,
2005). Their research also showed that fitter children show better
cognitive performance in tasks, demonstrating greater executive
control and attentional resources (Hillman et al., 2009a). Sibley
and Etnier’s metanalysis compiles evidence that PA improves
perceptual skills, IQ, achievement, verbal tests, mathematic tests,
among others (Sibley and Etnier, 2003). In the abovementioned
studies, as in others cited, is important to highlight that causality
should not be assumed between the variables, such as fitness level
and the different brain functions measured. These results point
to a favorable relationship, but the nuances of that relationship,
and the other variables involved warrants further exploration.

Neuroscience research is revealing that brain areas are far
more interlinked than previously imagined—for example the
cerebellum, associated previously with EFs (inhibition and
interference control, cognitive flexibility, working memory)
(Diamond, 2012) associated with the PFC are intricately
connected with multiple other regions—for example, areas
related with emotion and physical movement (Diamond, 2000,
2010). Research reveals that the cerebellum, traditionally linked
only with motor functions, is also associated with thought,
attention, emotions and social skills (Diamond, 2000). The
cerebellum is active in cognitive functions, not just motor. The
perception that motor development and cognitive development
are separate, no longer holds in the face of this evidence. In
fact, in both PA and thought processing, there is co-activation
of cerebellum and prefrontal cortex. Cerebellar damage impacts
on cognitive processing and damage to the PFC impacts on
motor functions (Diamond, 2000). Brain circuits involved in
physical movement are not completely distinct from those used
for thinking, as described by Llinás (2001) “That which we call
thinking is the evolutionary internalization of movement”. Or, in
the words of Ratey—Nature is a frugal creator: when we exercise,
particularly with complex, sequenced movements, we are using
the same circuits of prediction, sequencing, estimating, planning,
rehearsing, self-observation, judgment, mistake correction, shift
of tactics, and remembering as we use for thinking processes
(Ratey, 2001; Ratey and Hagerman, 2008; Diamond, 2012).
But, to what extent are EFs transferrable? Diamond and Ling
(2015) in a rigorous meta-analysis analyze this, conclude that
EF transfer is narrow (i.e., if working memory is exercised in
PA, this EF will transfer to cognitive activity, but other EFs
like cognitive flexibility or inhibitory control will not since
they were not exercised). Diamond and Ling also noted that

individuals with poorest EFs benefit the most, and practice at
progressively higher level of difficulty is ideal. They conclude
that physical activity which involves cognitive challenges, such as
planning, concentration, inhibitory control, cognitive flexibility,
working memory (martial arts, team sports, yoga) contributes
to improving these EFs in cognitive challenges (Manjunath and
Telles, 2001; Lakes and Hoyt, 2004; Diamond, 2012; Chang
et al., 2013; Diamond and Ling, 2015). Evidence indicates that
“conscious” or mindful PA grows EFs while mindless PA does
not (Oswald et al., 2006; Diamond, 2012; Moreau et al., 2015).
This evidence supports the growing understanding that physical
movement and cognition are intricately intertwined, impacting
on and co-activating each other.

At this point, it is vital to highlight the limitations in this area
of research. Though the existing literature confirms the favorable
association between PA (both for acute and chronic PA) and
cognition, several recent meta analyses (Sibley and Etnier, 2003;
Lees and Hopkins, 2013; Diamond and Ling, 2015; Tomporowski
et al., 2015; Donnelly et al., 2016; Basso and Suzuki, 2017) call
for a cautious and critical interpretation of research in this
relatively new area. Despite the positive association between PA
and cognition, some research studies indicate that this positive
impact is relatively minimal and that results are influenced by
a multiplicity of factors and differ depending on the duration
of the PA intervention, the frequency, whether it is aerobic
or not, chronic or acute, the degree of exertion involved, and
whether it is mindful or mindless (Donnelly and Lambourne,
2011; Tomporowski et al., 2015; Basso and Suzuki, 2017). There
are important caveats tomention with regards the impact of acute
(single bout) exercise on the brain and the variability of results
of acute and chronic exercise on the brain (Diamond and Ling,
2015; Tomporowski et al., 2015; Basso and Suzuki, 2017). Basso
and Suzuki’s review of 273 studies concludes that the impact of
acute PA is short-lived -and generally observable in improvement
in mood, stress-reduction, extended presence of dopamine and
serotonin and increased hippocampal activity (Basso and Suzuki,
2017). Regular, long-term, moderate to high intensity exercise
with a “qualitative” or cognitive component has a deeper, more
long-lasting impact on brain structure, function and neural
networks (Diamond and Ling, 2015; Tomporowski et al., 2015).
Other studies show that PA does not compromise academic
performance—in other words, neither a positive nor negative
impact (Ahamed et al., 2007; Resaland et al., 2016; Marques et al.,
2017). Another factor of complexity is the type of tool used to
measure the impact of PA on cognition (EEG, fMRI, academic
performance, cognitive function tests, such as Stroop, Go/Not
Go), and what elements are beingmeasured—neurophysiological
changes, neurochemical or behavioral changes (Tomporowski
et al., 2015; Donnelly et al., 2016). There is a need to standardize
variables measured in research on exercise: its duration, intensity,
perceived exertion—which Basso and Suzuki propose with their
“Exercise Index” (Basso and Suzuki, 2017) in order to understand
and relativize research results. Finally, Diamond and Ling (2015)
caution that we must be careful of assuming causal relationships:
though numerous studies show fitter individuals have stronger
cognitive function (for example EFs) this is not necessarily a
cause-effect relationship. The abovementioned authors observe
that it could be that individuals opt for a more active life
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because of an existing brain predisposition. There is a call from
researchers in the field for the development of standardized
measuring tools, the application of extreme rigor in future
research, and the use of prudence in how existing results are
interpreted and generalizations made (Sibley and Etnier, 2003;
Lees and Hopkins, 2013; Diamond and Ling, 2015; Donnelly
et al., 2016; Basso and Suzuki, 2017). It is important here
to highlight the danger of making sweeping generalizations
about PA and cognition, and the promulgation of “neuromyths.”
A neuromyth is imprecise information about the brain that
is popularized (often with underlying commercial interests),
leading to practices and beliefs that are not scientifically precise
and can even impede or undermine the learning process
(Dekker et al., 2012).

This said, the overall conclusions emerging from research
on PA and cognition indicate a favorable association. Within
the current context where schools promote sedentary habits
(Donnelly and Lambourne, 2011), the emerging evidence
on the favorable interconnection between PA and cognition
should encourage teachers to integrate PA into their lessons,
and educational institutions to foster PA through curricular,
infrastructural and cultural changes. Around the world different
establishments are implementing change—from primary schools
to Harvard University. Today, the Internet abounds with
practical suggestions and programs, such as those used in
many of the abovementioned research studies. By encouraging
students to bike or walk to school, safeguarding recess-time
and fostering active, fun recess and PE activities, and raising
awareness among parents and teachers, schools can move toward
a more wholesome and holistic learning experience, where the
whole child (socioemotional, cognitive and physical) is engaged.
Teachers can integrate movement-based activities at different
moments of the day—when lethargy sets in after lunch, when
concentration spans are waning, to break the ice, pique curiosity,
build group trust, to diminish stress. Apart from the resources
suggested in the bibliography3, when teachers are convinced

3NC Healthy Schools: www.nchealthyschools.org; Be Active North Carolina, Inc:

www.beactivenc.org; NC Physical Education for Me: www.ncpe4me.com; NC

Health and Wellness Trust Fund: www.fitkidsnc.com; ECU Activity Promotion

Lab: www.ecu.edu/cs-hhp/exss/apl.cfm; Action for Healthy Kids: Tools for

Schools http://www.actionforhealthykids.org/tools-for-schools/1252-brain-

breaks-instant-recess-and-energizers; NC Public Schools www.ncpublicschools.

org/curriculum/health; http://www.theteachersguide.com/ClassManagement.

htm; http://www.teachervision.fen.com/; http://drwilliampmartin.tripod.com/

classm.html.

about not excluding corporality from cognitive processes,
they become more attuned to the opportunities that arise
for including PA to the benefit of learning. They can start
lessons with a stretching activity, organize group work so
students need to move, to different stations in the classroom,
do rotating poster-work on different walls, organize team
activities that involve running up to write/stick the answer
on the board, throwing a ball or other object to each other
while recalling information, Simon Says, mime, drama, short
choreographies, etc. Children (and adults) need to move,
and when teachers recognize and honor that need in the
classroom, learners become better positioned to enjoy and
succeed at learning.

CONCLUSION

In conclusion, this mini review has attempted to provide a
limited overview of a growing body of research supporting
the interconnectedness of PA and cognition. Though much
research points to a positive association between PA, fitness
and cognition, a critical and cautious approach is required,
as discussed above. As John Bruer cautioned in 1997, “Brain
and education: A Bridge too Far” (Bruer, 1997), educators
need to be wary of making sweeping generalizations based
on initial research findings or superficial information. Today,
educators are witnessing and participating in an important shift
in paradigm toward one which conceives of the indivisibility
of the social, the emotional and the physical in cognitive
processing. This holistic conception of the human being is not
novel—the Greeks had a clear idea of the interconnectedness
of brain, emotion and body. Current neuroscience research
appears to affirm the ideas of major educational thinkers
like Vygotsky, Piaget, Freire, Montessori. Their intuition that
learning is a social, emotional, interactive, meaningful, physical,
co-constructive process is being validated today by neuroscience
research. This mini review has examined some key contributions
of neuroscience research on the inter-connectedness of PA
and cognition, with a view to supporting practical classroom
application by educators.
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