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Cognitive psychology has shown that understanding numerical information is deeply

related to the format in which this information is presented; percentages are difficult

to grasp whereas frequency formats are intuitively accessible. This plays a vital role

in the medical domain where difficult risk-related probability judgments have to be

made both by professionals and their patients. In this article, we demonstrate that

the idea of representing statistical information in terms of frequency formats is not

only helpful for communicating risks, but can be applied to primary school stochastics

when percentages and fractions are not available. For this purpose, we report on an

intervention study conducted in grade 4 in primary school. The results show, on the

one hand, that primary school students could already solve Bayesian reasoning tasks

in the pretest when natural frequencies were used. On the other hand, the students

profited from the intervention where they used different representations, namely colored

tinker cubes and natural frequencies in order to describe and quantify frequencies and

probabilities. These results go along with findings from cognitive psychology that activities

with hands-on material as well as pointing out to the underlying nested-sets structure can

foster Bayesian reasoning. The results are discussed in particular with regard to teaching

stochastics in (primary) school.
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THEORETICAL BACKGROUND

Why do people find probability and statistics unintuitive and difficult? I’ve been working in this area for

around 35 years, and after all this time have finally arrived at an answer. Because probability and statistics

are unintuitive and difficult.

–Spiegelhalter and Gage (2014)

The core idea of this paper is to provide empirical evidence from an intervention study in primary
school that demonstrates that probability and statistics are not—per se—unintuitive and difficult.
It appears that the way stochastic concepts and contents are communicated and represented is
often unintuitive and difficult but, can be—at least partly—made accessible already to primary
students by using natural frequencies in combination with enactive, hands-on material and
activities. In our study, we focus on Bayesian reasoning in the sense of inferring or adjusting
probabilities for hypotheses “upon receiving new evidence” (Vallée-Tourangeau et al., 2015, p.
4). First of all, there is an a-priori probability P(H) for a certain hypothesis to be true. When
receiving new information (data = D), this probability might be adjusted. In many stochastic
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situations the conditional probability P(D|H) can be determined
from the context. However, what is often of interest is the
inversion of this conditional probability, namely P(H|D). In
these cases, the Bayes’ theorem that can be applied in order to
calculate the inversion of such a conditional probability what
can be considered as an update of the a-priori probability.
Research clearly shows that it is very difficult for many people
to understand conditional probabilities and in particular the
Bayes’ theorem (Gigerenzer and Hoffrage, 1995; Sedlmeier, 2001;
Sedlmeier and Gigerenzer, 2001; Hoffrage et al., 2002; Wassner,
2004). With regard to our sample, we won’t focus on the
Bayes’ theorem in this study. However—as we will show in
this paper—primary school students can already understand
the core idea of Bayesian reasoning in the sense of updating
probabilities, if the used representation format is adequate, e.g.,
if natural frequencies are used. In the following, we will describe
how natural frequencies can support human understanding in
specific situations.

The Role of Natural Frequencies in Human
Comprehension of Situations of
Uncertainty
The way statistical or numerical information is communicated
is deeply related to the processes of the human mind and its
mechanisms (Gigerenzer and Hoffrage, 1995; Sedlmeier, 2001;
Hoffrage et al., 2002; Spiegelhalter et al., 2011). During the last
50 years, there have been disputes between advocates of the
heuristics-and-biases tradition and evolutionary psychologists
about humans’ reasoning and judgment capabilities under
uncertainty (Samuels et al., 2002). The hot-button issue is the
question of whether human beings lack a sense for probability
(Piattelli-Palmarini, 1994) or whether they do indeed have a form
of instinct for it (Pinker, 1997). The scholars with a pessimistic
mindset come primarily from the ranks of the heuristics-
and-biases program. Piattelli-Palmarini (1994), Bazerman and
Neale (1986) as well as Gould (1992) state that humans are
somewhat probability-blind when reasoning and judging under
uncertainty. From their perspective, humans are not capable
of making probability-related judgments because of one main
reason: The human mind is “not built to work by the rules
of probability” (Gould, 1992, p. 469). As a result, human
choice behavior will always deviate from normatively appropriate
judgments (Samuels et al., 2002). One of the most popular
proponents and founder of the heuristics-and-biases program
is Daniel Kahneman. In his opinion, there is little hope of
eliminating wrong intuitions and biases in probabilistic thinking
through instruction (Kahneman, 2011). In contrast, several
evolutionary psychologists argue that probabilistic phenomena
are too pervasive in nature for humans to lack a sense of
them (Pinker, 1997). Almost every incident in everyday life
can be described as a probabilistic phenomenon. As a result,
the human mind must be capable of dealing with randomness.
Moreover, the reasons for the difficulties mentioned above
hark back to counterintuitive formats in which probabilities
are communicated (Gigerenzer, 1991). Information should be
presented in the way people naturally think (Pinker, 1997). As a

consequence, cognitive illusions such as the base-rate fallacy or
the conjunction fallacy may just disappear (Gigerenzer, 1991).
We will now introduce the concept of natural frequencies, a
format that might support understanding probabilities.

The concept of natural frequencies was first put forward by
Gigerenzer and Hoffrage (1995). It can be vividly illustrated as a
natural movement people perform when they, e.g., extract two
apples from a basket with 10 apples, or certain tokens from
a larger set of tokens (see Figure 1). The relations between
those subsets can be interpreted as “nested sets.” The so-called
“nested-sets theory” is based on the idea that Bayesian reasoning
is deeply intertwined with the understanding of the relation
within sets and their subsets (McDowell and Jacobs, 2017;
see also Section Possible Explanations for the Advantages of
Natural Frequencies: The Nested-Sets Theory and the Ecological
Rationality Framework).

In order to show the specific and intuitive nature of natural
frequencies, we contrast them to numerical expressions of
percentages. For instance, when describing the proportion of
colored tokens from the image in Figure 1, we can either say 7
out of 40 are colored (natural frequencies) or we can say 17.5%
tokens are colored (relative frequency as percentage).

Both expressions are mathematically equivalent; however,
one appears to be adapted to the human mind because of the
natural movement we associate with this expression. We can
directly obverse and count the numbers involved in the natural
frequency of colored tokens (Hoffrage et al., 2002). Expressions
in terms of percentages are more difficult to grasp because of the
normalization to 100. This might be explained by the following:
the base rate describes the frequency of a certain feature (seven

FIGURE 1 | Sampling using frequencies: cover image of a German

schoolbook for upper-secondary level mathematics (source: Diepgen et al.,

1993).

Frontiers in Education | www.frontiersin.org 2 June 2020 | Volume 5 | Article 73

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Till and Sproesser Frequency Formats: Primary School Stochastics

colored tokens) in relation to the population (a total of 40
tokens). Normalization means dividing this absolute frequency
by the total number in the population (and multiplying it with
100). As a result of this normalization, the information about
the absolute numbers within the population disappear. On the
one hand, this procedure facilitates comparing populations of
different sizes. On the other hand, this process increases the level
of abstraction, since there are no absolute, countable entities in
the standardized frequencies, i.e., the percentages.

People might say that natural frequencies are not
mathematically valid. Whereas, 7 out of 40 might be considered
as only one arbitrary numerical example of the underlying
proportion, the percentage 17.5% is the commonly used and
most generally accepted representation of this proportion. And
it is true that dealing with natural frequencies might not be
easy when comparing or computing proportions since sizes of
the underlying populations might be different—in contrast to
percentages. However, an argument for using natural frequencies
is that 7 out of 40 can indeed be considered as a representative
of the underlying proportion if we think of it as an expected
value. For instance, this expected value can easily be interpreted
as the mean proportion of the following: 5 out of 40; 9 out of
40; 6 out of 40 and 8 out of 40. Another argument for using
natural frequencies is that they are suitable for describing
conditional probabilities. Referring to the example in Figure 1,
the conditional probability P (green token | colored tokens) can
be described as 2 green out of 7 colored tokens, which is more
easy to interpret than the percentage 29% (rounded value of 2/7).
Again, a natural movement can be associated, i.e., extracting the
colored tokens out of the large set of all tokens and taking the
two green tokens out of the small subset of colored tokens.

Natural Frequencies Can Support the Understanding

of Bayesian Reasoning Tasks
Within the pioneering edition Judgment under uncertainty—
Heuristics and Biases by Kahneman et al. (1982, p. 253), Eddy
stressed that medical doctors do not follow the Bayes’ formula
when solving the following task:

The probability that a woman aged 40 has breast cancer (B) is
1% (P(B) = prevalence = 1%). According to the literature, the
probability that the disease is detected by a mammography (M)
is 80% (P(M+|B) = sensitivity = 80%). The probability that the
test mis-detects the disease, although the patient does not have it
is 9.6% (P(M+|B) = 1 - specificity = 9.6%). If a woman aged 40
is tested as positive, what is the probability that she indeed has
breast cancer P(B|M+)?

Application of the Bayes’ formula yields the following result:

P (B|M+) =
P(M+| B) · P(B)

P(M+| B) · P(B) + P(M+| negB) · P(negB)

= 0.8 · 0.01
0.8 · 0.01 + 0.096 · 0.99 = 7.8 % (1)

Thus, although having a positive mammography, the probability
of breast cancer is only 7.8%, while Eddy (1982) reports that
95 out of 100 doctors wrongly estimated this probability to be
between 70 and 80% in his empirical study.

In order to support the estimation of such conditional
probabilities, Gigerenzer and Hoffrage (1995) investigated the
corresponding representation of uncertainty. In Eddy’s task from
above, quantitative information was represented as probabilities.
Gigerenzer and Hoffrage presented an adaption of Eddy’s task
to medical doctors: The original probabilities were replaced
by a different representation of uncertainty, namely natural
frequencies. The adapted task was as follows (ibid., p. 688):

Hundred out of every 10,000 women aged 40 who participate in
routine screening have breast cancer. 80 of every 100 women with
breast cancer will be detected as positive by a mammography.
950 out of every 9 900 women without breast cancer will also
be detected as positive by a mammography. Here is a new
representative sample of women aged 40 who have been detected
as positive by a mammography in routine screening. How many
of these women do you expect to actually have breast cancer?

Putting the numbers into Bayes’ formula yields the
following result:

P (B|M+) =
80 (cancer & T+)

80 (cancer & T+) + 950 (no cancer & T+)

= 80
1030 = 80 out of 1030 (2)

Gigerenzer and Hoffrage (1995) reported that nearly half (46%)
of all doctors gave the correct answer to this adapted task. This
study was one of the first of several studies that empirically
confirmed the positive effects of representing information in
terms of natural frequencies instead of percentages (Gigerenzer
and Hoffrage, 1995; see also Macchi, 1995; Girotto and Gonzalez,
2001). In the following section, we will present further empirical
studies comparing natural frequencies with other probability
formats such as percentages in order to get a more profound view
of their potential benefit.

Natural Frequencies—A Panacea for Solving

Bayesian Reasoning Problems?
The frequency-probability-effect, i.e., the fact that using
natural frequencies produces higher solution rates than using
probabilities, is a very robust phenomenon. It has been replicated
in many studies (see, e.g., the meta-analysis of McDowell
and Jacobs, 2017). Nevertheless, the correctness of judgments
concerning the medical test problem is far from being accurate—
even if natural frequencies are used (Pighin et al., 2018). In
some cases, single-event probabilities have indeed shown some
advantages over natural frequencies. In this sense, Pighin et al.
(2018) found that the communication of test results in terms
of chances compared to natural frequencies better helped
patients to interpret their personal situation. Moreover, Ayal and
Beyth-Marom (2014) found evidence that tasks using a natural
frequency format were only solved better if not more than one
mental step was required. There is evidence that in more complex
tasks with several mental steps, probability formats outperform
natural frequencies. This might be due to the normalization
of the frequencies that is characteristic for probabilities and
percentages and that helps to compare and compute different
values (Ayal and Beyth-Marom, 2014).
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These findings relativize the frequency-probability-effect
and, hence, have to be accounted for in this research field.
Nevertheless, they play only a minor role for our study conducted
in primary school. If any, quantifications of probabilities in
primary school are restricted to frequency formats in the sense
of “The probability to get a red cube is, e.g., 3 out of 10.”

Two opposite theories, the Nested-Sets Theory and the
Ecological Rationality Framework, have been established that
provide explanations for the frequency-probability-effect. We
will briefly present and contrast them in the following section.

Possible Explanations for the Advantages of Natural

Frequencies: The Nested-Sets Theory and the

Ecological Rationality Framework
McDowell and Jacobs (2017) state a long-lasting controversy
with regard to possible explanations of the frequency-probability-
effect. Proponents of the Ecological Rationality Framework ERF
(e.g., Gigerenzer and Hoffrage, 1995; Cosmides and Tooby, 1996)
assume that there is a specialized module in the human mind
that automatically processes natural frequencies. According to
ERF, this module has developed through evolution based on
an appropriate matching between the human mind and the
structure of the environment (McDowell and Jacobs, 2017). As
a consequence, the presentation of a Bayesian reasoning task
in terms of natural frequencies increases solution rates as these
natural frequencies correspond to people’s natural environment
for millions of years. In particular, the advantages of using natural
frequencies are independent from the individual’s cognitive
resources (Lesage et al., 2013).

A contrary view is expressed by the Nested-Sets Theory
(NST) that explains the frequency-probability-effect as a result
of emphasizing the nested-sets structure of the Bayesian problem
when probabilities are translated into frequency format (Girotto
and Gonzalez, 2001; Barbey and Sloman, 2007). By using natural
frequencies, this nested-sets structure becomes more prominent
and visible. As a result, the analytical system of human mind is
triggered and executive resources get available that can be used
for calculating a correct answer. Lesage et al. (2013) examined
the relationship between cognitive capacity and performance on
Bayesian reasoning tasks. Participants with rather low cognitive
capacity did not benefit much from facilitating the tasks via
using natural frequencies. This finding is in line with NST that
states that people with rather low cognitive resources profit less
from the nested-sets structure visible in natural frequencies. In
contrast, ERF claims that the benefits of using natural frequencies
should rather equally apply for people with different levels of
cognitive capacity since everyone has such a specialized module
that automatically processes natural frequencies.

With regard to the focus of this study, we will not
go into further details concerning the presented theories.
However, they both emphasize that natural frequencies can
help the understanding of, e.g., conditional probabilities or
Bayesian reasoning tasks. Moreover, NST provides an analytical
explanation for the benefit of using natural frequencies: When
people get aware of the nested-sets structure of a Bayesian
reasoning task (i.e., by natural frequencies), they will perform
better on these tasks. Although this theory can serve as a

theoretical basis for our study, as primary school students are
able to work on such nested-sets, it has to be noted that there are
different factors that mediate people’s performance on Bayesian
tasks. Such factors will be presented in the following.

Critical Factors Mediating Performance on Bayesian

Reasoning
The meta-analysis of McDowell and Jacobs (2017) reveals
important factors that account for different performances in
Bayesian reasoning tasks. Two of the strongest factors concern
the characteristics of the tasks and they apply for both natural
frequencies and probabilities. First, task performance increases
substantially if task complexity is reduced (see in particular
Ayal and Beyth-Marom, 2014). This means for instance that
less irrelevant information is given in a task or that less mental
steps in the mathematical computations are required. Second,
if participants are given visual aids, they perform much better
since these external representations can clarify the underlying
nested-sets structure (McDowell and Jacobs, 2017).

Concerning individual factors, cognitive abilities and thinking
dispositions (Sirota et al., 2014), text comprehension (Johnson
and Tubau, 2015), as well as numeracy and cognitive reflection
(Sirota and Juanchich, 2011) predict Bayesian reasoning
performance in both natural frequencies and probability formats.
As the meta-study of McDowell and Jacobs (2017) indicates that
a high level of numeracy leads to better Bayesian reasoning,
Johnson and Tubau (2013) focused their study on this concrete
individual characteristic. They found that short and clear natural
frequency problems lead to less differences between people
with low and high numeracy skills. Hence, both high and
low numerate participants were able to adequately solve short
Bayesian reasoning tasks using natural frequencies. The solution
rates became smaller when the problems were presented in the
form of longer word problems both in the natural frequencies
and the probability format.

Whereas there are several studies focusing on such individual
factors mediating the ability to solve Bayesian reasoning
problems, there is only little research on how for example
interactivity-based intervention improves performances on
Bayesian reasoning tasks. Vallée-Tourangeau et al. (2015)
conclude that enabling an enactive, physical manipulation of
the problem information leads to substantially better statistical
reasoning, without a specific training or instruction. In their
study, participants benefited by working with malleable physical
representations of a problem, namely playing cards. The
participants who solved the problems with playing cards
performed better than their peers without.

Although the mentioned studies reveal important findings
about mediating factors on people’s performance in Bayesian
reasoning tasks, there is still the need to explore how this
performance can be fostered. In particular, it stands to reason if
and how young students with limited experiences in stochastics
can be supported in this perspective. Therefore, the next section
will present to what extent stochastics and Bayesian reasoning are
taught at primary school.
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Stochastics and Bayesian Reasoning in
Primary School—Status Quo and Potential
Teaching stochastics in primary school is required by the German
curricular standards but restricted to descriptive statistics (e.g.,
gathering, representing, and analyzing data in the context of tasks
related to the students’ everyday lives such as “How do you get
to school?”) and basic random experiments (e.g., performing
experiments with dice and spinners and discussing whether an
event is “impossible”, “certain” or “likely” (KMK, 2004)). There
is a strong focus on qualitative probability judgments and basic
quantitative probability (e.g., “Are you more likely to get a
number on the dice between 1 and 2 or a number between 3 and
6?”). Nevertheless, young students’ potential does not appear to
be fully exploited, as several studies suggest that primary school
students are able to do more profound stochastics.

Lindmeier and Reiss (2014), for example, show that children
aged from 9 to 12 years can acquire elementary competencies
regarding inferential statistics. In their experiment, the students
took random samples out of a box with an unknown amount of
red and blue cubes. After several trials, they had to estimate the
amount and proportion of red and blue cubes in the box.

Other studies indicate that students in primary school are
able to grasp an elementary form of conditional probabilities and
Bayesian reasoning if these concepts are introduced using natural
frequencies (Martignon and Kurz-Milcke, 2006; Martignon and
Krauss, 2009; Latten et al., 2011; Till, 2015). Due to the students’
young age, these studies focus on their ability to capture the
statistical or probabilistic phenomena instead of on their ability
to work out the Bayes’ formula. Promoting such a propaedeutic
understanding of (conditional) probabilities also appears to be
an important basis for further learning as, for instance, Diaz and
Fuente (2007) show that students often approach probabilities in
an algorithmic way: They master the techniques but do not catch
the underlying phenomenon.

The study of Zhu and Gigerenzer (2006) used specific tasks
promoting (an elementary form of) Bayesian reasoning bymeans
of natural frequencies. Before presenting such student tasks, we
will introduce a task by Kahneman (2011, p. 6–7) that served
as a model for Zhu and Gigerenzer. In Kahneman’s task, which
often results in wrong judgments, an individual is described by a
neighbor as follows:

Steve is very shy and withdrawn, invariably helpful but with very
little interest in people or in the world of reality. A meek and tidy
soul, he has a need for order and structure, and a passion for detail.
Is Steve more likely to be a librarian or a farmer?

According to Kahneman’s (2011) research, most people answered
that Steve is probably a librarian. However, as there are five times
as many farmers as librarians in the United States, the absolute
number of shy and helpful farmers is larger than the absolute
number of shy and helpful librarians. Hence, the right answer to
Kahneman’s task is that it is more likely that Steve is a farmer. The
most common mistake in this kind of task is that people neglect
the base rate. Gigerenzer and Hoffrage (1995) claim that this
typical fallacy—as well as some others—disappears when using
natural representation formats.

In order to use such tasks that focus on Bayesian reasoning
already in primary school, Kahneman’s task was adapted to this
age group by Zhu and Gigerenzer (2006). Latten et al. (2011)
implemented these ideas several years later in a short learning
environment (the cited learning environment originates from
Multmeier, see, e.g., Multmeier, 2012). In this adaption, librarians
became princesses; farmers became mermaids, and the attribute
shy became wearing a crown:

5 out of 60 fairytale characters are princesses, and 4 of these
5 princesses wear a crown. The other 55 out of 60 fairytale
characters are mermaids, and 12 of these 55 mermaids wear
a crown.

The corresponding question in this task is as follows: “Imagine
you see a fairytale character wearing a crown.Would she be more
likely to be a princess or a mermaid?”

When solving this task, the students have to concentrate only
on the people wearing a crown and mask out all people without
crown. Then they can compare the given natural frequencies
of fairytale characters with crowns: 4 out of 16 characters with
crowns are princesses, whereas 12 out of 16 characters with
crowns are mermaids. Therefore, if they were to see a character
with the attribute wearing a crown, it would be more likely to be
a mermaid! By comparing the concrete numbers, students can
realize that although almost every princess wears a crown (4 out
of 5), there are altogether more mermaids with a crown. Hence,
the attribute wearing a crown applies to more mermaids, which
is why it is more likely for a character with a crown to be a
mermaid. Understanding these nested-sets structure is essential
for Bayesian reasoning.

The presented typical Bayesian reasoning task can be made
even more accessible by combining the use of natural frequencies
with iconic representations, such as icon arrays (Kurz-Milcke
et al., 2011). Several studies have shown the positive effects
of visual representations for (probabilistic) problem-solving
(Corter and Zahner, 2007; Brase, 2008; Garcia-Retamero et al.,
2010; Gaissmaier et al., 2012; McDowell and Jacobs, 2017).
As a result of representing statistical information by means
of visual representations, subset structures become visible,
which is particularly conducive to understanding Bayesian
reasoning problems. The big advantage of such visually perceived
representations is that all proportions of the relevant features
are visible what might help students to intuitively grasp all
proportions (Scholz and Waschescio, 1986). Figure 2 displays
an iconic representation related to the above-described student
task. This representation helps students to realize that there
are so-called symptomatic characteristics for certain fairytale
characters such as crowns for princesses. In the above-presented
task, it helps the students to get aware that the symptomatic
characteristic crown does not automatically lead to a higher
probability for princesses. As, in this example, the absolute
number of mermaids wearing a crown is higher than that of the
princesses, the correct answer for the task above is “mermaid.”

Of course, there are also other representations that could help
students to work on the described Bayesian task. For instance, it
can alternatively be modeled using hands-onmaterial in the form
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FIGURE 2 | Iconic representation of a typical Bayesian task: Icon array. See Till (2015, p. 91).

FIGURE 3 | Enactive representation of a typical Bayesian task: Tinker cubes. See Till (2015, p. 91).

of colored tinker cubes. Figure 3 displays such an example. In this
simplified version, there are 2 princesses (red) and 8 mermaids
(blue). 1 of the 2 princesses and 2 of the 8 mermaids wear a
crown (marked in yellow). The other fairytale characters wear no
crowns (marked in green). The base rate of princesses is 2 out
of 10 (prior probability). Looking for princesses in the sample
of the characters with crowns yields a base rate of 1 out of 3
(posterior probability).

The previous section shows that there are possibilities of
introducing conditional probabilities and Bayesian reasoning
already in primary school. In the following, we will sketch
empirical results related to using natural frequencies in Bayesian
reasoning tasks—in secondary but also in primary school.

Empirical Research on Students’ Bayesian
Reasoning
In an intervention study, Wassner (2004) compared two ways
of teaching the Bayes’ formula in a sample of 15- to 17-year-old
students: one with probabilities and one with natural frequencies.
The students who worked with natural frequencies performed
significantly better in the posttest than the students who worked
with probabilities. Wassner also reported on long-term effects of
the intervention.

In the experimental study “The dog ate my homework!,”
Spiegelhalter and Gage (2014) asked 14- to 16-year-old students
to model the following Bayesian task: Within a school class,
several students were accused of lying about the reasons why they

had forgotten their homework. Hence, the study participants had
to find out how likely it was that the accused or non-accused
students were lying or telling the truth. In order to encode the
binary variables (lying/telling the truth; accused/non-accused),
the students worked with colored tinker cubes; moreover, all
students created 2 × 2 tables and empirical frequency trees. All
of these representations were based on natural frequencies, the
concrete numbers of students’ attributes (lying/telling the truth
and accused/non-accused) were assigned randomly. This class
experiment indicated that students could easily do probability
calculations based on natural frequencies. However, due to the
study design, it was not possible to determine the representation
format that led to the highest growth in learning.

Zhu and Gigerenzer (2006) showed that children aged from
9 to 11 years can already work successfully on typical Bayesian
tasks when the relevant information is presented as natural
frequencies. The researchers used a set of ten tasks presented in
two different ways: The information was given as probabilities
in percentage form to one group of children and as natural
frequencies to the other group. The students working with
probabilities could not find any right solution at all. In contrast,
even the youngest students (aged 9 years) from the group
working with natural frequencies solved 14% of the tasks. The
10-year-olds in this group solved 42% and the 11-year-olds 47%
of the tasks. These findings indicate that also very young students
can deal with conditional probabilities when natural frequencies
are used.
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In an experiment, Martignon and Kurz-Milcke (2006) asked
students aged from 8 to 10 years to construct stochastic situations
using tinker cubes and stochastic urns. One of their aims
was to foster the development of dynamic mental imagery
to represent stochastic situations. The experiment consisted
of a so-called “urn arithmetic” in which first elements of
expanding proportions were fostered. The students had to
compare proportions by constructing equivalent urns in the
following manner: We have two urns, namely U1 (1 red: 2 all)
and U2 (2 red: 5 all). Which urn is more convenient if we
want a red tinker cube? (Martignon and Kurz-Milcke, 2006).
Without knowing about fractions the students discussed how
to enlarge an urn without changing the odds (1 out of 2 = 2
out of 4). The authors consider “this first confrontation with
comparison of proportions and similarity of proportions [as]
a fundamental previous step before fractions are introduced”
(Martignon and Kurz-Milcke, 2006, p. 3). In their experiment
Martignon and Kurz-Milcke also used Kahneman’s Bayesian task
related to girls’ and boys’ mathematical enthusiasm and modeled
the situation with a big urn in the involved classes. All students
in the corresponding class were represented by tinker towers,
i.e., a combination of two colored tinker cubes (red/blue for
the students’ gender, yellow/green for their math enthusiasm).
After having gathered the relevant information about the whole
class, the towers were categorized in a tree diagram. Based on
this tree diagram, students formulated questions such as: “I
have a blue cube (boy) behind my back. Do you think I am
likely to be a math enthusiast?” Although there was no formal
testing in this experiment, the authors stated that representing
conditional probabilities via tinker towers in combination with
tree-like layouts on the classroom floor helped students to work
on Bayesian tasks.

Martignon and Krauss (2009) conducted a study in which
they introduced a tool box for decision-making and reckoning
with risk. This study was conducted in six grade 4 primary
school classes. The students aged 9 to 10 were confronted
with a sequence of tasks and playful activities involving,
e.g., elementary Bayesian reasoning [“princess/mermaid task”
presented in chapter Stochastics and Bayesian Reasoning in
Primary School—Status Quo and Potential (Latten et al., 2011)]
as well as the comparison of proportions and risks. One focus
of the training was dealing with the Wason selection task, a logic
puzzle about deductive reasoning. By following logical principles,
students needed to figure out which cards to flip over to figure out
certain rules. Hence, this game bridges between logical thinking
and conditional probabilities. Furthermore, the primary school
students played the game “Ludo” and were asked to compare
different moves and the associated risks. The authors stated that
these playful tasks and activities were fruitful. Again, this study
confirmed that primary school students can successfully work on
Bayesian tasks.

The study RIKO-STAT (e.g., Kuntze et al., 2010) assessed
different competencies in the area of statistical literacy in a
sample of primary school, secondary school, and university
students. The tasks for the primary school students required
them to apply, e.g., an elementary approach to expected values,
risk reduction, and comparing proportions. The students were

also confronted with the above-described Bayesian reasoning
task addressing mermaids and princesses (chapter Stochastics
and Bayesian Reasoning in Primary School—Status Quo
and Potential). All in all, the students’ performance showed
considerable weaknesses, and hence, the authors argued in favor
of encouraging statistical and probabilistic thinking earlier and
more deeply at school. Furthermore, the authors reported that the
primary school students performed well on the Bayesian tasks.
Analyzing the primary students’ strategies showed that many
intuitively used an approach focusing on natural frequencies
which led to satisfying solution rates, whereas the secondary
school students mostly used percentages and did not perform
well. The authors assumed that they would have performed
better if these secondary school students had applied natural
frequencies instead of percentages.

Based on the results from RIKO-STAT, researchers
from Ludwigsburg University of Education and cognitive
psychologists from the Harding Center for Risk Literacy in
Berlin investigated in a sample of primary school students
aged 9 to 10 their competencies related to risk (Latten et al.,
2011). In this intervention study consisting of six lessons, the
students were confronted with first elements of expected values,
risk reduction, conditional probabilities, and comparisons of
proportions. The authors reported of significantly improved
competencies due to the intervention.

The above-mentioned findings show that natural frequencies
can be used to foster students’ Bayesian reasoning. In the next
section, we will outline the corresponding research desideratum
of our study.

Research Desideratum
Since several decades, there is vast empirical evidence that many
people have difficulties with Bayesian reasoning—even if they
dispose of high cognitive capacity and high numeracy (e.g.,
Kahneman et al., 1982; Sirota and Juanchich, 2011; McDowell
and Jacobs, 2017). One idea to foster Bayesian reasoning,
is to confront already young children with corresponding
situations and tasks in order to develop valid intuitions. This
idea is based and supported by considerations of the previous
sections that outlined (a) theoretically-driven explanations for
the intuitive character of natural frequencies, (b) empirical
findings confirming their advantages compared to probabilities
represented as percentages and, in particular, (c) empirical
results indicating that natural frequencies can successfully be
used at primary school, where percentages, ratios, and fractions
are not explicitly addressed—at least not in Germany. In this
perspective, the first research question of this study investigates
how successful primary school students are with specific
Bayesian reasoning tasks represented in natural frequencies. The
corresponding research question is:

• To what extent are students in grade 4 able to solve Bayesian
reasoning tasks when the information is given in terms of
natural frequencies?

Considering empirical evidence from prior research leads to the
hypothesis that already young students can handle with such
tasks. This study aims at confirming these prior studies and to
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enlarge them by quantitative evidence—asmost of the cited study
do not provide quantitative results.

Moreover, and based on the idea that primary school students
can successfully work on Bayesian reasoning tasks via natural
frequencies, it stands to reason if and how primary school
students can be supported in this regard. For this age group,
a play- and activity-based approach appears to be adequate
that could prepare a valid basis for the further learning
about Bayesian reasoning (Martignon and Kurz-Milcke, 2006;
Martignon and Krauss, 2009; see also Johnson and Tubau, 2015).
The intervention of this study was conceived in this sense as it
involves playful learning with enactive representations like tinker
cubes. The intervention will be described in the Methods Section
in more detail. The corresponding research question focuses on
evaluating the effectiveness of this intervention:

• How does a specific intervention affect primary students’
performance in tasks related to conditional probabilities and
Bayesian reasoning?

As numeracy has proven to be a predictor of Bayesian reasoning
in prior research (Johnson and Tubau, 2013), we will control for
this covariate when investigating research question 2.

Previous studies have indicated that young students’ Bayesian
reasoning can be fostered through activities such as in our
intervention, but often, a statistical effect has not been proven
empirically. In particular, most of the cited studies do not provide
an experimental design enabling to quantitatively evaluate an
intervention effect of using natural representations. This study
closes this research gap and seeks to support the above-
mentioned findings using a pretest-posttest design including a
control group. In the following, we will describe the method used
in this study.

METHODS

Sample
In this study, 244 grade 4 students (131 girls) aged between 8 and
12 years (M = 9.5, SD = 0.61) took part. The students came
from 12 classes from six different schools in the surroundings
of a medium-sized city in the south of Germany. Eight classes
including 152 students were part of the treatment group and four
classes including 92 students served as control group (baseline).
The classes were not assigned randomly to the different test
conditions due to pragmatic reasons (see Limitations Section). In
each of the classes, there were around 20 students. As conditional
probabilities and Bayesian reasoning are usually taught in grade
10 or 11 at the earliest, the students had no previous school
experience with these topics.

Design of the Study
In order to determine particular intervention effects, a pre-,
post-, follow-up test design with a treatment and control
group was chosen. All students from the treatment and control
group completed the tests; however, only the students from the
treatment group attended stochastics-specific lessons, whereas
the students from the control classes attended general and non-
stochastics-specific math lessons in the time between the testings.

The pre- and posttests were administered directly before and after
the intervention; the follow-up test was conducted 3months after
the posttest. These temporal distances were comparable in the
treatment and control group.

The intervention effects were analyzed via a multiple
regression in SPSS 25. Covariates, such as students’ age, gender,
and their grades were collected. In this study, we control for the
covariate “grades in Mathematics” as a safeguard against possible
biases of the intervention effect due to general mathematical
competency represented by these grades. This appears to be
important as numeracy has shown to be an influencing factor
of Bayesian reasoning performances (Sirota and Juanchich, 2011;
Johnson and Tubau, 2013).

Intervention
The intervention included elements of several classroom
experiments and studies which had been conducted before at the
University of Education in Ludwigsburg as well as at the Max-
Planck Institute in Berlin (Martignon and Kurz-Milcke, 2006;
Martignon and Krauss, 2009; Latten et al., 2011). In particular,
the intervention comprised tasks and activities related to risk and
decisions under uncertainty that were intended also to foster first
intuitions of expected values. In the first lesson, the students were
confronted with a play-based simulation of the following trade-
off: “Either you choose one candybar for sure or you can toss a
coin. If you get heads, you win four candybars. Otherwise you go
empty-handed.” In the second and third lesson the focus was on
proportional reasoning as well as on relative and absolute risks
(see e.g., Till, 2014, 2015). In the fourth lesson, the students were
confronted with a typical Bayesian task during an ordinary 45-
min lesson. Because of the focus of this article, we will present
the content of this lesson in more detail. The following task,
which was adapted from the medical test problem (see chapter
Stochastics and Bayesian Reasoning in Primary School—Status
Quo and Potential), was discussed in this lesson:

“In a school yard, there are two girls—one with long hair and
one with short hair. There are also eight boys—two with long hair
and six with short hair. If I told you that I talked with one of these
children with long hair. Would you bet it was a girl?”

At the beginning of the lesson, the students were asked several
questions about the distribution of different characteristics
within their own class such as “How many girls are in this class?”
“How many students play soccer in a sports club?” By doing so,
the class was introduced to represent the considered population.
Afterwards, the initial question relating to countable entities was
turned into a probabilistic question: “Imagine someone picks
one student out of your class. What is the probability that this
person is a girl or a boy?” After some qualitative judgments
addressing for instance terms such as “more likely,” the class
made quantitative judgments formulated as frequencies (“8 out
of 21”). In the sense of Bayesian reasoning, these statements can
be understood as a-priori probabilities. After these preparative
activities, the task described above was introduced. In order
to really understand this Bayesian task and to clarify the
nested-sets structure of the problem, a little role play was
performed: 10 students (two girls and eight boys) representing
the characteristics described in the task were asked to line up in
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front of the class. The other students described the distribution
of the characteristics in the two groups (girls and boys). By doing
so, they were unknowingly introduced to natural frequencies: “2
out of 10 children are girls; 1 out of 2 girls has long hair, whereas
2 out of 8 boys have long hair.” Therefore, the characteristic
long hair is more typical for a girl. The teacher then asked “I
talked with one of these children with long hair. Would you bet
it was a girl?” The class discussed about the right answer. In
order to make this situation more accessible, the teacher asked
the students with long hair to make a step forward. Now all
students gave the right answer because they realized the nested-
sets structure related to the characteristic “long hair.” Afterwards,
the students used colored tinker cubes to encode the features boy,
girl, long hair, and short hair in order to model the situation.
By putting two cubes together, students were able to represent
related characteristics (i.e., a long-haired boy).

Instrument
According to Diaz and Fuente (2007), there are no standardized
tests of (young) students’ understanding of conditional
probabilities and Bayesian reasoning. Therefore, test items were
used that are comparable to the items of Zhu and Gigerenzer
(2006). They were structured in the same way as the medical test
problem (Eddy, 1982; Cosmides and Tooby, 1996). However,
different cover stories were created for the pre-, post-, and
follow-up test.

In order to illustrate the test inmore detail, we will present and
describe two items in the following. The Item FEU (see Figure 4
on the left) is characterized by the fact that students first are
asked by a sub-item (a) to determine the a-priori probability of
the hypothesis that a student of a certain school comes from
the city [P(H)]. Afterwards, they are asked in sub-item (b) to
update this probability when new information is given, namely
the fact that the observed child has a mobile phone [P(H|D)].
Sub-item (a) draws the students’ attention to the frequencies of
children coming from the city and the village within the whole
set. Sub-item (b) draws their attention to children from the city

and village within the subset of children having a mobile phone.
As the sub-item (a) might be considered as a trigger to think
about the nested-sets structure given in the task—what might
help students to answer also sub-item (b)—we label such items as
“guided tasks.” In addition to such “guided” tasks, there are “non-
guided” task (LaH) that are mathematically equivalent to the
presented type-(b) sub-item of the “guided” tasks (see Figure 4
on the right). However, students‘ attention here is not drawn to
the nested-sets structure by a preceding type-(a) sub-item. The
students are asked about the a-posteriori probability relating to
the number of princesses in the subset of individuals wearing
a crown [P(H|D)] without being triggered to the frequency of
princesses in the whole set.

As mentioned above, we consider the “guided task” as easier
to solve because students are triggered to think about and
determine the a-priori probability of a hypothesis and then
update this probability into an a-posteriori probability when
new information is gathered. This consideration is in line with
the nested-sets theory (Girotto and Gonzalez, 2001; Barbey and
Sloman, 2007) as students’ attention is drawn to the nested-sets
structure of the given situation. As the sample items illustrate,
the tasks were written in a short and comprehensible language to
make sure that students of both groups (treatment and control
group) exactly understood what they were required to do. The
pre-, post-, and follow-up tests all included items where the
students (a) had to mark the right answer (single-choice format),
(b) fill in the blanks with their answer, or (c) give an explanation
for their answer. Hence, altogether there were six items yielding
to a maximum score of six points. Tasks with missing values were
coded as zero because the students had enough time to complete
the tests.

Beyond tasks referring to Bayesian reasoning such as
the presented ones, the test included also tasks involving,
e.g., elementary comparisons of probabilities, proportions and
frequencies, trade-offs as first elements for expected values, and
risk reductions. As these tasks are not addressed in this article,
we do not report on them in more detail. More information

FIGURE 4 | On the left: “Guided” task (FEU); on the right: “Non-guided” task (LaH).
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about the test instrument can be found in Till (2015). For ease
of reading, in the following we will label the test scores referring
to the Bayesian reasoning items only as pre-, post-, and follow-up
test scores.

RESULTS

In the following, we present the results of this study in
two subsections: First, we report and analyze students’ overall
performance on the Bayesian reasoning tasks (both treatment
and control group) at the different times of testing (see research
question 1 und 2). Second and in order to investigate the
intervention effects (research question 2) in more detail, we will
present solution frequencies of the two items FEU and LaH that
were already introduced in the Methods Section.

The overall average of the Bayesian pretest score was 2.96
(SD = 1.48) out of 6 points. The students from the control
group had significantly higher pretest scores compared to the
students from the treatment group (Mtreatment = 2.81, SD= 1.48;
Mcontrol = 3.22, SD = 1.44; t(242) = 2.11, p = 0.036, Cohen’s d
= 0.28). After the intervention, the students from the treatment

TABLE 1 | Average test scores of the treatment and control group.

Pretest Posttest Follow-up test

Treatment 2.81 (SD = 1.48) 4.20 (SD = 1.86) 3.84 (SD = 1.86)

Control 3.22 (SD = 1.44) 3.75 (SD = 1.74) 3.64 (SD = 1.88

group outperformed the students from the control group with
a marginally significant p-value [Mtreatment = 4.20, SD = 1.86;
Mcontrol = 3.75, SD = 1.74; t(225) = 2.24, p = 0.071, Cohen’s d
= 0.26]. The increase from pre- to posttest was significant both
in treatment [t(143) = −8.39, p < 0.001, Cohen’s d = 0.83] and
control group [t(82) = 2.74, p = 0.008, Cohen’s d = 0.33]. After
3 months, the follow-up test scores of the treatment group were
still higher (Mtreatment = 3.84, SD = 1.86; Mcontrol = 3.64, SD =

1.88), though this difference was not significant [t(226) = 0.7595,
p= 0.448]. Table 1 displays an overview of these results.

In order to get more insight into the intervention effects, a
multiple regression was performed including also the covariate
grades in Mathematics (considered as a representative of
students‘ numeracy). Two models were compared (see Table 2):
In the first model, the predictors pretest Bayes score and
grades in Mathematics explained 17% of the variance of the
posttest Bayes score (pretest predicting follow-up test: 23%).
Both predictors proved to be significant, which means that, on
average, students with good grades in Mathematics (considered
as numeracy) and students with high pretest scores also achieved
high posttest scores.

For the second model, the third predictor test condition
(dummy-coded with 0 for the control group and 1 for the
treatment group) additionally explained 2% of variance. Hence,
19% of the posttest results can be explained by the three
predictors pretest score, grade in Mathematics, and test condition.
The fact that the predictor test condition had a significant
regression weight of 0.18 (p < 0.01) indicates that the short
treatment had a significant effect. Determining the effect size
for pretest-posttest-designs with treatment and control group

TABLE 2 | Prediction of the posttest results of the Bayesian tasks.

Model 1 Model 2

Variable B SE B β B SE B β

Pretest Bayes score 0.31 0.08 0.25*** 0.34 0.08 0.27***

Grade in mathematics −0.54 0.13 −0.27*** −0.55 0.13 −0.28***

Test condition (dummy-coded: contr. = 0; treat. =1) 0.65 0.23 0.17**

(adj.) R2 0.18 0.20

1R2 0.02

**p < 0.01; ***p < 0.001.

TABLE 3 | Prediction of the follow-up test results of the Bayesian tasks.

Model 1 Model 2

Variable B SE B β B SE B β

Pretest Bayes score 0.39 0.08 0.30*** 0.40 0.08 0.31***

Grades in mathematics −0.64 0.12 −0.32*** −0.65 0.12 −0.33***

Test condition (dummy-coded: contr. = 0; treat. =1) 0.40 0.23 0.10

(adj.) R2 0.26 0.27

1R2 0.01

*** p < 0.001.
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FIGURE 5 | Comparison of solution rates related to two different items

(treatment group).

FIGURE 6 | Comparison of solution rates related to two different items (control

group).

(corrected in the sense ofMorris, 2008) indicated amedium effect
size of d = 0.59. The findings related to the prediction of the 3-
months-delayed follow-up test result were similar (see Table 3),
whereas in this case the test condition was not significant.

As mentioned above and in order to get insight into the
intervention effect in more detail, we will now present solution
frequencies of two concrete items. As we only consider two items,
we do not use t-tests or other inferential statistics. The item FEU
represents a so-called “guided task” whereas the item LaH is a
“non-guided” task (see Methods Section).

Figures 5, 6 show the different solution frequencies of the
treatment and the control group on the two tasks. In the pretest,
the majority of the students (68% both in control and treatment
group) were able to complete the “guided task” FEU. Only about
23% of the students from the treatment group and 36% of the
control group solved the “non-guided” task.

After the treatment, 64% of the students from the treatment
group solved the “non-guided task”, the solution frequency in
the control group was 49%. The solution rates of the posttest
concerning the “guided task” were still high in both groups
(treatment group 73%; control group 66%).

DISCUSSION

The first—and perhaps the most important—result of this study
is the relatively high average pretest score of all students. Even
without prior confrontation with Bayesian text problems, the
students on average achieved half of the maximum test score.
This is even more meaningful when we consider the difficulties
that adults (medical doctors, lawyers) have with such tasks
(Gigerenzer et al., 2008; Gaissmaier et al., 2012). One explanation
of this finding might be the task’s representation format, namely
natural frequencies. Existing literature (e.g., Gigerenzer and
Hoffrage, 1995; Sedlmeier and Gigerenzer, 2001; Hoffrage et al.,
2002; Wassner, 2004; Zhu and Gigerenzer, 2006) shows that
people benefit from working with natural frequencies when
they have to solve probability-related tasks. This applies in
particular for a special kind of probability task, the medical test
problem, as difficult conditional probabilities and their inversions
become easier to understand if they are presented in terms
of natural frequencies. Barbey and Sloman (2007) explain that
natural frequencies lead to a clear representation of the subset
relationships (see also NST, e.g., Girotto and Gonzalez, 2001) and
to a simplification of numerical calculations (Sedlmeier, 2001;
Sedlmeier and Gigerenzer, 2001; Wassner, 2004). Therefore, we
assumed that this format might be also suitable for primary
school. This assumption could be confirmed by the present study.

Beyond the representation format of natural frequencies,
another explanation of the rather strong average pretest scores
might be the short and simple question format of our test
instrument that was obviously easy to understand for the
children. In particular, this question format made visible the
nested-sets structures underlying the tasks. In each task, a given
set of individuals with certain attributes had to be considered
and absolute numbers had to be compared. As the study shows,
many students managed to solve the inversion of the conditional
probability task even without the support of the intervention.
These results go along with findings from McDowell and Jacobs
(2017) according to which short and simple text formats as well
as the communication in terms of natural frequencies facilitate
Bayesian reasoning tasks. Moreover, the comparison between
the “guided” and “non-guided” tasks shows that the students of
both groups had less problems with the “guided” task. This is
even more impressive when we consider that the “guided task”
was arithmetically more demanding than the “non-guided” one
(“guided task”: A small school with 60 children; “non-guided
task”: A castle with 10 women). In line with the Nested-Sets
Theory (Girotto and Gonzalez, 2001; Barbey and Sloman, 2007),
this finding was to be expected as the type-(a) sub-item of
the “guided” task draw the students’ attention to the nested-
sets structure and hence makes it more visible. However, as
these type-(a) sub-items do not draw the students’ attention
directly to the structure focused in the type-(b) sub-items, this
expectation had to be empirically confirmed. The higher solution
rates (pretest) of both groups for the “guided task” confirm that
making the nested-sets structure visible helps the students to
solve the task.

In the following, we will discuss the intervention effects. A
comparison of the results after the intervention reveals that
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there was a significant difference in students’ performance in
the test condition. Directly after the intervention and even 3
months later, the students of the treatment group achieved higher
test scores than their peers in the control group. Although the
absolute differences between the two groups in their average
scores in the posttests were not large (Table 1; similar also in the
follow-up tests), the scores of the children in the treatment group
showed a significantly larger increase from pre- to posttest with a
medium effect size (Table 2). These results empirically confirm
that young students’ Bayesian reasoning could be fostered by
the short intervention providing a first experience with natural
frequencies and modeling stochastic situations using tinker
cubes. Hence, using natural frequencies once again showed up to
be appropriate already in primary school. Moreover, the playful
and hands-on intervention including a role-play and modeling
nested-sets structures with tinker cubes proved to be supporting
for the students. This is in line with Vallée-Tourangeau et al.
(2015) who claim that making all sets and subsets explicit by
enabling enactive activities related to the problem information
substantially improves statistical reasoning. One reason for the
rather moderate absolute differences between treatment and
control group in the post- and follow-up test scores (see Table 1)
might be that the maximum score was limited to 6 what means –
together with the relatively high pretest scores—that there wasn’t
much improvement potential for the students. Another reason
might be the short duration of the intervention of only one lesson.
In such a short period, large improvements cannot to be expected.
However, the medium effect sizes allow us to be optimistic about
the potential of this approach.

Comparing the intervention effects related to the “guided” and
“non-guided” tasks shows that the solutions rates of the “guided”
task were relatively stable over time in both groups. However,
within the treatment group, the solution rate of the “non-guided”
task considerably increased, and even in the control group, higher
posttest scores were recorded. We interpret this as follows: For
the “guided” tasks, there was a kind of ceiling effect leading to
no substantial differences from pre- to posttest. Moreover, the
intervention effect appears to be moderate on tasks where the
nested-sets structure is already triggered by the task itself. In
contrast, the intervention appears to support students’ ability to
recognize the nested-sets structure particularly in tasks where
it is not triggered automatically. The fact that also the students
in the control group increased their solution frequency in this
task indicates that already the repeated dealing with (“guided”
and “non-guided”) Bayesian reasoning tasks supports students’
corresponding performance. Hence, experiences with nested-sets
structures appear to help students in developing their Bayesian
reasoning. In our study, they could particularly be supported by
a corresponding training using hands-on activities (and natural
frequencies) but also the individual dealing with such tasks can
(moderately) improve their corresponding abilities. The slight
improvement of the children in the control group is not limited
to the “non-guided” tasks but can also be seen in the overall
Bayesian reasoning score. This might be explained by familiarity
with the test items or (subconscious) learning effects of working
on them (including possibly also the informal exchange of the
participants between pre- and posttest). It also highlights once

again the importance of using an appropriate representation
format—which was also used in the test items.

Implications for Future Research
The idea of this article was to evaluate the effect of a
representation format that facilitates probabilistic reasoning,
namely natural frequencies, in a sample of young students.
In contrast to other studies, the focus was not on comparing
different factors (e.g., representation format, task-complexity,
numeracy) and their influence on Bayesian reasoning
performances. In the present study the intention was to
empirically prove that an activity-based and playful training can
lead to better performances on Bayesian reasoning tasks. Our
results show, that already this short intervention had a medium
effect, that might be strengthened by a longer duration of the
intervention. However, this expectation of a more substantial
effect by a longer intervention should be empirically proven.
Moreover, the used test instrument should be enlarged by more
Bayesian reasoning tasks in order to get a more detailed insight
into the effects of such a longer intervention.

Although this study confirmed that students can be fostered
in their Bayesian reasoning by an activity-based and playful
training it also raises issues for further research. For instance,
we support the claim of research that focuses on the following
questions: “What strategies are the participants pursuing
when solving Bayesian reasoning problems? Which aids are
helpful for recognizing the nested-sets structure?” (e.g., playing
cards/modeling the subset-relationships via tinker cubes). With
this demand we join the research desideratum of McDowell and
Jacobs (2017) as well as Vallée-Tourangeau et al. (2015). This
desideratum could be approached by qualitative studies in which
students communicate their thoughts via interviews or open-
ended questions when solving Bayesian reasoning problems.

Implication for Teaching Statistics in
Primary and Secondary School
What are the consequences for teaching probability and statistics
(in primary school)? Should we refrain from working with
percentages and use only natural frequencies from now on? Of
course not. In primary school where fractions and percentages
are not available yet, natural frequencies seem to be a suitable way
to quantify probabilities at an early stage. In this perspective, our
study shows that it is possible to teach already primary school
students in Bayesian reasoning when using natural frequencies.
We consider such early and playful experiences with Bayesian
reasoning as important in order to establish a basis for more
abstract contexts (e.g., the formal calculation of probabilities
in general or the Bayes‘ theorem). Although our study shows
that the early fostering of Bayesian reasoning can be successful,
we see two obstacles for its implementation at school: First,
time is limited and therefore teachers might put more emphasis,
e.g., on arithmetic skills than on statistics. Second, in German
primary schools, a considerable number of teachers did not
study Mathematics as a main subject. Particularly these teachers
cannot draw on solid prerequisites to teach Bayesian reasoning.
Developing and implementing primary school teacher trainings
could help to overcome both of these obstacles. In particular,
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teachers here could learn about the importance and benefit of
using natural frequencies in primary and secondary school: They
allow the quantification of probabilities without using fractions
and percentages. Furthermore, they also contribute to strengthen
the concept of ratios and fractions at an early stage. Additionally
and as our study shows, teachers can use them to introduce
Bayesian reasoning at an early stage. For this purpose, also
hands-on activities such as using the described tinker cubes
can be introduced what illustrates the playful character and the
appropriateness of a teaching unit based on the ideas of our
intervention for young students. Such teacher trainings might at
least lead to overcome the prejudice that statistics and Bayesian
reasoning are per se too difficult for primary school. In a longterm
perspective, such teacher trainings and implementations of
Bayesian reasoning in primary school might have the potential
to increase the number of people making reasonable decisions
under uncertainty. We are absolutely convinced that enhancing
good decisions under uncertainty goes along with an appropriate
statistics education at school.

Limitations
Even though the intervention had an effect on the students’
understanding of conditional probabilities and Bayesian
problems, there are some limitations that relate to the design
of the study. First, students who participated in a training were
compared to students who had no training at all (baseline
control group). Although no different treatments were tested
against each other, comparing the treatment group to a baseline
control group appears to be appropriate in order to evaluate
the effectiveness of new ideas and learning approaches. Second,
in this study, the classes were not assigned randomly to the
different test conditions. This is caused by the fact that in
Germany, school interventions hinge on the willingness of
the teachers. Some teachers wanted their class to be part of
the intervention. Others only wanted to be part of the control
group. In order not to refuse participation in this study to any
of the teachers, their corresponding requests were satisfied.
Therefore, and as we consider a large number of students in the
treatment group as more important than in the control group,
their ratio is not perfectly balanced. In order to account for the
different pretest scores in the treatment and control group, this

variable was controlled for in the multiple regression analysis.
A multilevel analysis due to the hierarchical structured sample
(classes/schools) has not been carried out as the sample of this
study was not large enough. Further studies with bigger samples
could take into account this hierarchical structure.
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