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Subtraction errors can inform teachers about students’ mathematical reasoning. Not
every subtraction error is informative, it’s implications for students’ mathematical
reasoning depends on the item characteristics. Diagnostic items are specifically
designed to elicit specific subtraction errors. This study evaluated how the diagnostic
capacity of subtraction items is related to their characteristics. The item characteristics
being studied are open-ended and multiple-choice (MC) items, bare number, and word
problems. As well as various number features, such as the number of digits in the
subtrahend and minuend. Diagnostic capacity is defined as the extent to which multi-
digit subtraction items that require borrowing (e.g., 1000−680) elicit bridging errors,
such as the smaller-from-larger-error. Item response theory (IRT) was used to estimate
item properties. Subsequently, the item properties were used in two separate ANOVA
analyses to compare the diagnostic capacity of MC versus open-ended items, bare
number versus word problems, and number features. As expected, MC items have a
higher diagnostic capacity than open-ended items. More interestingly, it was found that
the number of digits in the subtrahend and minuend influenced the diagnostic capacity
of the items. Items characterized as 3/4n−3n, like 1000−680 had the highest diagnostic
capacity, whereas items characterized as 3/4n−2n, such as 1000−20 had the lowest
diagnostic capacity. The discussion focuses on the implications of this study for further
research into the design of diagnostic items.

Keywords: diagnostic assessment, multi-digit subtraction, multiple-choice items, item characteristics,
decomposition, subtraction errors, bridging errors

INTRODUCTION

Diagnostic items can be designed to collect specific and fine-grained information about
students’ cognitive strengths and weaknesses (Leighton and Gierl, 2007; Keeley and Tobey,
2011; van der Kleij et al., 2015). Because of the specificity of diagnostic data, diagnostic
assessment can complement other classroom assessment data obtained with textbook tests,
classroom observations, and diagnostic interviews (Huff and Goodman, 2007; Vermeulen
et al., unpublished). Subtraction is considered a more difficult computation than addition,
especially when items require borrowing (Riccomini, 2005; Narciss and Huth, 2006).
Systematic subtraction errors associated with misconceptions about subtraction, multi-digit
numbers, and borrowing have been found in several countries, such as France (Lemaire
and Callies, 2009), the United States (Fuson, 1990; Selter et al., 2012), and Spain
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(Fernández and García, 2008). It is widely acknowledged that
subtraction errors are indicative of students’ conceptual and
procedural understanding of mathematics (Resnick, 1984; Smith
et al., 1994; Fuson et al., 1997; Ashlock, 2006; Rittle-Johnson,
2017). However, not every subtraction error is indicative of
students’ conceptual and procedural (mis)understanding; some
errors are caused due to slips in attention or insufficient number
fact knowledge (Hennessy, 1993). In this study, the focus is
on errors derived from the smaller-from-larger error that has
been observed frequently across educational contexts (Brown
and VanLehn, 1980; Young and O’Shea, 1981; Resnick, 1982;
VanLehn, 1990; Hennessy, 1993). Students who make smaller-
from-larger errors solve the problem 76−48 = as follows:
70−40 = 30, 6−8 is reversed to “smaller-from-larger”: 8−6 = 2,
30 + 2 = 32. In this paper, such errors are called bridging errors
(BE). Bridging errors can only be made when subtraction items
require borrowing.

In the theoretical framework, we explain the conceptual and
procedural misunderstanding that underpin BE and discuss
how this misunderstanding is related to students’ procedural
development in subtraction and to their conceptual development
of multi-digit subtraction, place value, and borrowing. Although
the analysis of systematic subtraction errors is not a novel
research area, research into the design of diagnostic items to elicit
specific errors in subtraction is relatively new. Understanding the
item characteristics leading to bridging errors will inform the
design of diagnostic subtraction items. In this study, we designed
diagnostic items that could elicit three types of BE:

e.g., 43−17 =

1. Smaller from larger. 40−10 = 30, 7−3 (instead of
3−7) = 4, 30+ 4 = 34.

2. Smaller from larger and decrementing the tens
(or hundreds): 40−10 = 30, notices 3−7 requires
decrementing the tens: 30−10 = 20, applying 7−3 (instead
of 3−7) = 4, 20+ 4 = 24.

3. Forgetting to decrement the tens (or hundreds) after
borrowing. 40−10 = 30,(1)3−7 = 6, 30+ 6 = 36.

Conceptual and Procedural
Understanding of Multi-Digit Subtraction
Internationally, there are differences concerning in which grade
multi-digit subtraction procedures, such as column-wise and
ciphering, are being taught (Beishuizen, 1993; Fuson et al.,
1997; Kraemer, 2011). While most educational contexts focus on
teaching written strategies such as column-wise subtraction and
ciphering, Dutch primary school mathematics focuses on mental
strategies such as jumping and decomposition (see Table 1).
The first two strategies, counting and jumping, are based on
a linear understanding of whole numbers (Gravemeijer et al.,
2003; Teppo and Van den Heuvel-Panhuizen, 2013). Jumping is
a strategy that originates from abbreviating counting strategies
and can be visually supported by the number line (Beishuizen,
1993). In this context, addition and subtraction are understood
as jumping further or back on the number line, which also
teaches students the inverse relationship between subtraction

and addition (Selter et al., 2012; Teppo and Van den Heuvel-
Panhuizen, 2013). Students do not require full understanding
of the base-ten place-value system to apply jumping strategies
(Fuson et al., 1997; Kraemer, 2011). They do need to understand
that numbers, i.e., the subtrahend and addend, can be partitioned
in smaller numbers to be subtracted from the minuend or
added to the augend.

Furthermore, parallel to teaching jumping strategies third-
grade students’ conceptual understanding of the base-ten place-
value system is being promoted through the use of materials that
can be grouped into tens and ones, such as money and Multibase
Arithmetic Blocks (MAB) (Beishuizen, 1993; Fuson et al., 1997;
Blöte et al., 2000; Kraemer, 2011; Howe, 2012, 2019). As a
result of the iterative development of conceptual and procedural
understanding (Rittle-Johnson, 2017), the use of money and
MAB might result in students’ self-discovery of strategies that
are underpinned by place-value-based understanding of multi-
digit numbers, such as decomposition strategies. However, as was
found in earlier research by Resnick (1984) the understanding
of place value does not automatically lead to correct use of
place-value-based procedures, like decomposition. Moreover,
the concept of place-value-based understanding of multi-digit
numbers involves multiplication: 200 is 2 × 100 (Howe, 2019).
In line with this idea, Bicknell et al. (2017) suggest introducing
multiplication and division context problems at a young age to
promote students’ part-whole understanding of numbers. For
example: “There are 36 pens. Each box holds ten pens. How many
full boxes are there?”

During third grade, most Dutch students make the transition
from sequential jumping strategies to place-value-based
decomposition strategies (Blöte et al., 2000; Kraemer, 2011).
As shown in Table 1, decomposition entails subtracting the
tens and units of the minuend and subtrahend separately and
subsequently combining the results of both subtractions. It is
important to note that this transition often starts with teaching
decomposition for addition (Blöte et al., 2000; Opgenoort, 2014),
which is much less prone for errors compared to decomposition
for subtraction. Hence, adding the tens and units separately and
combining both sums is more straightforward than dealing with
a shortage in the units in subtraction. As long as the units in the
subtrahend are smaller than the units in the minuend (e.g., in
87−53 = , 3 is smaller than 7), this procedure can be done by
treating both the tens and units as single digits rather than as tens
and ones: 8−5 = 3; 7−3 = 4; combining this results in 87−53 = 34.
However, when the item requires borrowing, 83−57 = , there
are not enough units in the minuend to subtract the units of the
subtrahend. Thus, to apply decomposition correctly, students
need to understand that the 8 stands for 8 times ten or 80 and that
each ten consists of ten units (Fuson et al., 1997; Kraemer, 2011).
This separate-tens-and-units concept (Fuson et al., 1997) makes
it possible that one ten can be exchanged (i.e., borrowed) for
units to subtract the remaining units of the minuend (Resnick,
1984). As shown in Table 1, students do not actively borrow
one ten to subtract 13−7; rather, they are trained to write down
how many units they fall short: 80−50 = 30, 3−7 = 4 short,
30−4 = 26. Hence, Dutch third-grade students are not yet taught
the word borrowing; instead, the word “short” is used to teach

Frontiers in Education | www.frontiersin.org 2 October 2020 | Volume 5 | Article 537531

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-05-537531 October 1, 2020 Time: 16:44 # 3

Vermeulen et al. Evaluating the Characteristics of Diagnostic

TABLE 1 | Strategies being taught in Dutch subtraction.

1. Counting 2. Jumping 3. Decomposition 5. Column-wise 6. Ciphering

Grade 1st and 2nd 2nd and 3rd 3rd 3rd and 4th 4th through 6th

Example

22−6 =

“21, 20, 19,
18, 17, 16”
22−6 = 16

83−57 =

83−50 = 33
33−3 = 30
30−4 = 26
83−57 = 26

83−57 =

80−50 = 30
3−7 = 4 short
30−4 = 26
83−57 = 26

Adopted from Vermeulen et al. (unpublished).

them that the units they could not subtract from the units in
the minuend have to be subtracted from the remaining tens.
The word borrowing is taught in fourth through sixth grades in
combination with the strategies: column-wise subtraction and
ciphering (Opgenoort, 2014).

The procedural transition to decomposition requires the
simultaneous transition to an integrated concept of multi-digit
numbers. According to Fuson et al. (1997) and Ashlock (2006),
the development of an integrated conceptual understanding of
both the sequential and base-ten place-value properties of multi-
digit numbers is a gradual process. Systematic bridging errors
indicate that students have made the procedural transition to
decomposition strategies but do not yet fully grasp the base-
ten place-value concept that is necessary to solve subtraction
items that require borrowing (Resnick, 1984). So, students who
tend to make BE show cognitive strength in their procedural
understanding and the place-value-based concept of multi-
digit numbers because they are transitioning from sequential
to decomposition strategies. However, at the same time a lack
of conceptual understanding of borrowing can be viewed as a
cognitive weakness.

Furthermore, previous research has shown that items that
require borrowing elicit many different systematic errors that
might all somehow be related to students’ conceptual and
procedural understanding of multi-digit subtraction, borrowing,
and place value (e.g., VanLehn, 1990; Narciss and Huth, 2006).
Given the focus on bridging errors, we want to minimize
the number of other errors being elicited by the diagnostic
items. Thus, we are interested what item characteristics make
subtraction items best suitable for diagnosing BE. To evaluate
the diagnostic capacity of subtraction items for diagnosing
BE, we focus on three specific item characteristics: item
format, answering format, and number features. These item
characteristics and their importance in the design of diagnostic
items for diagnosing BE are explained below.

Item Characteristics
In this paragraph, we elaborate on the number features, item
formats, and answering formats that were compared in the
present study. The methodological details of the design process of
the items are described in the section “Materials and Methods.”

As explained above, decomposition strategies are based on
students’ understanding of place-value principles. Students may
make an incorrect transition from conceptual understanding

of single digits to multiple digits in which they view multi-
digit numbers as concatenated single digits: 83 is “eight”
“three” instead of “eighty-three” (Fuson et al., 1997). Because
these students lack the understanding of the compensation
principle that allows hundreds, tens, and units to be exchanged
(Resnick, 1984), they might treat multi-digit subtraction as
concatenated single-digit subtraction in which each digit
is subtracted individually. This approach becomes especially
problematic when the numbers of the digits in the subtrahend
and minuend are unequal. Therefore, it is plausible that the
diagnostic capacity of subtraction items is influenced by the
number of digits in the subtrahend and minuend. For example,
it is to be expected that 357−62 = is more difficult than
634−251 = because in the latter item the number of digits in the
subtrahend and minuend are equal.

Although it could be expected that the more difficult unequal
digit problems have a higher diagnostic capacity, it is not yet
known how the difficulty of the items relates to their diagnostic
capacity. Moreover, due to students’ gradual transition from a
linear understanding of multi-digit numbers to a place-value-
based understanding (Fuson et al., 1997), it is likely they do
not immediately understand the conceptual and procedural
analogies between two-digit numbers and three-digit numbers.
By comparing the diagnostic capacity of items with 2, 3, and
4 digits, we aim to explore the relationship between students’
tendency to make BE and the place-value properties of the items.
Teachers could use subsets of diagnostic items to assess students’
ability to transfer conceptual and procedural knowledge of two-
digit to three- and four-digit problems that require borrowing.

Moreover, subtraction items can differ in their borrow
type, for example 83−26 = requires borrowing from the tens,
while 634−251 = requires borrowing from the hundreds, and
400−27 = requires borrowing from both tens and hundreds.
Borrowing from both tens and hundreds requires multiple steps,
which makes these items more complex. On the one hand, this
complexity could make it more likely that bridging errors are
elicited; on the other hand, more complex items could also
increase the amount of other errors being elicited. This makes it
interesting to compare the diagnostic capacity of items that differ
in the type and number of borrows.

Item format refers to the way an item is presented: In context
as a word problem or as a bare number problem without words
or images. Both word and bare number problems are part of the
frequently used textbooks in Dutch education. Word problems
can convey different meanings of subtraction (taking away
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and determining the difference), resulting in different solution
processes (Kraemer, 2011; Hop, 2012; Selter et al., 2012). In
bare number problems, however, subtraction is depicted with the
minus sign and is therefore interpreted as taking away, making
it likely that the strategies elicited by different bare number
items vary less. BE are specifically found when students use
a decomposition strategy, also referred to as the 1010-strategy
(Beishuizen, 1993); therefore, it is likely that the item format
affects the diagnostic capacity of the items.

Regarding the answer format of the items, we were interested
in comparing open-ended (OE) and multiple-choice (MC) items.
OE items can provide easy-to-code numeric answers and rich
data in which different types of subtraction errors can be
observed. Also, OE items might help to discover new systematic
errors and thereby contribute to research about misconceptions.
Moreover, the biggest advantage of MC items is the possibility
to efficiently distinguish between a subset of misconceptions
through the use of specific errors as distractors, as is done with
ordered MC items and second tier items (e.g., Treagust, 1986;
Briggs et al., 2006; Briggs and Alonzo, 2009). However, since the
number of errors is limited to, for example, three distractors, it
may force students into choosing an incorrect answer that does
not accurately represent the student’s mathematical reasoning.
So, OE and MC items have (dis)advantages as feature of
diagnostic items; one could argue they serve different purposes
when used in diagnostic assessment. Therefore, we believe it to
be relevant to compare the diagnostic capacity of OE and MC
items. It is to be expected that MC items have a higher diagnostic
capacity than OE items, because the distractors are directly linked
to the three types of bridging errors.

The design of the items is elaborated in the section “Materials
and Methods.” By answering the following research questions,
we intent to inform the design of diagnostic subtraction items
and generate new ideas for further research into this relatively
new field of assessment research. Additionally, the results of this
study can also inform the use of diagnostic subtraction items in
classroom assessment.

1. To what extent is the diagnostic capacity related to the
item difficulty and how does this relation differ for the item
characteristics?

2. To what extent can the differences in the diagnostic
capacity of the subtraction items be explained by their
characteristics (i.e., item format, answering format, and
number features)?

MATERIALS AND METHODS

Participants
Response data was gathered from 264 third-grade students (132
boys, 130 girls, Missing = 2) from 12 Dutch primary schools
participated who received parental permission to participate. The
average age of the students was 8.8 years (SD = 0.45, N = 259,
Missing = 5). Students’ mathematical ability was measured with
the LOVS mid third-grade (M3) test. The LOVS M3 test is a
biannual standardized norm-referenced test that most Dutch

primary schools use to assess students’ mathematical ability
(Janssen et al., 2006, 2010). Students’ answers to the test as well
as their ability scores were obtained through their teachers. The
average mathematical ability of the students in this sample was
M = 69.8 (SD = 15.8; N = 262, Missing = 2), which is slightly lower
in comparison to the norm-group mean (µ = 72.2). Keep in mind
that this indicates that our sample might not fully represent the
average population of third-grade students in Netherlands.

Design Process of the Diagnostic Items
Historical data from the LOVS M3 test was used to identify
potential appropriate number features for the diagnostic items.
We selected the subtraction items for which bridging errors were
among the four most frequent errors. We identified four LOVS
M3 subtraction items that often elicit bridging errors: Two bare
number items 76−48 = (item 1) and 700−32 = (item 2) and two
context problems 300−2 = (item 3) and 1000−680 = (item 4,
see Figure 1). The proportions correct were 0.752 (item 3), 0.628
(item 1), 0.561 (item 2), and 0.544 (item 4). The number features
of Item 3 (300−2 = ) were not used since these features were
expected to be too easy for diagnostic purposes mid third grade.

Design Constraints
Bridging errors are associated with the use of decomposition
strategies; therefore, we aimed to minimize the elicitation
of strategies associated with jumping, like compensation and
subtraction by addition. We used three number constraints
to create the number features we are interested in. The first
constraint was that the units may not be 8 or 9, because
these digits elicit compensation strategies such as 76−48 = via
76−50 = 26, 26 + 2 = 28 (Torbeyns et al., 2008). By avoiding
digits 8 and 9 as units, it becomes less likely that compensation
errors are being elicited. For the same reason, 80 and 90 should
be avoided when constructing item types 8 and 9.

Secondly, subtraction by addition could make the elicitation
of bridging errors less likely. To avoid elicitation of the strategy
subtraction by addition (e.g., solving 73−67 = , via 67 + ? = 73;
Torbeyns et al., 2008), the distance between the minuend (e.g.,
73) and the subtrahend (e.g., 67) should always be larger than 10.

The last design constraint concerning the number features of
the items focused on accidently getting the right answer while
applying an erroneous strategy. Hence, items that are not able
to distinguish between the correct answer and a bridging error
will not result in a valid diagnosis. For example, when solving
the item 82−27, borrowing a ten would result in (1) 2−7 = 5,
whereas reversing the units 7−2 would also give 5 as the result.
Students who make BE type 2 would accidently come to the right
answer. Therefore, correct answers to items like 82−27 = do
not always provide valid diagnostic information about bridging
errors. Similarly, items like 81−26 = with (1)1−6 = 5 and 6−1 = 5
should be avoided. Table 2 illustrates the 9 item types that were
constructed using the type of borrow and number of digits as the
two main number features. Item types 1, 7, and 9 were based
on three of the LOVS items mentioned above. The other items
were designed by varying the type of borrow and the number
of digits based on what is commonly found in Dutch third-
grade textbooks. For each item type, 6 items were constructed
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FIGURE 1 | Contexts of the LOVS M5 subtraction items that require bridging translated from Dutch to English: (A) when we get two more children at the school,
there will be exactly 300 children. How many children are at the school now? What is the answer to mister Kees’ question? (B) Remco is saving for a new computer.
He has saved 680 euro. How many euros does he need to save?

using three constraints regarding the number characteristics of
the subtrahend and minuend. A total of 54 subtraction items that
require bridging the tens and/or hundreds were constructed (see
Supplementary Appendix A).

Moreover, for the comparison between word and bare number
problems, three word-problems were created (of which one was
MC) for each item type. The translation of these originally Dutch
items is included in English in Supplementary Appendix B. MC
items force students to choose one of the given (bridging) errors.
Therefore, the data collected with MC items are not as rich, as
data collected with open-ended items. For that reason, it was
decided to construct only 2 MC items for each item type, resulting
in a total of 18 MC items. All MC items, except for items 0801 and
0804 included solely BE as distractors. Based on error frequencies
observed in the historical data, two of the distractors of items
0801 and 0804 were other common errors. More specifically,

TABLE 2 | Item types for bridging errors in third grade subtraction.

Type Borrow from Place values Example

1a 10 2nb
−2n 83−26 =

2 10 3n−3n 453−127 =

3 100 3n−2n 347−62 =

4 100 3n−3n 634−251 =

5 10 2n−2n = 70−43 =

6 100 3n−2n = 406−22 =

7a 10, 100 3n−2n = 400−27 =

8 100, 1000 1000−2n = 1000−70 =

9a 100, 1000 1000−3n = 1000−340 =

aTypes that are cloned from the LOVS M3 test. bDigits within each number.

for item 0801: 1000−70 = 970 (BE), 300, and 30 were used as
distractors. For item 0804: 1000−30 = , 1070 (BE), 700, and 70
were used as distractors. The possible consequences of this choice
are addressed in the section “Discussion.”

Identifying Bridging Errors
As is shown in Table 2, items vary in the type of bridge that is
required; students must bridge the tens, hundreds, or multiple.
Determining the bridging errors for items where students must
bridge the hundred goes in the same way as bridging the tens. For
example, for item 347−62 = (i.e., item type 3), possible bridging
errors are 325 (BE1), 225 (BE2), and 385 (BE3). BE1 (325) is
calculated as follows: 300−0 = 300; 60−40 = 20 (i.e., reversing
40−60); 7−2 = 5; 300 + 20 + 5 = 325. In BE2, the student does
the same but also increments one hundred resulting in the answer
225. Finally, students who make BE3 do not reverse 40−60,
but they do forget to increment one hundred; they calculate
(1) 40−60 = 80; 300 + 80 + 5 = 385. For items that require
bridging both bridging the tens and the hundreds, there are 15
possible bridging errors: 3 unique errors for either the tens or the
hundreds and 9 unique errors that are combinations of errors in
the tens and hundreds (i.e., 3 + 3 + 9 = 15). Based on the above-
described rules for calculating bridging errors, we determined
every possible bridging error for the 54 items in DI (see
Supplementary Appendix A). The responses to the open items
were automatically scored identifying correct responses and
bridging errors by using the BE in Supplementary Appendix A.

Research Design
Adaptive Test Assembly
Because a test with 54 subtraction items is too long for third-
grade students, an incomplete research design with linked items
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was used. Item types 1, 7, and 9 were used as anchor items because
these items were cloned from LOVS M3 items, which means that
those items match third-grade students’ subtraction skills. Two
additional item types were selected based on students’ responses
to the four subtraction items from the LOVS M3 test mentioned
above. This selection process is shown in the flowchart included
in Supplementary Appendix C. The four items from the LOVS
M3 test were ordered from low to high p-value. Depending
on whether the student answered the LOVS item correct or
incorrect, it was decided what item type was included in the
students’ test. In this way, a form of adaptive assessment was
implemented in which students were administered items with an
appropriate difficulty level in line with the student’s subtraction
skill. This process resulted in 11 booklets with 30 items each, of
which 18 items were common across all version (see Figure 2).

Test Administration
A research assistant or researcher administrated the DI in each
classroom. A standardized instruction was read aloud by the test
administrator: “This test consists of 30 subtraction problems. You
may write down your calculations in the box next to the problem.
We are now going to practice two problems together.” Next, the
test administrator practiced two example subtraction problems
with the students. The correct answers to the practice problems
were given, but no strategies were discussed. Although there was
no official time limit, after 60 min the test administrator would
collect all the booklets. Most students finished within 60 min. The
incidental students who could not finish the test within 60 min
were offered to finish it later. Their tests were returned to the
researchers by the teacher via mail. When the test administrator
and teacher observed a student struggled too much, they gave the
student the choice to stop the test at any given moment.

Analyses
Item response theory (IRT) was used to obtain parameter
estimates for the 54 diagnostic items. In IRT, the difficulty of
items is estimated conditional on students’ proficiency (van der
Linden and Hambleton, 1997). Due to the relatively small number
of students per item, it was decided to apply a Rasch model.
Overall response behavior was in line with the Rasch model, and
it was not necessary to use more general models like the 3PL,

which need substantially larger sample sizes to estimate all the
parameters. The item curves within a Rasch model are based on
the logistic function of the difference between the latent variable
θ and the βi parameter of an item (Verhelst, 1993). The curves are
representations of the probability of answering an item correctly.

Two IRT analyses were done. In the first analysis, the
prevalence of a bridging error is modeled instead of the
prevalence of a correct response. The purpose of this analysis was
to obtain estimates of the relative diagnostic capacity of the items,
defined as the item’s capacity to elicit bridging errors. In this
analysis, items were coded as 1 = bridging error, and 0 = correct
or other error. Modeling using an IRT procedure allowed to
compare the capacity to elicit bridging errors across items
administered in an incomplete design with groups of test-takers
that differ in tendency to make bridging errors. As described
above, the DI was administrated through an incomplete design
with 11 booklets, which were linked through 18 common items.
The purpose of the second analysis was to obtain estimates of the
relative item difficulty. So, this is a more standard application
or IRT. In this analysis, items were coded as 1 = correct, and
0 = incorrect response. The item parameters resulting from the
IRT analyses could be transformed into the estimated proportion
bridging errors or the proportion correct for the total population.
OPLM software (Verhelst et al., 1994) was used to calibrate the
items using marginal maximum likelihood estimation (MML)
and equal discrimination indices for all items (Eggen and
Verhelst, 2011). The OPLM software is very suitable for analyzing
data in incomplete designs. The above specification of the model
results in an estimate of the Rasch model.

To enhance the interpretation of results, the item-parameters
are transformed into the expected proportion BE and the
expected proportion correct in the population. Using this
transformation, a weighting is given to the item parameters based
on practical impact that it translates into observable properties of
the items. For example, the difference between item parameters
4 and 5 will not lead to a substantial increase in the probability
correct for a student with proficiency 0. While a difference
between an item parameter of 0 or 1 does have a substantial
impact. These proportions were used in the descriptive and
correlational analyses that were done to answer the first research

FIGURE 2 | Booklet design that resulted from the adaptive selection of items shown in Supplementary Appendix C.
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question. This was not done for research question 2 since the
item parameters are better in line with the assumption of equal
variance of the ANOVA. For these analyses, the item parameters
for prevalence of bridging errors were used as the dependent
variable. Note that higher item parameter values lead to less
bridging errors and consequently a lower diagnostic capacity. In
the first ANOVA, item format and answering format were used
as independent factors, resulting in a 2 × 2 design. In the second
ANOVA, the number of digits and the borrow type were used as
independent factors, resulting in a 3× 3 design. Taking item types
together based on common features results in more power of the
analysis due to more observations per cell of the design. The 3-
category factors digits and borrow type were created by recoding
the nine item types. Item types 1 and 5 were recoded as category
1 (2n−2n), item types 3, 6, 7, and 8 were recoded as category
2 (3n/4n−2n), and item types 2, 4, and 9 were recoded into
category 3 (3n/4n−3n). Furthermore, for the variable borrow
type item types 1, 2, and 5 were recoded into category 1 (borrow
from 10). Item types, 3, 4, and 6 were recoded as category 2
(borrow from 100), and item types 7, 8, and 9 were recoded into
category 3 (borrow from multiple). The above-described analyses
were done with SPSS 23 (IBM Corp, 2015).

RESULTS

Relationship Between Bridging Errors
and Item Difficulty
The first research question concerned the relationship between
the proportion bridging errors and the difficulty of the
subtraction errors. For this research question, the expected
proportion correct was used as an indicator of item difficulty.
Hence, the higher the proportion, the easier the item. The
proportion BE (pBE) and proportion correct (pC) were calculated
as the expected proportion in the population under the IRT
model. The Rasch model showed a reasonable fit. In the model
with proportion correct, 6 out of 44 items had significant
S-statistics (p < 0.05). With proportion of bridging errors, 4
items out of 44 had significant S statistics. Overall, this was
evaluated as sufficient, and item parameters were used in the
follow-up analyses. For item 0804 (MC item), no bridging errors
were observed; therefore, we used a pBE of zero in the analyses.
Pearson’s bivariate correlation was calculated, r = −0.191,
p = 0.167, k = 54. This result shows that the proportion BE is
not significantly related to the item difficulty. However, we did
find a significant negative correlation between pBE and pC for
the MC items, r = −0.908, p < 0.001, k = 18. Note that this
high correlation is largely the result of all distractors, except
for item 0801 and 0804 being designed to include BEs, which
resulted in a negative relationship between the proportion BE
and the proportion correct. Moreover, for the item format (word
and bare number problems) we did not find any significant
correlations between pBE and pC. However, for the number
features a negative relationship between pBE and pC was found
for item type 9 (1000−340 = ), r = −0.870, p = 0.024, k = 6.
Thus, items within item type 9 with a high proportion BE had
a low proportion correct and vice versa. This result implies

that for item type nine very few other errors than BE were
observed. Such a relationship was not found for any of the other
number features.

Furthermore, Table 3 shows the average pBE and pC for the
item characteristics being evaluated in the present study. For the
answer format, it was found that the pBE as well as the pC for MC
items is higher than for OE items. The differences in the pBE and
pC for the two item formats were relatively small, with the pBE
of bare number problems being slightly higher than the pBE of
word problems. With regard to the number features, it was found
that items with more digits in the subtrahend and minuend (i.e.,
3n/4n−3n types 2, 4, and 9) had the highest pBE and a relative
low pC compared to items with fewer digits (i.e., 3n/4n−2n and
2n−2n, types 1, 3, 5, 6, 7, and 8). Whether these differences are
significant was explored in the ANOVA analyses.

Diagnostic Capacity in Relation to Item
Characteristics
Item and Answering Format
To evaluate the diagnostic capacity of the item and answering
format (research question 2), a 2× 2 between-subject (BS) factor
ANOVA with answer format and item format as BS factors and
the diagnostic capacity of the items was done. As explained in
the section “Materials and Methods,” the parameter estimate of
the diagnostic capacity was used for this analysis because of the
assumptions underlying ANOVA. As shown in Table 4 (Model 1),
a significant difference between MC items and OE items (answer
format) was found, F(1,50) = 36.871, p < 0.001, Partialη2 = 0.424,
R2 = 0.441. Hence, the diagnostic capacity of MC items is found
to be significantly higher than that of OE-items, MMC = −0.997,
SDMC = 0.818, MOE = 0.498, SDOE = 0.877. Evidently, this result
was to be expected given that the MC items were constructed to
have distractors that indicate BE.

To explore whether the distractors that were chosen in the
MC items represent the most frequent BE found in the open-
ended items, the frequencies of the three BE and their possible
combinations were analyzed. More specifically, Table 5 shows
the average frequency of the different bridging errors for OE
and for MC items. Note that, for item types 7, 8, and 9

TABLE 3 | Proportion bridging errors and proportion correct for answer format
and item format.

Proportion BE Proportion correct

pBE SD pC SD

Answer format MC 0.277 0.131 0.635 0.109

OE 0.115 0.059 0.584 0.130

Item format Word problem 0.155 0.116 0.598 0.126

Bare number problem 0.183 0.119 0.605 0.126

Number features Digits 2n−2n = 0.308 0.171 0.697 0.049

3n/4n−2n = 0.320 0.117 0.635 0.095

3n/4n−3n = 0.470 0.237 0.491 0.117

Borrow 10 0.191 0.104 0.619 0.125

100 0.163 0.129 0.522 0.134

Multiple 0.154 0.121 0.662 0.063
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TABLE 4 | ANOVA results with diagnostic capacity as dependent variable.

Variable Role df F p Partial η2

Model 1
R2 = 0.441

*Answer format (AF) BS-factor 1,50 36.871 <0.001* 0.424

Item format (IF) BS-factor 1,50 1.755 0.191 0.034

AF × IF Interaction 1,50 0.197 0.659 0.004

Model 2
R2 = 0.225

*Digits (D) BS-factor 2,48 5.790 0.007* 0.187

Borrow from (BF) BS-factor 2,48 0.051 0.950 0.002

D × BF Interaction 1,48 0.597 0.444 0.012

*p < 0.01.

TABLE 5 | Average frequency of BE types for OE and MC items.

OE items MC items

Item type BE k Max Mean SD k Max Mean SD

1 t/m 9 1 36 27 6.19 8.20 18 43 9.50 12.61

2 36 10 2.64 3.50 18 22 9.28 8.44

3 36 13 4.53 7.19 18 16 12.56 18.82

7 and 9 CEa 8 55 19.75 20.52 4 85 48.75 30.97

aCE, combination of BE for items with multiple borrows. Note that item type 8 also
had possible combination errors, but none of those were observed in our data.

combinations of the three types of BE could be observed because
these items had multiple borrows (see Supplementary Appendix
Table A1). For item type 8, no combined errors were observed.
The combined errors for item types 7 and 9 were put together
in one variable. The results in Table 5 show all BE types were,
on average, more frequently observed in MC items than in
OE items. The observed frequencies bridging errors and other
errors for each item are included in Supplementary Appendix
Table A2. Note that Supplementary Appendix Table A2 shows
there is a lot of within-item type variation in the proportion BE
observed in the data.

Subsequently, the differences between MC and OE items
for the three error types were tested using a t-test. Levene’s
test for equality of variances showed that for all three error
types equal variances could not be assumed (see Table 6). As
is shown in Table 6, the differences between OE and MC items
were significant for all three error types. The difference between
combination errors for OE and MC items was not tested because
of the small group sizes, respectively 8 and 4 items. It appears
that the MC items lead to an overestimation of all three BE
types. This may have occurred more often for BE3 since the
average difference between MC and OE items for this BE type is
the highest. Although this explanation is very plausible, we have
not collected any verbal reports from students’ actual thinking
process to support this explanation. Moreover, we found that
the relative number of missing values on OE (M = 0.0347,
SD = 0.02810) and MC items (M = 0.0439, SD = 0.02305) was
on average equal, t(52) = −1.199, p = 0.236 (equal variances
assumed), MDifference =−0.00919, SD = 0.00767. So, although MC
items might result in overestimating BE, it does not force more
students to skip an item in comparison to OE items.

TABLE 6 | T-tests for the mean difference between the BE types observed in
OE and MC items.

Fa p tb df p Mc SEc

BE1 4.527 0.038 −1.010 24.422 0.322 −3.306 3.272

BE2 30.983 <0.001 −3.204 19.978 0.004 −6.639 2.072

BE3 6.850 0.012 −1.747 19.523 0.096 −8.028 4.595

aLevene’s test for equality of variances. bEqual variances not assumed. cDifference.

Number Features
The second ANOVA was a 3 × 3 BS-factor design with digits
and borrow type as the BS factors. It was found that the
average diagnostic capacity differed for the BS-factor digits (see
Table 4 Model 2). A Bonferroni post hoc analysis showed that
category 2 (M = 0.543, SD = 1.145) has a significantly lower
diagnostic capacity than category 3 (M = −0.602, SD = 0.999),
Mdifference = 1.145, SE = 0.320, p = 0.002. More specifically,
3n/4n−2n = (category 2) items have a significantly lower
diagnostic capacity than 3n/4n−3n (category 3) items.

Furthermore, item type 8 was found to be the least suitable
for diagnosing students’ BE. Looking at the error frequencies
for item type 8, the most frequently observed error type were
errors, such as 1000−20 = 800, this error was observed 8, 5,
11, 8, 5, and 7 times in respectively, item 0801 through item
0806. Similarly, the error 1000−20 = 80 was observed 7, 1,
2, 9, 1, and 1 times in respectively, item 0801 through item
0806. Note that the frequencies 7 and 9 were observed with an
MC item, which might be the reason they were observed more
frequently. It is noteworthy that the subsample of students who
responded to item type 8 had a mathematical ability of 59.133
(SD = 13.91, N = 98), which is significantly lower than the average
mathematical ability of the whole sample, M = 69.79, SD = 15.784,
N = 98, t(358) = 5.885, p < 0.0001. The implications of these
results are explained in the section “Discussion.”

DISCUSSION

The past decades, there has been plenty of research into
systematic errors in subtraction. However, none of those studies
systematically evaluated what item characteristics make an
item suitable for a specific error diagnosis. Based on previous
research, we focused on diagnostic items that elicit bridging
errors in multi-digit subtraction, which are errors derived
from the frequently observed smaller-from-larger error (Brown
and VanLehn, 1980; Young and O’Shea, 1981; Resnick, 1982;
VanLehn, 1990; Hennessy, 1993). The purpose of the present
study was to explore the relationship between the diagnostic
capacity and item difficulty of items and to evaluate the diagnostic
capacity of three specific item characteristics: Item format,
answering format, and number features in relation to their
capacity to elicit bridging errors. This discussion emphasizes how
this evaluation contributes to the design of diagnostic subtraction
items, to research ideas, and to use of diagnostic items in
mathematics teaching.

We found no significant correlation between the estimated
proportion bridging errors and proportion correct of the items
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(research question 1). This implies that the difficulty of an item
is not indicative of the diagnostic capacity of an item. Therefore,
the diagnostic capacity of items should be considered a different
construct from item difficulty, which might be influenced
differently by item characteristics than item difficulty. However,
we did find that item type 9 had a negative relationship between
the proportion bridging errors and proportion correct was found
for item type nine (e.g., 1000−340 = ). So, a higher proportion
bridging errors was associated with a lower proportion correct.
This result indicates that, for this item type, most of the errors
made were bridging errors, and almost no other errors were
made on this item (see Supplementary Appendix Table A2).
Not surprisingly, the average proportion bridging errors for item
type 9 was found to be the highest compared to the other
item types. It was not, however, the easiest nor was it the
most difficult item type. Based on these results, teachers can
use the subset of item types with a high diagnostic capacity to
diagnose students with various mathematical ability levels. This
is particularly useful given the results of a related study in which
we found a correlation between students’ mathematical ability
and their tendency to make bridging errors (Vermeulen et al.,
unpublished). More specifically, a higher proportion bridging
errors was associated with a higher mathematical ability. These
findings fit with the argumentation proposed in the theoretical
framework: bridging errors indicate a cognitive advancement
for students’ procedural understanding and place-value based
understanding of multi-digit numbers, but it also indicates a
cognitive weakness in the conceptual understanding of place-
value principles related to borrowing.

Looking at the number features of the items, it was found
in the ANOVA that the diagnostic capacity of 3n/4n−3n items
is significantly higher than the diagnostic capacity of 3n/4n−2n
items (i.e., item types 3, 6, 7, and 8). This result does not,
however, indicate that the diagnostic capacity of the items is
related to the number of digits in the subtrahend and minuend
being unequal. One of the most important findings of this
study is that item type 8 (e.g., 1000−70 = ) was not only
the easiest item; it also had the lowest diagnostic capacity.
A subsequent error analysis showed that students made relatively
few bridging errors; instead, these items seem to elicit errors
such as 1000−20 = 800 and 1000−20 = 80. Because item type 8
elicits other systematic errors more frequently, it is questionable
whether item type 8 is a valid item type for diagnosing bridging
errors. Unfortunately, we do not have data about students’
mathematical conceptual and procedural reasoning to explain
this error. A plausible explanation is that item type 8 elicits
jumping instead of decomposition, because there is no reason
for a place-value-based partitioning of the subtrahend when the
subtrahend is a multiple of ten.

Moreover, the students who responded to item type 8 had
a significantly lower mathematical ability, which makes it more
likely that they use a jumping strategy instead of a decomposition
strategy (Kraemer, 2011). Students’ with a lower mathematical
ability might not make one specific systematic error, such as
BE, but might struggle with multiple procedures and concepts,
resulting in different errors (Scheltens and Béguin, 2017). Based
on the idea that third-grade students transition from a linear

understanding of multi-digit numbers (Fuson et al., 1997; Teppo
and Van den Heuvel-Panhuizen, 2013), it is plausible that
students who make errors like 1000−20 = 800 or 80 struggle
with the linear concept of multi-digit numbers between 100 and
1000. This suggests that it is worthwhile to investigate what
systematic errors are relevant during a specific developmental
phase, in relation to students’ mathematical ability. In conclusion,
the above implies that diagnosing errors such as BE might be
more relevant for average to high-achieving students rather than
low achieving students.

The lower mathematical ability of students who responded to
item type 8 was the result of our adaptive design of item types (see
Supplementary Appendix C). Although we used anchor items
to link all item types and subgroups, this can be considered a
limitation of the research design when analyzing the frequency
of other systematic subtraction errors. Hence, the design does
allow to link the item types and subgroups with regard to their
diagnostic capacity for bridging errors, but for the exploration of
other systematic subtraction errors it might be better to be able
to compare error patterns of students with high, average, and
low mathematical ability. Nevertheless, the purpose of this study
was not to discover other systematic subtraction errors but to
evaluate the diagnostic capacity of items for diagnosing bridging
errors. Also, the interpretation of these results based on our
theoretical framework does provide testable hypotheses about
the procedural and conceptual nature of these novel systematic
errors. This requires, however, an approach that focuses on
students’ error profiles rather than the design of diagnostic items.
A recent study into students’ multi-digit subtraction strategy
profiles showed that students are rarely classified as flexible users
of various strategies (Torbeyns et al., 2017). In combination with
research on students’ strategy profiles, it would be interesting
to explore how students’ strategy profile is related to their error
profile. It would be specifically interesting to study changes in
students’ strategy and error profiles and the extent to which these
changes are related to each other and to students’ conceptual
understanding of multi-digit numbers.

Finally, the present study focused on identifying students’
procedural and conceptual strengths and weaknesses in multi-
digit subtraction and borrowing. The value of diagnosing
bridging errors should be further evaluated by studying teachers’
instructional decisions based on students’ error profiles. Such
research can result in empirical information about effective
interventions to remediate bridging errors and facilitate students’
transition from jumping to decomposition strategies and to
column-wise and ciphering in higher grades. Our theoretical
framework suggests that the use of models like money and MAB
material can support the transition from linear to place-value-
based understanding of multi-digit numbers (Beishuizen, 1993;
Fuson et al., 1997; Blöte et al., 2000; Kraemer, 2011; Howe,
2012, 2019). As students make the transition to decomposition,
column-wise and ciphering, and subtraction with three- and
four-digit numbers, the number line is used less by both
teachers and students (Vermeulen et al., 2015). Howe (2019)
emphasizes that students’ need to understand the relative
magnitude of numbers to reflect on their answers by using
estimation. This perspective is also in line with a constructive
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view on misconceptions (Smith et al., 1994): Rather than
replacing their linear understanding of multi-digit numbers,
they complement their understanding with the place-value-based
concept of multi-digit numbers. Positioning large numbers on
the number line can contribute to students’ understanding of the
magnitude of three- and four-digit numbers. Furthermore, the
present study focused on word problems constructed to elicit
direct subtraction and decomposition strategies, which explains
why their diagnostic capacity did not differ from bare number
problems. Although we did not find a group difference between
the diagnostic capacity of bare number and word problems,
it is possible that students show different error profiles for
bare number and context problems, which could be relevant
diagnostic data for teachers’ instructional decisions. Hence,
including only one type of word problem could be considered
a limitation of the research design. In the design of the items,
we assumed that word problems constructed to elicit direct
subtraction would be more valid for diagnosing bridging errors
than word problems that elicit subtraction by addition. However,
we did not collect data to validate this assumption. Nevertheless,
for comparing students’ bridging error profiles on bare number
and word problems, we would still recommend using word
problems that elicit direct subtraction because this makes it
easier exclude the meaning of subtraction as an explanation for
differences in error profiles.

In conclusion, the present study showed that items like
453−127 = (Type 2), 634−251 = (Type 4) and 1000−340 = (Type
9) were the most suitable for diagnosing bridging errors mid
third grade. As was expected, we found the MC items have a
higher diagnostic capacity than open ended items. Nevertheless,
we would argue that the use of MC or open-ended items serve
different purposes. MC items could be a more accessible approach
for teachers when using a diagnostic instrument for bridging
errors as part of a formative teaching process. Also, they might be
useful for diagnosing the three specific types of BE. Open-ended
questions on the other hand are more useful when exploring
error profiles that are not solely focused on diagnosing bridging
errors; this could be applied in both classroom and research
settings. Because item types 2 and 4 only have three possible
bridging errors, they can easily be administrated using MC-
items with the three BE listed in Supplementary Appendix A
as distractors. However, item type 9 is a more complex item
type that requires borrowing multiple times, resulting in more
than three possible bridging errors. For that reason, it is better
to administer item type 9 as an open-ended item and use the
errors listed in Supplementary Appendix A to identify the
bridging errors. The different combinations of bridging errors
might help teachers to identify whether the student is making
errors with borrowing from the tens or hundreds, or both. The
three bridging errors used in the present study can be considered

procedural variations of each other. It is plausible, however, that
the three bridging errors indicate different phases in students’
transition from a linear to a place-value-based conceptual
understanding of multi-digit numbers. Lastly, facilitating this
transition by diagnosing and remediating bridging errors is not
only important for multi-digit subtraction but can also promote
students’ proficiency in addition, multiplication, and division,
because these computations also rely on students’ understanding
of the base-ten place-value system.
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