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Automated essay scoring (AES) is a compelling topic in Learning Analytics for the
primary reason that recent advances in AI find it as a good testbed to explore artificial
supplementation of human creativity. However, a vast swath of research tackles AES
only holistically; few have even developed AES models at the rubric level, the very first
layer of explanation underlying the prediction of holistic scores. Consequently, the AES
black box has remained impenetrable. Although several algorithms from Explainable
Artificial Intelligence have recently been published, no research has yet investigated
the role that these explanation models can play in: (a) discovering the decision-making
process that drives AES, (b) fine-tuning predictive models to improve generalizability and
interpretability, and (c) providing personalized, formative, and fine-grained feedback to
students during the writing process. Building on previous studies where models were
trained to predict both the holistic and rubric scores of essays, using the Automated
Student Assessment Prize’s essay datasets, this study focuses on predicting the quality
of the writing style of Grade-7 essays and exposes the decision processes that lead
to these predictions. In doing so, it evaluates the impact of deep learning (multi-
layer perceptron neural networks) on the performance of AES. It has been found that
the effect of deep learning can be best viewed when assessing the trustworthiness
of explanation models. As more hidden layers were added to the neural network,
the descriptive accuracy increased by about 10%. This study shows that faster (up
to three orders of magnitude) SHAP implementations are as accurate as the slower
model-agnostic one. It leverages the state-of-the-art in natural language processing,
applying feature selection on a pool of 1592 linguistic indices that measure aspects of
text cohesion, lexical diversity, lexical sophistication, and syntactic sophistication and
complexity. In addition to the list of most globally important features, this study reports
(a) a list of features that are important for a specific essay (locally), (b) a range of values
for each feature that contribute to higher or lower rubric scores, and (c) a model that
allows to quantify the impact of the implementation of formative feedback.

Keywords: explainable artificial intelligence, SHAP, automated essay scoring, deep learning, trust, learning
analytics, feedback, rubric
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BACKGROUND

Automated essay scoring (AES) is a compelling topic in Learning
Analytics (LA) for the primary reason that recent advances in
AI find it as a good testbed to explore artificial supplementation
of human creativity. However, a vast swath of research tackles
AES only holistically; only a few have even developed AES
models at the rubric level, the very first layer of explanation
underlying the prediction of holistic scores (Kumar et al.,
2017; Taghipour, 2017; Kumar and Boulanger, 2020). None
has attempted to explain the whole decision process of AES,
from holistic scores to rubric scores and from rubric scores
to writing feature modeling. Although several algorithms from
XAI (explainable artificial intelligence) (Adadi and Berrada,
2018; Murdoch et al., 2019) have recently been published (e.g.,
LIME, SHAP) (Ribeiro et al., 2016; Lundberg and Lee, 2017),
no research has yet investigated the role that these explanation
models (trained on top of predictive models) can play in: (a)
discovering the decision-making process that drives AES, (b)
fine-tuning predictive models to improve generalizability and
interpretability, and (c) providing teachers and students with
personalized, formative, and fine-grained feedback during the
writing process.

One of the key anticipated benefits of AES is the elimination
of human bias such as rater fatigue, rater’s expertise,
severity/leniency, scale shrinkage, stereotyping, Halo effect,
rater drift, perception difference, and inconsistency (Taghipour,
2017). At its turn, AES may suffer from its own set of biases
(e.g., imperfections in training data, spurious correlations,
overrepresented minority groups), which has incited the research
community to look for ways to make AES more transparent,
accountable, fair, unbiased, and consequently trustworthy while
remaining accurate. This required changing the perception
that AES is merely a machine learning and feature engineering
task (Madnani et al., 2017; Madnani and Cahill, 2018). Hence,
researchers have advocated that AES should be seen as a
shared task requiring several methodological design decisions
along the way such as curriculum alignment, construction of
training corpora, reliable scoring process, and rater performance
evaluation, where the goal is to build and deploy fair and
unbiased scoring models to be used in large-scale assessments
and classroom settings (Rupp, 2018; West-Smith et al., 2018;
Rupp et al., 2019). Unfortunately, although these measures are
intended to design reliable and valid AES systems, they may
still fail to build trust among users, keeping the AES black box
impenetrable for teachers and students.

It has been previously recognized that divergence of opinion
among human and machine graders has been only investigated
superficially (Reinertsen, 2018). So far, researchers investigated
the characteristics of essays through qualitative analyses which
ended up rejected by AES systems (requiring a human to score
them) (Reinertsen, 2018). Others strived to justify predicted
scores by identifying essay segments that actually caused the
predicted scores. In spite of the fact that these justifications hinted
at and quantified the importance of these spatial cues, they did
not provide any feedback as to how to improve those suboptimal
essay segments (Mizumoto et al., 2019).

Related to this study and the work of Kumar and Boulanger
(2020) is Revision Assistant, a commercial AES system developed
by Turnitin (Woods et al., 2017; West-Smith et al., 2018),
which in addition to predicting essays’ holistic scores provides
formative, rubric-specific, and sentence-level feedback over
multiple drafts of a student’s essay. The implementation of
Revision Assistant moved away from the traditional approach to
AES, which consists in using a limited set of features engineered
by human experts representing only high-level characteristics
of essays. Like this study, it rather opted for including a large
number of low-level writing features, demonstrating that expert-
designed features are not required to produce interpretable
predictions. Revision Assistant’s performance was reported on
two essay datasets, one of which was the Automated Student
Assessment Prize (ASAP)1 dataset. However, performance on the
ASAP dataset was reported in terms of quadratic weighted kappa
and this for holistic scores only. Models predicting rubric scores
were trained only with the other dataset which was hosted on and
collected through Revision Assistant itself.

In contrast to feature-based approaches like the one adopted
by Revision Assistant, other AES systems are implemented
using deep neural networks where features are learned during
model training. For example, Taghipour (2017) in his doctoral
dissertation leverages a recurrent neural network to improve
accuracy in predicting holistic scores, implement rubric scoring
(i.e., organization and argument strength), and distinguish
between human-written and computer-generated essays.
Interestingly, Taghipour compared the performance of his AES
system against other AES systems using the ASAP corpora,
but he did not use the ASAP corpora when it came to train
rubric scoring models although ASAP provides two corpora
provisioning rubric scores (#7 and #8). Finally, research was
also undertaken to assess the generalizability of rubric-based
models by performing experiments across various datasets. It
was found that the predictive power of such rubric-based models
was related to how much the underlying feature set covered a
rubric’s criteria (Rahimi et al., 2017).

Despite their numbers, rubrics (e.g., organization, prompt
adherence, argument strength, essay length, conventions, word
choices, readability, coherence, sentence fluency, style, audience,
ideas) are usually investigated in isolation and not as a
whole, with the exception of Revision Assistant which provides
feedback at the same time on the following five rubrics:
claim, development, audience, cohesion, and conventions.
The literature reveals that rubric-specific automated feedback
includes numerical rubric scores as well as recommendations
on how to improve essay quality and correct errors (Taghipour,
2017). Again, except for Revision Assistant which undertook a
holistic approach to AES including holistic and rubric scoring
and provision of rubric-specific feedback at the sentence level,
AES has generally not been investigated as a whole or as an end-
to-end product. Hence, the AES used in this study and developed
by Kumar and Boulanger (2020) is unique in that it uses both
deep learning (multi-layer perceptron neural network) and a
huge pool of linguistic indices (1592), predicts both holistic and

1https://www.kaggle.com/c/asap-aes
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rubric scores, explaining holistic scores in terms of rubric scores,
and reports which linguistic indices are the most important by
rubric. This study, however, goes one step further and showcases
how to explain the decision process behind the prediction of a
rubric score for a specific essay, one of the main AES limitations
identified in the literature (Taghipour, 2017) that this research
intends to address, at least partially.

Besides providing explanations of predictions both globally
and individually, this study not only goes one step further toward
the automated provision of formative feedback but also does so in
alignment with the explanation model and the predictive model,
allowing to better map feedback to the actual characteristics of
an essay. Woods et al. (2017) succeeded in associating sentence-
level expert-derived feedback with strong/weak sentences having
the greatest influence on a rubric score based on the rubric, essay
score, and the sentence characteristics. While Revision Assistant’s
feature space consists of counts and binary occurrence indicators
of word unigrams, bigrams and trigrams, character four-grams,
and part-of-speech bigrams and trigrams, they are mainly textual
and locational indices; by nature they are not descriptive or self-
explanative. This research fills this gap by proposing feedback
based on a set of linguistic indices that can encompass several
sentences at a time. However, the proposed approach omits
locational hints, leaving the merging of the two approaches as the
next step to be addressed by the research community.

Although this paper proposes to extend the automated
provision of formative feedback through an interpretable
machine learning method, it rather focuses on the feasibility of
automating it in the context of AES instead of evaluating
the pedagogical quality (such as the informational and
communicational value of feedback messages) or impact on
students’ writing performance, a topic that will be kept for
an upcoming study. Having an AES system that is capable
of delivering real-time formative feedback sets the stage to
investigate (1) when feedback is effective, (2) the types of
feedback that are effective, and (3) whether there exist different
kinds of behaviors in terms of seeking and using feedback
(Goldin et al., 2017). Finally, this paper omits describing the
mapping between the AES model’s linguistic indices and a
pedagogical language that is easily understandable by students
and teachers, which is beyond its scope.

METHODOLOGY

This study showcases the application of the PDR framework
(Murdoch et al., 2019), which provides three pillars to describe
interpretations in the context of the data science life cycle:
Predictive accuracy, Descriptive accuracy, and Relevancy to
human audience(s). It is important to note that in a broader sense
both terms “explainable artificial intelligence” and “interpretable
machine learning” can be used interchangeably with the following
meaning (Murdoch et al., 2019): “the use of machine-learning
models for the extraction of relevant knowledge about domain
relationships contained in data.” Here “predictive accuracy”
refers to the measurement of a model’s ability to fit data;
“descriptive accuracy” is the degree at which the relationships

learned by a machine learning model can be objectively captured;
and “relevant knowledge” implies that a particular audience
gets insights into a chosen domain problem that guide its
communication, actions, and discovery (Murdoch et al., 2019).

In the context of this article, formative feedback that assesses
students’ writing skills and prescribes remedial writing strategies
is the relevant knowledge sought for, whose effectiveness on
students’ writing performance will be validated in an upcoming
study. However, the current study puts forward the tools and
evaluates the feasibility to offer this real-time formative feedback.
It also measures the predictive and descriptive accuracies of
AES and explanation models, two key components to generate
trustworthy interpretations (Murdoch et al., 2019). Naturally, the
provision of formative feedback is dependent on the speed of
training and evaluating new explanation models every time a
new essay is ingested by the AES system. That is why this paper
investigates the potential of various SHAP implementations for
speed optimization without compromising the predictive and
descriptive accuracies. This article will show how the insights
generated by the explanation model can serve to debug the
predictive model and contribute to enhance the feature selection
and/or engineering process (Murdoch et al., 2019), laying the
foundation for the provision of actionable and impactful pieces
of knowledge to educational audiences, whose relevancy will
be judged by the human stakeholders and estimated by the
magnitude of resulting changes.

Figure 1 overviews all the elements and steps encompassed
by the AES system in this study. The following subsections
will address each facet of the overall methodology,
from hyperparameter optimization to relevancy to both
students and teachers.

Automated Essay Scoring System,
Dataset, and Feature Selection
As previously mentioned, this paper reuses the AES system
developed by Kumar and Boulanger (2020). The AES models
were trained using the ASAP’s seventh essay corpus. These
narrative essays were written by Grade-7 students in the setting
of state-wide assessments in the United States and had an average
length of 171 words. Students were asked to write a story about
patience. Kumar and Boulanger’s work consisted in training a
predictive model for each of the four rubrics according to which
essays were graded: ideas, organization, style, and conventions.
Each essay was scored by two human raters on a 0−3 scale
(integer scale). Rubric scores were resolved by adding the rubric
scores assigned by the two human raters, producing a resolved
rubric score between 0 and 6. This paper is a continuation
of Boulanger and Kumar (2018, 2019, 2020) and Kumar and
Boulanger (2020) where the objective is to open the AES black
box to explain the holistic and rubric scores that it predicts.
Essentially, the holistic score (Boulanger and Kumar, 2018, 2019)
is determined and justified through its four rubrics. Rubric scores,
in turn, are investigated to highlight the writing features that play
an important role within each rubric (Kumar and Boulanger,
2020). Finally, beyond global feature importance, it is not only
indispensable to identify which writing indices are important
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FIGURE 1 | A flow chart exhibiting the sequence of activities to develop an end-to-end AES system and how the various elements work together to produce relevant
knowledge to the intended stakeholders.

for a particular essay (local), but also to discover how they
contribute to increase or decrease the predicted rubric score,
and which feature values are more/less desirable (Boulanger
and Kumar, 2020). This paper is a continuation of these
previous works by adding the following link to the AES chain:
holistic score, rubric scores, feature importance, explanations,
and formative feedback. The objective is to highlight the means
for transparent and trustable AES while empowering learning
analytics practitioners with the tools to debug these models
and equip educational stakeholders with an AI companion that
will semi-autonomously generate formative feedback to teachers
and students. Specifically, this paper analyzes the AES reasoning
underlying its assessment of the “style” rubric, which looks for
command of language, including effective and compelling word
choice and varied sentence structure, that clearly supports the
writer’s purpose and audience.

This research’s approach to AES leverages a feature-based
multi-layer perceptron (MLP) deep neural network to predict
rubric scores. The AES system is fed by 1592 linguistic
indices quantitatively measured by the Suite of Automatic
Linguistic Analysis Tools2 (SALAT), which assess aspects of
grammar and mechanics, sentiment analysis and cognition, text
cohesion, lexical diversity, lexical sophistication, and syntactic
sophistication and complexity (Kumar and Boulanger, 2020).
The purpose of using such a huge pool of low-level writing
features is to let deep learning extract the most important ones;
the literature supports this practice since there is evidence that
features automatically selected are not less interpretable than
those engineered (Woods et al., 2017). However, to facilitate

2https://www.linguisticanalysistools.org/

this process, this study opted for a semi-automatic strategy that
consisted of both filter and embedded methods. Firstly, the
original ASAP’s seventh essay dataset consists of a training set
of 1567 essays and a validation and testing sets of 894 essays
combined. While the texts of all 2461 essays are still available
to the public, only the labels (the rubric scores of two human
raters) of the training set have been shared with the public. Yet,
this paper reused the unlabeled 894 essays of the validation and
testing sets for feature selection, a process that must be carefully
carried out by avoiding being informed by essays that will train
the predictive model. Secondly, feature data were normalized,
and features with variances lower than 0.01 were pruned. Thirdly,
the last feature of any pair of features having an absolute Pearson
correlation coefficient greater than 0.7 was also pruned (the one
that comes last in terms of the column ordering in the datasets).
After the application of these filter methods, the number of
features was reduced from 1592 to 282. Finally, the Lasso and
Ridge regression regularization methods (whose combination is
also called ElasticNet) were applied during the training of the
rubric scoring models. Lasso is responsible for pruning further
features, while Ridge regression is entrusted with eliminating
multicollinearity among features.

Hyperparameter Optimization and
Training
To ensure a fair evaluation of the potential of deep learning,
it is of utmost importance to minimally describe this study’s
exploration of the hyperparameter space, a step that is often
found to be missing when reporting the outcomes of AES
models’ performance (Kumar and Boulanger, 2020). First, a
study should list the hyperparameters it is going to investigate
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by testing for various values of each hyperparameter. For
example, Table 1 lists all hyperparameters explored in this study.
Note that L1 and L2 are two regularization hyperparameters
contributing to feature selection. Second, each study should
also report the range of values of each hyperparameter. Finally,
the strategy to explore the selected hyperparameter subspace
should be clearly defined. For instance, given the availability
of high-performance computing resources and the time/cost of
training AES models, one might favor performing a grid (a
systematic testing of all combinations of hyperparameters and
hyperparameter values within a subspace) or a random search
(randomly selecting a hyperparameter value from a range of
values per hyperparameter) or both by first applying random
search to identify a good starting candidate and then grid
search to test all possible combinations in the vicinity of the
starting candidate’s subspace. Of particular interest to this study
is the neural network itself, that is, how many hidden layers

should a neural network have and how many neurons should
compose each hidden layer and the neural network as a whole.
These two variables are directly related to the size of the neural
network, with the number of hidden layers being a defining
trait of deep learning. A vast swath of literature is silent about
the application of interpretable machine learning in AES and
even more about measuring its descriptive accuracy, the two
components of trustworthiness. Hence, this study pioneers the
comprehensive assessment of deep learning impact on AES’s
predictive and descriptive accuracies.

Consequently, the 1567 labeled essays were divided into
a training set (80%) and a testing set (20%). No validation
set was put aside; 5-fold cross-validation was rather used
for hyperparameter optimization. Table 1 delineates the
hyperparameter subspace from which 800 different combinations
of hyperparameter values were randomly selected out of a
subspace of 86,248,800 possible combinations. Since this

TABLE 1 | Hyperparameter subspace investigated in this article along with best hyperparameter values per neural network architecture.

Hyperparameter 2-layers 3-layers 4-layers 5-layers 6-layers Hyperparameter
value range

Mean squared Error (std) 0.684 (0.031) 0.732 (0.022) 0.739 (0.026) 0.795 (0.025) 0.795 (0.023) −

# parameters 9,156 9,388 9,394 9,746 21,640

Start neurons 32 32 32 32 64 {32, 64, 96, 128, 256}

End neurons 4 4 4 4 16 {4, 8, 16, 32}

Hidden layers (bold) 282-32-4-1 282-32-10-
4-1

282-32-10-
4-2-1

282-32-16-
10-4-2-1

282-64-32-
24-16-16-8-

1

Optimizer SGD SGD SGD Adam SGD {Adam, Adamax, SGD}

Learning rate 0.005 0.006 0.007 − 0.012 {0.005, 0.006, 0.007,
0.008, 0.009, 0.010,
0.011, 0.012, 0.013,

0.014, 0.015}

Momentum 0.6 0.7 0.6 − 0.9 {0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9,

1.0}

L1 rate 0.0075 0.0125 0.0035 0.0045 0.0115 {0.0025, 0.0035,
0.0045, 0.0055,
0.0065, 0.0075,
0.0085, 0.0095,
0.0105, 0.0115,

0.0125}

L2 rate 0.0055 0.0105 0.0105 0.0045 0.0075 {0.0025, 0.0035,
0.0045, 0.0055,
0.0065, 0.0075,
0.0085, 0.0095,
0.0105, 0.0115,

0.0125}

Batch size 128 256 256 128 256 {64, 128, 256}

Epochs 350 350 350 350 350 {350}

Kernel initializer Random
normal

Random
uniform

Random
normal

Random
normal

Glorot
normal

{Glorot normal, Glorot
uniform, He normal,

Lecun uniform, random
normal, random

uniform}

Bias initializer Ones Ones Ones Ones Random
uniform

{zeros, ones, random
normal, random

uniform}

Activation Elu Elu Elu Relu Selu {selu, elu, relu}
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research proposes to investigate the potential of deep learning
to predict rubric scores, several architectures consisting of 2 to
6 hidden layers and ranging from 9,156 to 119,312 parameters
were tested. Table 1 shows the best hyperparameter values per
depth of neural networks.

Again, the essays of the testing set were never used during the
training and cross-validation processes. In order to retrieve the
best predictive models during training, every time the validation
loss reached a record low, the model was overwritten. Training
stopped when no new record low was reached during 100 epochs.
Moreover, to avoid reporting the performance of overfit models,
each model was trained five times using the same set of best
hyperparameter values. Finally, for each resulting predictive
model, a corresponding ensemble model (bagging) was also
obtained out of the five models trained during cross-validation.

Predictive Models and Predictive
Accuracy
Table 2 delineates the performance of predictive models trained
previously by Kumar and Boulanger (2020) on the four scoring
rubrics. The first row lists the agreement levels between the
resolved and predicted rubric scores measured by the quadratic
weighted kappa. The second row is the percentage of accurate
predictions; the third row reports the percentages of predictions
that are either accurate or off by 1; and the fourth row reports the
percentages of predictions that are either accurate or at most off
by 2. Prediction of holistic scores is done merely by adding up
all rubric scores. Since the scale of rubric scores is 0−6 for every
rubric, then the scale of holistic scores is 0−24.

While each of these rubric scoring models might suffer from
its own systemic bias and hence cancel off each other’s bias
by adding up the rubric scores to derive the holistic score,
this study (unlike related works) intends to highlight these
biases by exposing the decision making process underlying the
prediction of rubric scores. Although this paper exclusively
focuses on the Style rubric, the methodology put forward to
analyze the local and global importance of writing indices and
their context-specific contributions to predicted rubric scores
is applicable to every rubric and allows to control for these
biases one rubric at a time. Comparing and contrasting the
role that a specific writing index plays within each rubric
context deserves its own investigation, which has been partly
addressed in the study led by Kumar and Boulanger (2020).
Moreover, this paper underscores the necessity to measure
the predictive accuracy of rubric-based holistic scoring using
additional metrics to account for these rubric-specific biases.

TABLE 2 | Rubric scoring models’ performance on testing set.

Ideas Organization Style Conventions Holistic
scores

QWK 0.731 0.676 0.650 0.674 0.785

Exact (%) 45.1 47.1 54.3 47.8 17.2

Adj. 1 (%) 85.7 86.2 92.5 88.2 46.1

Adj. 2 (%) 97.4 99.4 99.8 99.7 64.0

For example, there exist several combinations of rubric scores
to obtain a holistic score of 16 (e.g., 4-4-4-4 vs. 4-3-4-5 vs.
3-5-2-6). Even though the predicted holistic score might be
accurate, the rubric scores could all be inaccurate. Similarity or
distance metrics (e.g., Manhattan and Euclidean) should then
be used to describe the authenticity of the composition of these
holistic scores.

According to what Kumar and Boulanger (2020) report
on the performance of several state-of-the-art AES systems
trained on ASAP’s seventh essay dataset, the AES system they
developed and which will be reused in this paper proved
competitive while being fully and deeply interpretable, which no
other AES system does. They also supply further information
about the study setting, essay datasets, rubrics, features, natural
language processing (NLP) tools, model training, and evaluation
against human performance. Again, this paper showcases the
application of explainable artificial intelligence in automated
essay scoring by focusing on the decision process of the Rubric
#3 (Style) scoring model. Remember that the same methodology
is applicable to each rubric.

Explanation Model: SHAP
SHapley Additive exPlanations (SHAP) is a theoretically justified
XAI framework that can provide simultaneously both local
and global explanations (Molnar, 2020); that is, SHAP is
able to explain individual predictions taking into account the
uniqueness of each prediction, while highlighting the global
factors influencing the overall performance of a predictive model.
SHAP is of keen interest because it unifies all algorithms of
the class of additive feature attribution methods, adhering to
a set of three properties that are desirable in interpretable
machine learning: local accuracy, missingness, and consistency
(Lundberg and Lee, 2017). A key advantage of SHAP is that
feature contributions are all expressed in terms of the outcome
variable (e.g., rubric scores), providing a same scale to compare
the importance of each feature against each other. Local accuracy
refers to the fact that no matter the explanation model, the sum
of all feature contributions is always equal to the prediction
explained by these features. The missingness property implies
that the prediction is never explained by unmeasured factors,
which are always assigned a contribution of zero. However, the
converse is not true; a contribution of zero does not imply
an unobserved factor, it can also denote a feature irrelevant to
explain the prediction. The consistency property guarantees that
a more important feature will always have a greater magnitude
than a less important one, no matter how many other features
are included in the explanation model. SHAP proves superior
to other additive attribution methods such as LIME (Local
Interpretable Model-Agnostic Explanations), Shapley values, and
DeepLIFT in that they never comply with all three properties,
while SHAP does (Lundberg and Lee, 2017). Moreover, the
way SHAP assesses the importance of a feature differs from
permutation importance methods (e.g., ELI5), measured as
the decrease in model performance (accuracy) as a feature is
perturbated, in that it is based on how much a feature contributes
to every prediction.
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TABLE 3 | Array of SHAP values: local and global importance of features and feature coverage per instance.

F1 F2 F3 F4 F5 Prediction Feature coverage

Instance 1 −0.46 0.10 −0.63 −0.54 0.23 2.46 6.5 / 6.5 = 100%

Instance 2 −0.20 0.00 0.00 −0.16 0.55 3.95 4 / 6.5 = 61.5%

Instance 3 0.41 −0.38 0.57 0.00 0.67 5.03 5.2 / 6.5 = 80.0%

Instance 4 0.24 0.02 −0.63 0.18 −0.31 3.26 5.5 / 6.5 = 84.6%

Instance 5 −0.57 0.51 −0.42 0.81 0.00 4.09 5.17 / 6.5 = 79.5%

Base value 3.76

Importance (Ij ) 1.88 1.01 2.25 1.69 1.76√
Ij 1.37 1.00 1.50 1.30 1.33

5∑
j=1

√
Ij = 6.5

Essentially, a SHAP explanation model (linear regression) is
trained on top of a predictive model, which in this case is a
complex ensemble deep learning model. Table 3 demonstrates
a scale explanation model showing how SHAP values (feature
contributions) work. In this example, there are five instances and
five features describing each instance (in the context of this paper,
an instance is an essay). Predictions are listed in the second to
last column, and the base value is the mean of all predictions.
The base value constitutes the reference point according to which
predictions are explained; in other words, reasons are given to
justify the discrepancy between the individual prediction and
the mean prediction (the base value). Notice that the table does
not contain the actual feature values; these are SHAP values that
quantify the contribution of each feature to the predicted score.
For example, the prediction of Instance 1 is 2.46, while the base
value is 3.76. Adding up the feature contributions of Instance 1 to
the base value produces the predicted score:

Base value
3.76−0.46+ 0.10− 0.63− 0.54+ 0.23 =

Prediction
2.46

Hence, the generic equation of the explanation model (Lundberg
and Lee, 2017) is:

g (x) = σ0 +

j∑
i=1

σixi

where g(x) is the prediction of an individual instance x, σ0
is the base value, σi is the feature contribution of feature xi,
xi ∈ {0, 1} denotes whether feature xi is part of the individual
explanation, and j is the total number of features. Furthermore,
the global importance of a feature is calculated by adding up
the absolute values of its corresponding SHAP values over all

instances, where n is the total number of instances and σ
(j)
i is the

feature contribution for instance i (Lundberg et al., 2018):

n∑
i=1

|σ
(j)
i |

Therefore, it can be seen that Feature 3 is the most globally
important feature, while Feature 2 is the least important one.
Similarly, Feature 5 is Instance 3’s most important feature at
the local level, while Feature 2 is the least locally important.
The reader should also note that a feature shall not necessarily

be assigned any contribution; some of them are just not part
of the explanation such as Feature 2 and Feature 3 in Instance
2. These concepts lay the foundation for the explainable AES
system presented in this paper. Just imagine that each instance
(essay) will be rather summarized by 282 features and that the
explanations of all the testing set’s 314 essays will be provided.

Several implementations of SHAP exist: KernelSHAP,
DeepSHAP, GradientSHAP, and TreeSHAP, among others.
KernelSHAP is model-agnostic and works for any type of
predictive models; however, KernelSHAP is very computing-
intensive which makes it undesirable for practical purposes.
DeepSHAP and GradientSHAP are two implementations
intended for deep learning which takes advantage of the known
properties of neural networks (i.e., MLP-NN, CNN, or RNN) to
accelerate up to three orders of magnitude the processing time
to explain predictions (Chen et al., 2019). Finally, TreeSHAP
is the most powerful implementation intended for tree-based
models. TreeSHAP is not only fast; it is also accurate. While
the three former implementations estimate SHAP values,
TreeSHAP computes them exactly. Moreover, TreeSHAP not
only measures the contribution of individual features, but it
also considers interactions between pairs of features and assigns
them SHAP values. Since one of the goals of this paper is to
assess the potential of deep learning on the performance of
both predictive and explanation models, this research tested
the former three implementations. TreeSHAP is recommended
for future work since the interaction among features is critical
information to consider. Moreover, KernelSHAP, DeepSHAP,
and GradientSHAP all require access to the whole original
dataset to derive the explanation of a new instance, another
constraint TreeSHAP is not subject to.

Descriptive Accuracy: Trustworthiness of
Explanation Models
This paper reuses and adapts the methodology introduced by
Ribeiro et al. (2016). Several explanation models will be trained,
using different SHAP implementations and configurations, per
deep learning predictive model (for each number of hidden
layers). The rationale consists in randomly selecting and ignoring
25% of the 282 features feeding the predictive model (e.g., turning
them to zero). If it causes the prediction to change beyond a
specific threshold (in this study 0.10 and 0.25 were tested), then
the explanation model should also reflect the magnitude of this
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change while ignoring the contributions of these same features.
For example, the original predicted rubric score of an essay
might be 5; however, when ignoring the information brought in
by a subset of 70 randomly selected features (25% of 282), the
prediction may turn to 4. On the other side, if the explanation
model also predicts a 4 while ignoring the contributions of the
same subset of features, then the explanation is considered as
trustworthy. This allows to compute the precision, recall, and
F1-score of each explanation model (number of true and false
positives and true and false negatives). The process is repeated
500 times for every essay to determine the average precision and
recall of every explanation model.

Judging Relevancy
So far, the consistency of explanations with predictions has
been considered. However, consistent explanations do not
imply relevant or meaningful explanations. Put another way,
explanations only reflect what predictive models have learned
during training. How can the black box of these explanations
be opened? Looking directly at the numerical SHAP values
of each explanation might seem a daunting task, but there
exist tools, mainly visualizations (decision plot, summary plot,
and dependence plot), that allow to make sense out of these
explanations. However, before visualizing these explanations,
another question needs to be addressed: which explanations or
essays should be picked for further scrutiny of the AES system?
Given the huge number of essays to examine and the tedious task
to understand the underpinnings of a single explanation, a small
subset of essays should be carefully picked that should represent
concisely the state of correctness of the underlying predictive
model. Again, this study applies and adapts the methodology
in Ribeiro et al. (2016). A greedy algorithm selects essays
whose predictions are explained by as many features of global
importance as possible to optimize feature coverage. Ribeiro et al.
demonstrated in unrelated studies (i.e., sentiment analysis) that
the correctness of a predictive model can be assessed with as few
as four or five well-picked explanations.

For example, Table 3 reveals the global importance of five
features. The square root of each feature’s global importance is
also computed and considered instead to limit the influence of
a small group of very influential features. The feature coverage
of Instance 1 is 100% because all features are engaged in the
explanation of the prediction. On the other hand, Instance 2
has a feature coverage of 61.5% because only Features 1, 4, and
5 are part of the prediction’s explanation. The feature coverage
is calculated by summing the square root of each explanation’s
feature’s global importance together and dividing by the sum of
the square roots of all features’ global importance:

1.37 + 1.30 + 1.33
6.5

=
4

6.5
= 61.5%

Additionally, it can be seen that Instance 4 does not have any
zero-feature value although its feature coverage is only 84.6%.
The algorithm was constrained to discard from the explanation
any feature whose contribution (local importance) was too close
to zero. In the case of Table 3’s example, any feature whose
absolute SHAP value is less than 0.10 is ignored, hence leading

to a feature coverage of:

1.37+ 1.50+ 1.30+ 1.33
6.5

=
5.5
6.5
= 84.6%

In this paper’s study, the real threshold was 0.01. This
constraint was actually a requirement for the DeepSHAP and
GradientSHAP implementations because they only output non-
zero SHAP values contrary to KernelSHAP which generates
explanations with a fixed number of features: a non-zero SHAP
value indicates that the feature is part of the explanation, while
a zero value excludes the feature from the explanation. Without
this parameter, all 282 features would be part of the explanation
although a huge number only has a trivial (very close to zero)
SHAP value. Now, a much smaller but variable subset of features
makes up each explanation. This is one way in which Ribeiro
et al.’s SP-LIME algorithm (SP stands for Submodular Pick)
has been adapted to this study’s needs. In conclusion, notice
how Instance 4 would be selected in preference to Instance 5
to explain Table 3’s underlying predictive model. Even though
both instances have four features explaining their prediction,
Instance 4’s features are more globally important than Instance
5’s features, and therefore Instance 4 has greater feature coverage
than Instance 5.

Whereas Table 3’s example exhibits the feature coverage of one
instance at a time, this study computes it for a subset of instances,
where the absolute SHAP values are aggregated (summed) per
candidate subset. When the sum of absolute SHAP values per
feature exceeds the set threshold, the feature is then considered
as covered by the selected set of instances. The objective in this
study was to optimize the feature coverage while minimizing the
number of essays to validate the AES model.

RESEARCH QUESTIONS

One of this article’s objectives is to assess the potential of deep
learning in automated essay scoring. The literature has often
claimed (Hussein et al., 2019) that there are two approaches
to AES, feature-based and deep learning, as though these two
approaches were mutually exclusive. Yet, the literature also
puts forward that feature-based AES models may be more
interpretable than deep learning ones (Amorim et al., 2018).
This paper embraces the viewpoint that these two approaches
can also be complementary by leveraging the state-of-the-art
in NLP and automatic linguistic analysis and harnessing one
of the richest pools of linguistic indices put forward in the
research community (Crossley et al., 2016, 2017, 2019; Kyle,
2016; Kyle et al., 2018) and applying a thorough feature selection
process powered by deep learning. Moreover, the ability of deep
learning of modeling complex non-linear relationships makes
it particularly well-suited for AES given that the importance
of a writing feature is highly dependent on its context, that is,
its interactions with other writing features. Besides, this study
leverages the SHAP interpretation method that is well-suited to
interpret very complex models. Hence, this study elected to work
with deep learning models and ensembles to test SHAP’s ability
to explain these complex models. Previously, the literature has

Frontiers in Education | www.frontiersin.org 8 October 2020 | Volume 5 | Article 572367

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-05-572367 October 2, 2020 Time: 11:41 # 9

Kumar and Boulanger Explainable Automated Essay Scoring

revealed the difficulty to have at the same time both accurate
and interpretable models (Ribeiro et al., 2016; Murdoch et al.,
2019), where favoring one comes at the expense of the other.
However, this research shows how XAI makes it now possible
to produce both accurate and interpretable models in the area of
AES. Since ensembles have been repeatedly shown to boost the
accuracy of predictive models, they were included as part of the
tested deep learning architectures to maximize generalizability
and accuracy, while making these predictive models interpretable
and exploring whether deep learning can even enhance their
descriptive accuracy further.

This study investigates the trustworthiness of explanation
models, and more specifically, those explaining deep learning
predictive models. For instance, does the depth, defined as
the number of hidden layers, of an MLP neural network
increases the trustworthiness of its SHAP explanation model?
The answer to this question will help determine whether it
is possible to have very accurate AES models while having
competitively interpretable/explainable models, the corner stone
for the generation of formative feedback. Remember that
formative feedback is defined as “any kind of information
provided to students about their actual state of learning or
performance in order to modify the learner’s thinking or
behavior in the direction of the learning standards” and that
formative feedback “conveys where the student is, what are
the goals to reach, and how to reach the goals” (Goldin
et al., 2017). This notion contrasts with summative feedback
which basically is “a justification of the assessment results”
(Hao and Tsikerdekis, 2019).

As pointed out in the previous section, multiple SHAP
implementations are evaluated in this study. Hence, this paper
showcases whether the faster DeepSHAP and GradientSHAP
implementations are as reliable as the slower KernelSHAP
implementation. The answer to this research question will shed
light on the feasibility of providing immediate formative feedback
and this multiple times throughout students’ writing processes.

This study also looks at whether a summary of the data
produces as trustworthy explanations as those from the original
data. This question will be of interest to AES researchers and
practitioners because it could allow to significantly decrease the
processing time of the computing-intensive and model-agnostic
KernelSHAP implementation and test further the potential of
customizable explanations.

KernelSHAP allows to specify the total number of features
that will shape the explanation of a prediction; for instance, this
study experiments with explanations of 16 and 32 features and
observes whether there exists a statistically significant difference
in the reliability of these explanation models. Knowing this
will hint at whether simpler or more complex explanations are
more desirable when it comes to optimize their trustworthiness.
If there is no statistically significant difference, then AES
practitioners are given further flexibility in the selection of SHAP
implementations to find the sweet spot between complexity
of explanations and speed of processing. For instance, the
KernelSHAP implementation allows to customize the number of
factors making up an explanation, while the faster DeepSHAP
and GradientSHAP do not.

Finally, this paper highlights the means to debug and compare
the performance of predictive models through their explanations.
Once a model is debugged, the process can be reused to fine-
tune feature selection and/or feature engineering to improve
predictive models and for the generation of formative feedback
to both students and teachers.

RESULTS

The training, validation, and testing sets consist of 1567 essays,
each of which has been scored by two human raters, who assigned
a score between 0 and 3 per rubric (ideas, organization, style, and
conventions). In particular, this article looks at predictive and
descriptive accuracy of AES models on the third rubric, style.
Note that although each essay has been scored by two human
raters, the literature (Shermis, 2014) is not explicit about whether
only two or more human raters participated in the scoring of
all 1567 essays; given the huge number of essays, it is likely that
more than two human raters were involved in the scoring of these
essays so that the amount of noise introduced by the various
raters’ biases is unknown while probably being at some degree
balanced among the two groups of raters. Figure 2 shows the
confusion matrices of human raters on Style Rubric. The diagonal
elements (dark gray) correspond to exact matches, whereas the
light gray squares indicate adjacent matches. Figure 2A delineates
the number of essays per pair of ratings, and Figure 2B shows the
percentages per pair of ratings. The agreement level between each
pair of human raters, measured by the quadratic weighted kappa,
is 0.54; the percentage of exact matches is 65.3%; the percentage
of adjacent matches is 34.4%; and 0.3% of essays are neither exact
nor adjacent matches. Figures 2A,B specify the distributions of
0−3 ratings per group of human raters. Figure 2C exhibits the
distribution of resolved scores (a resolved score is the sum of the
two human ratings). The mean is 3.99 (with a standard deviation
of 1.10), and the median and mode are 4. It is important to note
that the levels of predictive accuracy reported in this article are
measured on the scale of resolved scores (0−6) and that larger
scales tend to slightly inflate quadratic weighted kappa values,
which must be taken into account when comparing against
the level of agreement between human raters. Comparison of
percentages of exact and adjacent matches must also be made
with this scoring scale discrepancy in mind.

Predictive Accuracy and Descriptive
Accuracy
Table 4 compiles the performance outcomes of the 10 predictive
models evaluated in this study. The reader should remember
that the performance of each model was averaged over five
iterations and that two models were trained per number of
hidden layers, one non-ensemble and one ensemble. Except
for the 6-layer models, there is no clear winner among other
models. Even for the 6-layer models, they are superior in terms
of exact matches, the primary goal for a reliable AES system,
but not according to adjacent matches. Nevertheless, on average
ensemble models slightly outperform non-ensemble models.
Hence, these ensemble models will be retained for the next
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FIGURE 2 | Summary of the essay dataset (1567 Grade-7 narrative essays) investigated in this study. (A) Number of essays per pair of human ratings; the diagonal
(dark gray squares) lists the numbers of exact matches while the light-gray squares list the numbers of adjacent matches; and the bottom row and the rightmost
column highlight the distributions of ratings for both groups of human raters. (B) Percentages of essays per pair of human ratings; the diagonal (dark gray squares)
lists the percentages of exact matches while the light-gray squares list the percentages of adjacent matches; and the bottom row and the rightmost column highlight
the distributions (frequencies) of ratings for both groups of human raters. (C) The distribution of resolved rubric scores; a resolved score is the addition of its two
constituent human ratings.

TABLE 4 | Performance of majority classifier and average/maximal performance of trained predictive models.

Exact (%) Adj. 1 (%) Adj. 2 (%) QWK

Majority 46.3 79.7 98.9 0

Mean Max Mean Max Mean Max Mean Max

2-layer 50.4 51.9 94.5 94.9 99.9 100.0 0.660 0.680

2-layer-ens 52.6 53.2 95.1 95.2 99.9 100.0 0.674 0.680

3-layer 51.8 53.2 94.9 95.2 100.0 100.0 0.663 0.681

3-layer-ens 52.1 52.9 95.5 95.5 100.0 100.0 0.678 0.682

4-layer 51.5 53.5 95.9 94.6 99.9 100.0 0.665 0.673

4-layer-ens 52.3 53.8 94.6 94.6 100.0 100.0 0.672 0.681

5-layer 51.0 52.5 93.6 94.3 99.8 100.0 0.646 0.666

5-layer-ens 52.3 53.5 95.0 95.2 99.9 100.0 0.670 0.685

6-layer 52.9 53.8 93.8 93.6 99.7 100.0 0.655 0.700

6-layer-ens 54.3 55.1 94.3 94.9 99.9 100.0 0.663 0.689

analysis step. Moreover, given that five ensemble models were
trained per neural network depth, the most accurate model
among the five is selected and displayed in Table 4.

Next, for each selected ensemble predictive model, several
explanation models are trained per predictive model. Every
predictive model is explained by the “Deep,” “Grad,” and
“Random” explainers, except for the 6-layer model where it was
not possible to train a “Deep” explainer apparently due to a bug
in the original SHAP code caused by either a unique condition
in this study’s data or neural network architecture. However, this
was beyond the scope of this study to fix and investigate this issue.
As it will be demonstrated, no statistically significant difference
exists between the accuracy of these explainers.

The “Random” explainer serves as a baseline model for
comparison purpose. Remember that to evaluate the reliability
of explanation models, the concurrent impact of randomly
selecting and ignoring a subset of features on the prediction

and explanation of rubric scores is analyzed. If the prediction
changes significantly and its corresponding explanation changes
(beyond a set threshold) accordingly (a true positive) or if the
prediction remains within the threshold as does the explanation
(a true negative), then the explanation is deemed as trustworthy.
Hence, in the case of the Random explainer, it simulates random
explanations by randomly selecting 32 non-zero features from
the original set of 282 features. These random explanations
consist only of non-zero features because, according to SHAP’s
missingness property, a feature with a zero or a missing value
never gets assigned any contribution to the prediction. If at
least one of these 32 features is also an element of the subset
of the ignored features, then the explanation is considered as
untrustworthy, no matter the size of a feature’s contribution.

As for the layer-2 model, six different explanation models
are evaluated. Recall that layer-2 models generated the least
mean squared error (MSE) during hyperparameter optimization
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(see Table 1). Hence, this specific type of architecture was
selected to test the reliability of these various explainers. The
“Kernel” explainer is the most computing-intensive and took
approximately 8 h of processing. It was trained using the full
distributions of feature values in the training set and shaped
explanations in terms of 32 features; the “Kernel-16” and “Kernel-
32” models were trained on a summary (50 k-means centroids)
of the training set to accelerate the processing by about one order
of magnitude (less than 1 h). Besides, the “Kernel-16” explainer
derived explanations in terms of 16 features, while the “Kernel-
32” explainer explained predictions through 32 features. Table 5
exhibits the descriptive accuracy of these various explanation
models according to a 0.10 and 0.25 threshold; in other words, by
ignoring a subset of randomly picked features, it assesses whether

TABLE 5 | Precision, recall, and F1 scores of the various explainers tested per
type of predictive model.

Predictive
model

Explainer Precision
% (SD)

Recall %
(SD)

F1 % (SD)

0.10

2-layer-ens Kernel 64.1 (44.1) 42.9 (28.4) 51.1 (34.4)

Kernel-16 64.0 (44.0) 41.6 (27.7) 50.0 (33.7)

Kernel-32 63.9 (44.1) 41.0 (27.4) 49.6 (33.7)

Deep 64.0 (44.2) 42.4 (28.4) 50.8 (34.4)

Grad 64.0 (44.2) 42.3 (28.3) 50.7 (34.4)

Random 2.0 (14.0) 0.0 (0.1) 0.0 (0.1)

3-layer-ens Deep 68.7 (43.5) 46.4 (28.0) 54.8 (34.2)

Grad 68.7 (43.5) 46.2 (27.9) 54.7 (34.1)

Random 3.2 (17.6) 0.0 (0.1) 0.0 (0.1)

4-layer-ens Deep 70.4 (41.4) 46.0 (25.6) 55.2 (31.7)

Grad 70.4 (41.4) 46.2 (25.5) 55.4 (31.7)

Random 3.1 (17.2) 0.0 (0.1) 0.0 (0.2)

5-layer-ens Deep 55.0 (42.9) 38.9 (28.4) 45.1 (34.0)

Grad 55.0 (42.9) 38.9 (28.4) 45.0 (34.0)

Random 3.2 (17.6) 0.0 (0.1) 0.0 (0.1)

6-layer-ens Grad 73.4 (38.3) 52.2 (24.7) 60.3 (30.4)

Random 2.6 (15.9) 0.0 (0.1) 0.0 (0.1)

0.25

2-layer-ens Kernel 68.9 (42.4) 62.6 (36.1) 64.8 (38.9)

Kernel-16 69.0 (42.4) 63.4 (36.4) 65.0 (39.0)

Kernel-32 68.8 (42.5) 61.4 (35.6) 64.0 (38.6)

Deep 68.8 (42.5) 60.7 (35.6) 63.8 (38.6)

Grad 68.8 (42.5) 60.5 (35.5) 63.7 (38.5)

Random 2.0 (14.0) 0.0 (0.1) 0.0 (0.1)

3-layer-ens Deep 72.7 (41.6) 66.1 (33.1) 67.6 (37.6)

Grad 72.7 (41.6) 66.1 (32.9) 67.5 (37.6)

Random 3.4 (18.1) 0.0 (0.1) 0.0 (0.1)

4-layer-ens Deep 74.9 (39.1) 65.7 (29.9) 68.7 (34.4)

Grad 74.9 (39.0) 65.6 (30.0) 68.8 (34.4)

Random 3.1 (17.2) 0.0 (0.1) 0.0 (0.2)

5-layer-ens Deep 61.3 (43.0) 57.3 (36.4) 58.1 (39.3)

Grad 61.3 (43.0) 57.2 (36.3) 58.0 (39.3)

Random 3.6 (18.6) 0.0 (0.1) 0.0 (0.1)

6-layer-ens Grad 78.8 (35.1) 74.8 (28.2) 75.1 (31.8)

Random 2.6 (15.9) 0.0 (0.1) 0.0 (0.1)

or not the prediction and explanation change simultaneously.
Note also how each explanation model, no matter the underlying
predictive model, outperforms the “Random” model.

The first research question addressed in this subsection asks
whether there exists a statistically significant difference between
the “Kernel” explainer, which generates 32-feature explanations
and is trained on the whole training set, and the “Kernel-32”
explainer which also generates 32-feature explanations and is
trained on a summary of the training set. To determine this,
an independent t-test was conducted using the precision, recall,
and F1-score distributions (500 iterations) of both explainers.
Table 6 reports the p-values of all the tests and for the 0.10 and
0.25 thresholds. It reveals that there is no statistically significant
difference between the two explainers.

The next research question tests whether there exists a
difference in the trustworthiness of explainers shaping 16 or 32-
feature explanations. Again t-tests were conducted to verify this.
Table 6 lists the resulting p-values. Again, there is no statistically
significant difference in the average precisions, recalls, and F1-
scores of both explainers.

This leads to investigating whether the “Kernel,” “Deep,”
and “Grad” explainers are equivalent. Table 6 exhibits the
results of the t-tests conducted to verify this and reveals that
none of the explainers produce a statistically significantly better
performance than the other.

Armed with this evidence, it is now possible to verify
whether deeper MLP neural networks produce more trustworthy
explanation models. For this purpose, the performance of
the “Grad” explainer for each type of predictive model will
be compared against each other. The same methodology as
previously applied is employed here. Table 6, again, confirms
that the explanation model of the 2-layer predictive model
is statistically significantly less trustworthy than the 4-layer’s
explanation model; the same can be said of the 4-layer and 6-
layer models. The only exception is the difference in average
precision between 2-layer and 4-layer models and between
4-layer and 6-layer models; however, there clearly exists a
statistically significant difference in terms of precision (and also
recall and F1-score) between 2-layer and 6-layer models.

The Best Subset of Essays to Judge AES
Relevancy
Table 7 lists the four best essays optimizing feature coverage
(93.9%) along with their resolved and predicted scores. Notice
how two of the four essays were picked by the adapted SP-
LIME algorithm with some strong disagreement between the
human and the machine graders, two were picked with short and
trivial text, and two were picked exhibiting perfect agreement
between the human and machine graders. Interestingly, each pair
of longer and shorter essays exposes both strong agreement and
strong disagreement between the human and AI agents, offering
an opportunity to debug the model and evaluate its ability to
detect the presence or absence of more basic (e.g., very small
number of words, occurrences of sentence fragments) and more
advanced aspects (e.g., cohesion between adjacent sentences,
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TABLE 6 | p-values of independent t-tests comparing whether there exist statistically significant differences between the mean precisions, recalls, and F1-scores of
2-layer explainers and between those of the 2-layer’s, 4-layer’s, and 6-layer’s Gradient explainers.

Precision Recall F1-score

0.10 0.25 0.10 0.25 0.10 0.25

2-layer explainers

Kernel vs. Kernel-32 0.9234 0.9679 0.2830 0.5812 0.5021 0.7697

Kernel-16 vs. Kernel-32 0.9720 0.9541 0.7389 0.3875 0.8727 0.6875

Kernel vs. Deep 0.9642 0.9598 0.7856 0.3850 0.8822 0.7063

Kernel vs. Grad 0.9630 0.9566 0.7344 0.3408 0.8475 0.6709

Deep vs. Grad 0.9988 0.9968 0.9469 0.9333 0.9650 0.9617

Grad explainers

2-layer vs. 4-layer *0.0179 *0.0175 *0.0230 *0.0144 *0.0254 *0.0285

2-layer vs. 6-layer **0.0003 **0.0001 **0.0000 **0.0000 **0.0000 **0.0000

4-layer vs. 6-layer 0.2369 0.1001 **0.0001 **0.0000 *0.0124 **0.0027

*p < 0.05 and **p < 0.01.

variety of sentence structures) of narrative essay writing and to
appropriately reward or penalize them.

Local Explanation: The Decision Plot
The decision plot lists writing features by order of importance
from top to bottom. The line segments display the contribution
(SHAP value) of each feature to the predicted rubric score. Note
that an actual decision plot consists of all 282 features and
that only the top portion of it (20 most important features)
can be displayed (see Figure 3). A decision plot is read from
bottom to top. The line starts at the base value and ends at the
predicted rubric score. Given that the “Grad” explainer is the only
explainer common to all predictive models, it has been selected
to derive all explanations. The decision plots in Figure 3 show
the explanations of the four essays in Table 7; the dashed line
in these plots represents the explanation of the most accurate
predictive model, that is the ensemble model with 6 hidden layers
which also produced the most trustworthy explanation model.
The predicted rubric score of each explanation model is listed
in the bottom-right legend. Explanation of the writing features
follow in a next subsection.

Global Explanation: The Summary Plot
It is advantageous to use SHAP to build explanation models
because it provides a single framework to discover the writing
features that are important to an individual essay (local) or a
set of essays (global). While the decision plots list features of
local importance, Figure 4’s summary plot ranks writing features
by order of global importance (from top to bottom). All testing
set’s 314 essays are represented as dots in the scatterplot of
each writing feature. The position of a dot on the horizontal
axis corresponds to the importance (SHAP value) of the writing
feature for a specific essay and its color indicates the magnitude
of the feature value in relation to the range of all 314 feature
values. For example, large or small numbers of words within an
essay generally contribute to increase or decrease rubric scores
by up to 1.5 and 1.0, respectively. Decision plots can also be used
to find the most important features for a small subset of essays;
Figure 5 demonstrates the new ordering of writing indices when
aggregating the feature contributions (summing the absolute
values of SHAP values) of the four essays in Table 7. Moreover,
Figure 5 allows to compare the contributions of a feature to
various essays. Note how the orderings in Figures 3−5 can differ

TABLE 7 | Set of best essays to evaluate the correctness of the 6-layer ensemble AES model.

ID Text RS PS

228 Was patient when I was at the @CAPS1.R whe I broke my finger A week ago almost 1 3

68 Patience what can I say it don’t have none of personally like things to go quickly I also don’t like it when people do things slow 2 2

219 Patience is about waiting for something and not complaining about it. When you are patient you wait for something without
complaining. If you are waiting for something and you start to complain that means you don’t have much patience. It isn’t really
good to not have patience. Some people do not have patience at all, and if they don’t that is not good. If you do have patience that
is good, but some people don’t and it is not good, because if something that you have to wait for and it is important, and you have
no patience that could be bad. Some people have good patience but sometimes even if you have good patience you can still
sometimes complain. And that is what patience is.

4 2

124 Patience is used when people are not in a hurry to gett were they are going. Like checking out at a store or at work, some people
can be rood and not use their patience at school and work you should always use your patience, like for an example, use my
patience at kinchat school because there are over one hundred @NUM1, graders, and half of them are bushy when its lunch time
and the other half gets hurt and they @CAPS1 don’t know what to do.

3 3

RS = Resolved score; PS = Predicted score.
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FIGURE 3 | Comparisons of all models’ explanations of the most representative set of four essays: (A) Essay 228, (B) Essay 68, (C) Essay 219, and (D) Essay 124.

from each other, sharing many features of global importance as
well as having their own unique features of local importance.

Definition of Important Writing Indices
The reader shall understand that it is beyond the scope of this
paper to make a thorough description of all writing features.
Nevertheless, the summary and decision plots in Figures 4, 5
allow to identify a subset of features that should be examined in
order to validate this study’s predictive model. Supplementary
Table 1 combines and describes the 38 features in Figures 4, 5.

Dependence Plots
Although the summary plot in Figure 4 is insightful to
determine whether small or large feature values are desirable,
the dependence plots in Figure 6 prove essential to recommend

whether a student should aim at increasing or decreasing the
value of a specific writing feature. The dependence plots also
reveal whether the student should directly act upon the targeted
writing feature or indirectly on other features. The horizontal
axis in each of the dependence plots in Figure 6 is the scale
of the writing feature and the vertical axis is the scale of the
writing feature’s contributions to the predicted rubric scores.
Each dot in a dependence plot represents one of the testing set’s
314 essays, that is, the feature value and SHAP value belonging to
the essay. The vertical dispersion of the dots on small intervals
of the horizontal axis is indicative of interaction with other
features (Molnar, 2020). If the vertical dispersion is widespread
(e.g., the [50, 100] horizontal-axis interval in the “word_count”
dependence plot), then the contribution of the writing feature is
most likely at some degree dependent on other writing feature(s).
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FIGURE 4 | Summary plot listing the 32 most important features globally.

DISCUSSION

The contributions of this paper can be summarized as
follows: (1) it proposes a means (SHAP) to explain individual

predictions of AES systems and provides flexible guidelines
to build powerful predictive models using more complex
algorithms such as ensembles and deep learning neural networks;
(2) it applies a methodology to quantitatively assess the
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FIGURE 5 | Decision plot delineating the best model’s explanations of Essays 228, 68, 219, and 124 (6-layer ensemble).

trustworthiness of explanation models; (3) it tests whether
faster SHAP implementations impact the descriptive accuracy
of explanation models, giving insight on the applicability of

SHAP in real pedagogical contexts such as AES; (4) it offers a
toolkit to debug AES models, highlights linguistic intricacies,
and underscores the means to offer formative feedback
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FIGURE 6 | Dependence plots: the horizontal axes represent feature values while vertical axes represent feature contributions (SHAP values). Each dot represents
one of the 314 essays of the testing set and is colored according to the value of the feature with which it interacts most strongly. (A) word_count. (B) hdd42_aw. (C)
ncomp_stdev. (D) dobj_per_cl. (E) grammar. (F) SENTENCE_FRAGMENT. (G) Sv_GI. (H) adjacent_overlap_verb_sent.
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to novice writers; and more importantly, (5) it empowers
learning analytics practitioners to make AI pedagogical agents
accountable to the human educator, the ultimate problem
holder responsible for the decisions and actions of AI
(Abbass, 2019). Basically, learning analytics (which encompasses
tools such as AES) is characterized as an ethics-bound,
semi-autonomous, and trust-enabled human-AI fusion that
recurrently measures and proactively advances knowledge
boundaries in human learning.

To exemplify this, imagine an AES system that supports
instructors in the detection of plagiarism, gaming behaviors,
and the marking of writing activities. As previously mentioned,
essays are marked according to a grid of scoring rubrics: ideas,
organization, style, and conventions. While an abundance of
data (e.g., the 1592 writing metrics) can be collected by the
AES tool, these data might still be insufficient to automate the
scoring process of certain rubrics (e.g., ideas). Nevertheless,
some scoring subtasks such as assessing a student’s vocabulary,
sentence fluency, and conventions might still be assigned to
AI since the data types available through existing automatic
linguistic analysis tools prove sufficient to reliably alleviate the
human marker’s workload. Interestingly, learning analytics is
key for the accountability of AI agents to the human problem
holder. As the volume of writing data (through a large student
population, high-frequency capture of learning episodes, and
variety of big learning data) accumulate in the system, new AI
agents (predictive models) may apply for the job of “automarker.”
These AI agents can be quite transparent through XAI (Arrieta
et al., 2020) explanation models, and a human instructor may
assess the suitability of an agent for the job and hire the candidate
agent that comes closest to human performance. Explanations
derived from these models could serve as formative feedback
to the students.

The AI marker can be assigned to assess the writing activities
that are similar to those previously scored by the human
marker(s) from whom it learns. Dissimilar and unseen essays
can be automatically assigned to the human marker for reliable
scoring, and the AI agent can learn from this manual scoring.
To ensure accountability, students should be allowed to appeal
the AI agent’s marking to the human marker. In addition, the
human marker should be empowered to monitor and validate
the scoring of select writing rubrics scored by the AI marker.
If the human marker does not agree with the machine scores,
the writing assignments may be flagged as incorrectly scored and
re-assigned to a human marker. These flagged assignments may
serve to update predictive models. Moreover, among the essays
that are assigned to the machine marker, a small subset can be
simultaneously assigned to the human marker for continuous
quality control; that is, to continue comparing whether the
agreement level between human and machine markers remains
within an acceptable threshold. The human marker should be at
any time able to “fire” an AI marker or “hire” an AI marker from
a pool of potential machine markers.

This notion of a human-AI fusion has been observed in
previous AES systems where the human marker’s workload has
been found to be significantly alleviated, passing from scoring
several hundreds of essays to just a few dozen (Dronen et al.,

2015; Hellman et al., 2019). As the AES technology matures
and as the learning analytics tools continue to penetrate the
education market, this alliance of semi-autonomous human
and AI agents will lead to better evidence-based/informed
pedagogy (Nelson and Campbell, 2017). Such a human-AI
alliance can also be guided to autonomously self-regulate its
own hypothesis-authoring and data-acquisition processes for
purposes of measuring and advancing knowledge boundaries
in human learning.

Real-Time Formative Pedagogical
Feedback
This paper provides the evidence that deep learning and SHAP
can be used not only to score essays automatically but also to
offer explanations in real-time. More specifically, the processing
time to derive the 314 explanations of the testing set’s essays has
been benchmarked for several types of explainers. It was found
that the faster DeepSHAP and GradientSHAP implementations,
which took only a few seconds of processing, did not produce
less accurate explanations than the much slower KernelSHAP.
KernelSHAP took approximately 8 h of processing to derive the
explanation model of a 2-layer MLP neural network predictive
model and 16 h for the 6-layer predictive model.

This finding also holds for various configurations of
KernelSHAP, where the number of features (16 vs. 32)
shaping the explanation (where all other features are assigned
zero contributions) did not produce a statistically significant
difference in the reliability of the explanation models. On average,
the models had a precision between 63.9 and 64.1% and a recall
between 41.0 and 42.9%. This means that after perturbation of
the predictive and explanation models, on average 64% of the
predictions the explanation model identified as changing were
accurate. On the other side, only about 42% of all predictions
that changed were detected by the various 2-layer explainers.
An explanation was considered as untrustworthy if the sum of
its feature contributions, when added to the average prediction
(base value), was not within 0.1 from the perturbated prediction.
Similarly, the average precision and recall of 2-layer explainers for
the 0.25-threshold were about 69% and 62%, respectively.

Impact of Deep Learning on Descriptive
Accuracy of Explanations
By analyzing the performance of the various predictive models
in Table 4, no clear conclusion can be reached as to which
model should be deemed as the most desirable. Despite the fact
that the 6-layer models slightly outperform the other models
in terms of accuracy (percentage of exact matches between
the resolved [human] and predicted [machine] scores), they
are not the best when it comes to the percentages of adjacent
(within 1 and 2) matches. Nevertheless, if the selection of
the “best” model is based on the quadratic weighted kappas,
the decision remains a nebulous one to make. Moreover,
ensuring that machine learning actually learned something
meaningful remains paramount, especially in contexts where the
performance of a majority classifier is close to the human and
machine performance. For example, a majority classifier model
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would get 46.3% of predictions accurate (Table 4), while trained
predictive models at best produce accurate predictions between
51.9 and 55.1%.

Since the interpretability of a machine learning model
should be prioritized over accuracy (Ribeiro et al., 2016;
Murdoch et al., 2019) for questions of transparency and
trust, this paper investigated whether the impact of the
depth of a MLP neural network might be more visible
when assessing its interpretability, that is, the trustworthiness
of its corresponding SHAP explanation model. The data in
Tables 1, 5, 6 effectively support the hypothesis that as the
depth of the neural network increases, the precision and recall
of the corresponding explanation model improve. Besides,
this observation is particularly interesting because the 4-layer
(Grad) explainer, which has hardly more parameters than
the 2-layer model, is also more accurate than the 2-layer
model, suggesting that the 6-layer explainer is most likely
superior to other explainers not only because of its greater
number of parameters, but also because of its number of
hidden layers. By increasing the number of hidden layers, it
can be seen that the precision and recall of an explanation
model can pass on average from approximately 64 to 73%
and from 42 to 52%, respectively, for the 0.10-threshold;
and for the 0.25-threshold, from 69 to 79% and from 62 to
75%, respectively.

These results imply that the descriptive accuracy of an
explanation model is an evidence of effective machine learning,
which may exceed the level of agreement between the human
and machine graders. Moreover, given that the superiority of
a trained predictive model over a majority classifier is not
always obvious, the consistency of its associated explanation
model demonstrates this better. Note that theoretically the SHAP
explanation model of the majority classifier should assign a
zero contribution to each writing feature since the average
prediction of such a model is actually the most frequent rubric
score given by the human raters; hence, the base value is
the explanation.

An interesting fact emerges from Figure 3, that is, all
explainers (2-layer to 6-layer) are more or less similar. It appears
that they do not contradict each other. More specifically, they
all agree on the direction of the contributions of the most
important features. In other words, they unanimously determine
that a feature should increase or decrease the predicted score.
However, they differ from each other on the magnitude of the
feature contributions.

To conclude, this study highlights the need to train predictive
models that consider the descriptive accuracy of explanations.
The idea is that explanation models consider predictions to derive
explanations; explanations should be considered when training
predictive models. This would not only help train interpretable
models the very first time but also potentially break the status
quo that may exist among similar explainers to possibly produce
more powerful models. In addition, this research calls for a
mechanism (e.g., causal diagrams) to allow teachers to guide the
training process of predictive models. Put another way, as LA
practitioners debug predictive models, their insights should be
encoded in a language that will be understood by the machine

and that will guide the training process to avoid learning the same
errors and to accelerate the training time.

Accountable AES
Now that the superiority of the 6-layer predictive and explanation
models has been demonstrated, some aspects of the relevancy
of explanations should be examined more deeply, knowing that
having an explanation model consistent with its underlying
predictive model does not guarantee relevant explanations.
Table 7 discloses the set of four essays that optimize the coverage
of most globally important features to evaluate the correctness
of the best AES model. It is quite intriguing to note that two
of the four essays are among the 16 essays that have a major
disagreement (off by 2) between the resolved and predicted rubric
scores (1 vs. 3 and 4 vs. 2). The AES tool clearly overrated Essay
228, while it underrated Essay 219. Naturally, these two essays
offer an opportunity to understand what is wrong with the model
and ultimately debug the model to improve its accuracy and
interpretability.

In particular, Essay 228 raises suspicion on the positive
contributions of features such as “Ortho_N,” “lemma_mattr,”
“all_logical,” “det_pobj_deps_struct,” and “dobj_per_cl.”
Moreover, notice how the remaining 262 less important features
(not visible in the decision plot in Figure 5) have already inflated
the rubric score beyond the base value, more than any other
essay. Given the very short length and very low quality of the
essay, whose meaning is seriously undermined by spelling
and grammatical errors, it is of utmost importance to verify
how some of these features are computed. For example, is
the average number of orthographic neighbors (Ortho_N) per
token computed for unmeaningful tokens such as “R” and
“whe”? Similarly, are these tokens considered as types in the
type-token ratio over lemmas (lemma_mattr)? Given the absence
of a meaningful grammatical structure conveying a complete
idea through well-articulated words, it becomes obvious that
the quality of NLP (natural language processing) parsing may
become a source of (measurement) bias impacting both the way
some writing features are computed and the predicted rubric
score. To remedy this, two solutions are proposed: (1) enhancing
the dataset with the part-of-speech sequence or the structure
of dependency relationships along with associated confidence
levels, or (2) augmenting the essay dataset with essays enclosing
various types of non-sensical content to improve the learning of
these feature contributions.

Note that all four essays have a text length smaller than
the average: 171 words. Notice also how the “hdd42_aw” and
“hdd42_fw” play a significant role to decrease the predicted
score of Essays 228 and 68. The reader should note that these
metrics require a minimum of 42 tokens in order to compute
a non-zero D index, a measure of lexical diversity as explained
in Supplementary Table 1. Figure 6B also shows how zero
“hdd42_aw” values are heavily penalized. This is extra evidence
that supports the strong role that the number of words plays
in determining these rubric scores, especially for very short
essays where it is one of the few observations that can be
reliably recorded.
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Two other issues with the best trained AES model were
identified. First, in the eyes of the model, the lowest the average
number of direct objects per clause (dobj_per_cl), as seen in
Figure 6D, the best it is. This appears to contradict one of the
requirements of the “Style” rubric, which looks for a variety
of sentence structures. Remember that direct objects imply the
presence of transitive verbs (action verbs) and that the balanced
usage of linking verbs and action verbs as well as of transitive
and intransitive verbs is key to meet the requirement of variety
of sentence structures. Moreover, note that the writing feature is
about counting the number of direct objects per clause, not by
sentence. Only one direct object is therefore possible per clause.
On the other side, a sentence may contain several clauses, which
determines if the sentence is a simple, compound, or a complex
sentence. This also means that a sentence may have multiple
direct objects and that a high ratio of direct objects per clause
is indicative of sentence complexity. Too much complexity is
also undesirable. Hence, it is fair to conclude that the higher
range of feature values has reasonable feature contributions
(SHAP values), while the lower range does not capture well the
requirements of the rubric. The dependence plot should rather
display a positive peak somewhere in the middle. Notice how the
poor quality of Essay 228’s single sentence prevented the proper
detection of the single direct object, “broke my finger,” and the
so-called absence of direct objects was one of the reasons to
wrongfully improve the predicted rubric score.

The model’s second issue discussed here is the presence of
sentence fragments, a type of grammatical errors. Essentially, a
sentence fragment is a clause that misses one of three critical
components: a subject, a verb, or a complete idea. Figure 6E
shows the contribution model of grammatical errors, all types
combined, while Figure 6F shows specifically the contribution
model of sentence fragments. It is interesting to see how SHAP
further penalizes larger numbers of grammatical errors and that
it takes into account the length of the essay (red dots represent
essays with larger numbers of words; blue dots represent essays
with smaller numbers of words). For example, except for essays
with no identified grammatical errors, longer essays are less
penalized than shorter ones. This is particularly obvious when
there are 2−4 grammatical errors. The model increases the
predicted rubric score only when there is no grammatical
error. Moreover, the model tolerates longer essays with only

one grammatical error, which sounds quite reasonable. On the
other side, the model finds desirable high numbers of sentence
fragments, a non-trivial type of grammatical errors. Even worse,
the model decreases the rubric score of essays having no sentence
fragment. Although grammatical issues are beyond the scope of
the “Style” rubric, the model has probably included these features
because of their impact on the quality of assessment of vocabulary
usage and sentence fluency. The reader should observe how the
very poor quality of an essay can even prevent the detection
of such fundamental grammatical errors such as in the case of
Essay 228, where the AES tool did not find any grammatical
error or sentence fragment. Therefore, there should be a way for
AES systems to detect a minimum level of text quality before
attempting to score an essay. Note that the objective of this
section was not to undertake thorough debugging of the model,
but rather to underscore the effectiveness of SHAP in doing so.

Formative Feedback
Once an AES model is considered reasonably valid, SHAP can
be a suitable formalism to empower the machine to provide
formative feedback. For instance, the explanation of Essay 124,
which has been assigned a rubric score of 3 by both human and
machine markers, indicates that the top two factors contributing
to decreasing the predicted rubric score are: (1) the essay length
being smaller than average, and (2) the average number of
verb lemma types occurring at least once in the next sentence
(adjacent_overlap_verb_sent). Figures 6A,H give the overall
picture in which the realism of the contributions of these two
features can be analyzed. More specifically, Essay 124 is one
of very few essays (Figure 6H) that makes redundant usage
of the same verbs across adjacent sentences. Moreover, the
essay displays poor sentence fluency where everything is only
expressed in two sentences. To understand more accurately
the impact of “adjacent_overlap_verb_sent” on the prediction,
a few spelling errors have been corrected and the text has
been divided in four sentences instead of two. Revision 1 in
Table 8 exhibits the corrections made to the original essay. The
decision plot’s dashed line in Figure 3D represents the original
explanation of Essay 124, while Figure 7A demonstrates the
new explanation of the revised essay. It can be seen that the
“adjacent_overlap_verb_sent” feature is still the second most
important feature in the new explanation of Essay 124, with a

TABLE 8 | Revisions of Essay 124: improvement of sentence splitting, correction of some spelling errors, and elimination of redundant usage of same verbs (bold for
emphasis in Essay 124’s original version; corrections in bold for Revisions 1 and 2).

Version Text

Essay 124 Patience is used when people are not in a hurry to gett were they are going. Like checking out at a store or at work, some people can be rood and not
use their patience at school and work you should always use your patience, like for an example, use my patience at kinchat school because there are
over one hundred @NUM1, graders, and half of them are bushy when its lunch time and the other half gets hurt and they @CAPS1 don’t know what to
do.

Revision 1 Patience is used when people are not in a hurry to get where they are going, like checking out at a store or at work. Some people can be rude and
not use their patience at school and work. You should always use your patience. For example, I use my patience at kinchat school because there are
over one hundred graders, and half of them are bushy when its lunch time, and the other half gets hurt and they @CAPS1 don’t know what to do.

Revision 2 Patience is exhibited when people are not in a hurry to get where they are going, like checking out at a store or at work. Some people look rude and
do not show their patience at school and work. You should always display your patience. For example, I demonstrate my patience at kinchat school
because there are over one hundred graders, and half of them become bushy when its lunch time, and the other half gets hurt and they @CAPS1 don’t
know what to do.
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FIGURE 7 | Explanations of the various versions of Essay 124 and evaluation of feature effect for a range of feature values. (A) Explanation of Essay 124’s first
revision. (B) Forecasting the effect of changing the ‘adjacent_overlap_verb_sent’ feature on the rubric score. (C) Explanation of Essay 124’s second revision. (D)
Comparison of the explanations of all Essay 124’s versions.

feature value of 0.429, still considered as very poor according to
the dependence plot in Figure 6H.

To show how SHAP could be leveraged to offer
remedial formative feedback, the revised version of Essay
124 will be explained again for eight different values of
“adjacent_overlap_verb_sent” (0, 0.143, 0.286, 0.429, 0.571,
0.714, 0.857, 1.0), while keeping the values of all other features
constant. The set of these eight essays are explained by a newly
trained SHAP explainer (Gradient), producing new SHAP values
for each feature and each “revised” essay. Notice how the new
model, called the feedback model, allows to foresee by how much
a novice writer can hope to improve his/her score according to
the “Style” rubric. If the student employs different verbs at every
sentence, the feedback model estimates that the rubric score
could be improved from 3.47 up to 3.65 (Figure 7B). Notice
that the dashed line represents Revision 1, while other lines

simulate one of the seven other altered essays. Moreover, it is
important to note how changing the value of a single feature may
influence the contributions that other features may have on the
predicted score. Again, all explanations look similar in terms of
direction, but certain features differ in terms of the magnitude
of their contributions. However, the reader should observe how
the targeted feature varies not only in terms of magnitude, but
also of direction, allowing the student to ponder the relevancy of
executing the recommended writing strategy.

Thus, upon receiving this feedback, assume that a student
sets the goal to improve the effectiveness of his/her verb choice
by eliminating any redundant verb, producing Revision 2 in
Table 8. The student submits his essay again to the AES system,
which finally gives a new rubric score of 3.98, a significant
improvement from the previous 3.47, allowing the student to get
a 4 instead of a 3. Figure 7C exhibits the decision plot of Revision
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2. To better observe how the various revisions of the student’s
essay changed over time, their respective explanations have been
plotted in the same decision plot (Figure 7D). Notice this time
that the ordering of the features has changed to list the features
of common importance to all of the essay’s versions. The feature
ordering in Figures 7A−C complies with the same ordering as in
Figure 3D, the decision plot of the original essay. These figures
underscore the importance of tracking the interaction between
the various features so that the model understands well the
impact that changing one feature has on the others. TreeSHAP,
an implementation for tree-based models, offers this capability
and its potential on improving the quality of feedback provided to
novice writers will be tested in a future version of this AES system.

CONCLUSION

This paper serves as a proof of concept of the applicability of
XAI techniques in automated essay scoring, providing learning
analytics practitioners and educators with a methodology on
how to “hire” AI markers and make them accountable to their
human counterparts. In addition to debug predictive models,
SHAP explanation models can serve as some formalism of a
broader learning analytics platform, where aspects of prescriptive
analytics (provision of remedial formative feedback) can be added
on top of the more pervasive predictive analytics.

However, the main weakness of the approach put forward in
this paper consists in omitting many types of spatio-temporal
data. In other words, it ignores precious information inherent to
the writing process, which may prove essential to guess the intent
of the student, especially in contexts of poor sentence structures
and high grammatical inaccuracy. Hence, this paper calls for
adapting current NLP technologies to educational purposes,
where the quality of writing may be suboptimal, which is contrary
to many utopian scenarios where NLP is used for content
analysis, opinion mining, topic modeling, or fact extraction
trained on corpora of high-quality texts. By capturing the writing
process preceding a submission of an essay to an AES tool, other
kinds of explanation models can also be trained to offer feedback
not only from a linguistic perspective but also from a behavioral
one (e.g., composing vs. revising); that is, the AES system could
inform novice writers about suboptimal and optimal writing
strategies (e.g., planning a revision phase after bursts of writing).

In addition, associating sections of text with suboptimal
writing features, those whose contributions lower the predicted
score, would be much more informative. This spatial information
would not only allow to point out what is wrong and but also
where it is wrong, answering more efficiently the question why
an essay is wrong. This problem could be simply approached
through a multiple-inputs and mixed-data feature-based (MLP)

neural network architecture fed by both linguistic indices and
textual data (n-grams), where the SHAP explanation model
would assign feature contributions to both types of features
and any potential interaction between them. A more complex
approach could address the problem through special types of
recurrent neural networks such as Ordered-Neurons LSTMs
(long short-term memory), which are well adapted to the parsing
of natural language, and where the natural sequence of text is
not only captured but also its hierarchy of constituents (Shen
et al., 2018). After all, this paper highlights the fact that the
potential of deep learning can reach beyond the training of
powerful predictive models and be better visible in the higher
trustworthiness of explanation models. This paper also calls for
optimizing the training of predictive models by considering the
descriptive accuracy of explanations and the human expert’s
qualitative knowledge (e.g., indicating the direction of feature
contributions) during the training process.
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