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One of the greatest challenges in the application of finite mixture models is model
comparison. A variety of statistical fit indices exist, including information criteria,
approximate likelihood ratio tests, and resampling techniques; however, none of these
indices describe the amount of improvement in model fit when a latent class is added to the
model. We review these model fit statistics and propose a novel approach, the likelihood
increment percentage per parameter (LIPpp), targeting the relative improvement in model
fit when a class is added to the model. Simulation work based on two previous simulation
studies highlighted the potential for the LIPpp to identify the correct number of classes, and
provide context for the magnitude of improvement in model fit. We conclude with
recommendations and future research directions.
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INTRODUCTION

Finite mixture modeling (FMM) is a broad class of statistical models to examine whether model
parameters vary over unmeasured groups of individuals. Researchers have fit FMMs to search for
unmeasured groups in regression analysis (e.g., Liu and Lin, 2014), factor models (e.g., Lubke
and Muthén, 2005), growth models (Muthén and Shedden, 1999), mixed-effects models (Wang
et al., 2002), and FMMs are the foundation of latent class analysis (Lazarsfeld, 1950) and latent
profile analysis (Gibson, 1959). When applied to empirical data, the number of unmeasured
groups, often referred to as latent classes, and the model parameters that differ over the
unmeasured groups are unknown. Thus, a series of FMMs, differing in the number of latent
classes and the nature of model constraints, are specified, fit, and then compared. The
comparison of FMMs is not straightforward because models with different constraints are
not necessarily nested. Moreover, FMMs that differ in the number of classes, but have the same
parameter constraints are nested; however, the difference in −2 log-likelihood is not chi-square
distributed under the null hypothesis. Because of these issues, different model fit criteria are used
for model selection. In this paper, we review model fit criteria to compare FMMs and Monte
Carlo simulation studies that have investigated the performance of these model comparison
approaches. We then propose a novel approach to model comparison for FMMs based on the
relative improvement in model fit.

Model Comparison Criteria
Model comparison criteria for FMMs fall into one of three categories. The first category is information
criteria, such as the Bayesian Information Criterion (BIC; Schwarz, 1978); the second category is
approximate likelihood ratio tests, such as the Bootstrap Likelihood Ratio Test (BLRT; McLachlan,

Edited by:
Katerina M. Marcoulides,

University of Minnesota Twin Cities,
United States

Reviewed by:
Ren Liu,

University of California, Merced,
United States

Jam Khojasteh,
Oklahoma State University,

United States

*Correspondence:
Kevin J. Grimm

kjgrimm@asu.edu

Specialty section:
This article was submitted to

Assessment, Testing and Applied
Measurement,

a section of the journal
Frontiers in Education

Received: 02 October 2020
Accepted: 20 January 2021
Published: 04 March 2021

Citation:
Grimm KJ, Houpt R and Rodgers D
(2021) Model Fit and Comparison in

Finite Mixture Models: A Review and a
Novel Approach.

Front. Educ. 6:613645.
doi: 10.3389/feduc.2021.613645

Frontiers in Education | www.frontiersin.org March 2021 | Volume 6 | Article 6136451

ORIGINAL RESEARCH
published: 04 March 2021

doi: 10.3389/feduc.2021.613645

http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2021.613645&domain=pdf&date_stamp=2021-03-04
https://www.frontiersin.org/articles/10.3389/feduc.2021.613645/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.613645/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.613645/full
http://creativecommons.org/licenses/by/4.0/
mailto:kjgrimm@asu.edu
https://doi.org/10.3389/feduc.2021.613645
https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2021.613645


1987); and the third category relies on resampling techniques, such as
the k-fold cross validation approach (Grimm et al., 2017).

Information Criteria
Information criteria combine the −2 log-likelihood (−2LL) from
the model, which is a measure of how well the model fits the data,
and a penalty for each model parameter. With multivariate
Gaussian data, the −2LL is

−2 ·∑N
i�1
( − ki

2
ln(2π) − 1

2
log|Σi| − 1

2
(yi − μi)′Σ−1

i (yi − μi)) (1)

where ki is the number of observations for person i, yi is the vector
of observed scores for person i, Σi is the model implied covariance
matrix based on person i’s measured variables, and μi is the model
implied mean vector based on person i’s measured variables. The
elements of the −2LL are subscripted by i because their
dimensions depend on the number of measured variables for
person i. The −2LL is a measure of misfit with higher values
indicative of a greater discrepancy between the observed data and
the model-implied mean vector and covariance matrix.

Information criteria take on the general form

−2LL + p · penalty (2)

where p is the number of estimated parameters and penalty is the
amount the model’s fit is penalized for each estimated parameter.
The penalty for each parameter is often a simple function and
may depend on sample size. Because information criteria have a
penalty for the number of estimated parameters, the model with
the lowest information criteria is typically selected.

There are many information criteria that differ in the penalty
term. Commonly reported information criteria include the
Akaike Information Criterion (AIC; Akaike, 1973), the BIC
(Schwarz, 1977), the sample size adjusted BIC (saBIC; Sclove,
1987), and the corrected AIC (AICc; Hurvich and Tsai, 1989).
Information criteria are used to compare both nested and non-
nested models, which makes them appropriate for comparing
FMMs with a different number of classes and/or different
parameter constraints across classes.

The AIC is defined as

AIC � −2LL + 2p (3)

where the penalty for each parameter is 2. The AIC has a constant
penalty for each parameter, which is unique for an information
criterion. The AICc was proposed to improve performance of the
AIC in small samples (Hurvich and Tsai, 1989), where the AIC
was found to prefer overparameterized models. The AICc applies
an adjustment for sample size and is written as

AICc � AIC + 2p2 + 2p
N − p − 1

� −2LL + 2p + 2p2 + 2p
N − p − 1

(4)

where p is the number of estimated parameters and N is the
sample size. As sample size increases, the adjustment (i.e., 2p

2+2p
N−p−1)

converges toward 0 making the difference between the AICc and
the AIC negligible in large samples.

The BIC is

BIC � −2LL + ln(N) · p (5)

where ln(N) is the natural log of the sample size and the penalty
for each estimated parameter. Compared to the AIC, the BIC’s
penalty for each parameter, ln(N), is larger whenN ≥ 8. Thus, the
BIC generally favros models with fewer parameters compared to
the AIC. In 1987, Sclove proposed the saBIC, which replaces N in

Eq. 5 with (N+2
24 ). Compared to the BIC, the per parameter

penalty in the saBIC is smaller making the saBIC favor more
parameterized models.

As mentioned, the model with the lowest information criteria
is typically preferred; however, researchers have proposed cutoffs
for noticeable improvements in model fit for certain information
criteria. For example, Burnham and Anderson (2004) suggested
that support for the model with a higher AIC is absent when the
difference in AIC is greater than 10. Similarly, Kass and Raftery
(1995) suggested that a BIC difference of 10 between two models
provided very strong evidence favoring the model with a lower
BIC; however, a BIC difference of less than two is negligible.

Alternatively, researchers have proposed descriptive
quantifications of relative model fit for model selection (see
Nagin, 1999; Masyn, 2013). For example, Kass and
Wasserman (1995) have proposed using the Schwarz
Information Criterion (SIC; 2 · SIC � BIC) for two competing
models in order to calculate an approximate Bayes Factor, where
the Bayes Factor is a ratio yielding the comparative likelihood that
each model is the better fitting model. Additionally, there is the
approximate correct model probability, which also uses the SIC,
and the AICc weight, which normalizes the AICc, to estimate the
probability that each of the fitted models is the best fitting model.

Approximate Likelihood Ratio Tests
The second group of model comparison statistics are
approximate likelihood ratio tests. Mixture models with a
different number of classes (e.g., k vs. k − 1 classes), but the
same set of parameter constraints are nested; however,
the likelihood ratio test is not chi-squared distributed under
the null hypothesis preventing its use. The likelihood ratio test
is not chi-squared distributed because the parameter constraints
applied to the k class model to create the k − 1 class model are on
the boundary of the parameter space. Thus, researchers have
proposed modifications of the standard likelihood ratio test to
statistically compare mixture models. The commonly used
approximate likelihood ratio tests are based on the work of
Vuong (1989) and Lo, Mendell, and Rubin (2001; LMR-LRT).
The approximate likelihood ratio tests compare the fitted model
with k classes to a similarly specified model with one fewer
(i.e., k − 1) class. The difference in the −2LL is computed and
an associated p-value is estimated. If the p-value is less than the
predetermined alpha level (i.e., 0.05), then the k-class model fits
better than the k − 1 class model. If the p-value is greater than
alpha, then the fit of the two models is not considered to be
statistically different, and the k − 1 class model is preferred
because the model is less parameterized.

The third approximate likelihood ratio test is the Bootstrap
Likelihood Ratio Test (BLRT; McLachlan, 1987; McLachlan and
Peel, 2000). The BLRT also compares the fitted model with k
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classes to a similarly specified k − 1 class model. The difference in
−2LL is recorded and then data are simulated based on the
parameter estimates from the k − 1 class model. The k − 1
and k class models are estimated using the simulated data to
generate a sampling distribution for the difference in the −2LL
under the null hypothesis. The recorded difference in the −2LL
(from the empirical data) is then compared to the sampling
distribution to estimate the p-value. As with the LMR-LRT, if the
p-value is less than alpha (i.e., 0.05), then the k-class model is
preferred to the k − 1 class model, and if the p-value is greater
than alpha, then the fit of the two models is not statistically
significant and the k − 1 class model is preferred.

Resampling Techniques
The third class of model fit statistics contains two approaches that
are based on data resampling. First, Lubke and Campbell (2016)
proposed a bootstrap approach to estimate model selection
uncertainty in conjunction with information criteria (i.e., AIC
and BIC). Here, the data are bootstrapped and the set of FMMs
are fit to each bootstrapped sample. The information criteria are
calculated and compared for each bootstrap sample. Given this
information, researchers can evaluate both the sensitivity of each
model’s convergence and the sensitivity of model choice based on
information criteria due to resampling. This information is
particularly useful for model selection and provides
uncertainty information that is sorely missing when
comparing the fit of FMMs.

Second, Grimm et al. (2017) proposed a k-fold cross-
validation approach to compare FMMs. In k-fold cross-
validation (note the k in k-fold cross-validation is distinct
from the k when referring to the number of classes
[components] in FMMs), the data are randomly partitioned
into k non-overlapping groups or folds. k − 1 folds are then
used to estimate the model parameters for the FMMs. The kth
fold is used for cross-validation and the FMMs estimated using
k − 1 folds are applied to the kth fold and the −2LL is retained.
When the model is applied to the kth fold, parameters are not
estimated, but fixed to the values obtained when the model was
fit to the data from the k − 1 folds. Because the model is not
estimated using the kth fold, the −2LL does not have to be
smaller for the more parameterized models (e.g., model with
more classes). The k-fold cross-validation approach is
performed k times with each fold serving as part of the
estimation sample k − 1 times and serving as the validation
sample one time. This provides a distribution of cross-
validated −2LL s that can be used for model selection. The
model with the lowest cross-validated −2LL is selected or the
simplest model with a cross-validated −2LL within one
standard error of the model with the lowest cross-validated
−2LL is selected. The k-fold cross-validation approach is the
main approach to model selection in machine learning, where
the performance of many models are compared.

As with Lubke’s approach, the k-fold cross validation
approach provides information on the sensitivity of the
model’s convergence because the model is estimated k − 1
times. If a model fails to converge for a portion of the k − 1
estimation attempts, then the model is no longer considered.

Although it’s important to note that sample size is slightly smaller
when the model is estimated using k-fold cross-validation. Often
k is set to 10 yielding 90% of the sample when the model is
estimated (10% for the validation sample). If a greater portion of
the sample is required to estimate each model, then k can be set to
a higher value, such as 100 yielding 99% of the sample when each
model is estimated. In the application of k-fold cross-validation
for model selection with growthmixture models, a value of 10 and
100 for k yielded similar results and conclusions (Grimm et al.,
2017).

Simulation Research on Model Comparison
in Finite Mixture Models
Many simulation studies have been conducted to evaluate how
the various model fit criteria for FMMs behave under a variety of
population structures, statistical models (i.e., latent class, latent
profile, growth mixture models), and sampling techniques
(i.e., sample size, number of variables). The most often
researched model fit criteria are information criteria, with
fewer studies examining approximate likelihood ratio tests and
resampling techniques. We review a sampling of this
simulation work.

Fernández and Arnold (2016) recently examined model
selection based on information criteria with ordinal data. Five
versions of the AIC and two versions of the BIC were examined
through simulation with sample sizes ranging from 50 to 500,
with 5 or 10 variables, population structures with 2, 3, or 4 classes,
and five different class configurations. The configurations
attempted to create challenging scenarios for FMMs, where
the classes overlapped. Fernández and Arnold (2016) found
that the AIC, without adjustment, performed best, with an
overall success rate of 93.8%. The BIC was less successful
(43.7% accurate) and often underestimated the correct number
of classes.

Six information criteria were examined by Yang (2006)
through simulations with latent class models. The simulation
study sampled data from 18 population structures with 4, 5, or 6
classes, and 12, 15, or 18 variables with sample sizes ranging from
100 to 1,000. Yang (2006) found that the saBIC performed best.
The AIC and BIC both struggled with the AIC often
overestimating the number of classes and the BIC
underestimating the number of classes. Notably, the BIC
performed reliably with a sample size of 1,000 and the AIC
performed well with smaller sample sizes. Cubaynes et al.
(2012) found a similar pattern of results to Yang (2006)
regarding the AIC being liberal and the BIC being conservative
when determining the number of classes in FMMs.

With regard to Yang’s (2006) preference for the saBIC, Tofighi
and Enders (2008) found support for the saBIC in their
simulation work with growth mixture models (GMMs). In
their simulation, Tofighi and Enders varied sample size (from
N � 400–2000), number of repeated measures (4 and 7), class
separation, relative class sizes, and the number of classes in the
population. Tofighi and Enders (2008) found that the saBIC
performed the best with a minimum success rate of 81%. Their
findings for the AIC and BIC mimicked others as the BIC
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performed poorly in small samples and theAIC performed poorly
with larger samples. Tofighi and Enders also noted that the BIC
performed poorly when class separation was low, even with a
sample size of 1,000.

Yang and Yang (2007) drew similar conclusions in their
simulation work with latent class models. Their simulations
examined five versions of the AIC and four versions of the
BIC, with sample sizes ranging from 200 to 1,000, with
different population structures varying the number and
relative size of the classes. Yang and Yang (2006) found that
the AIC performed more poorly as sample size increased, and the
BIC performed poorly when there was a large number of classes,
particularly when sample size was small. Yang and Yang (2006)
noted that the classes were not well separated in this condition
where the BIC struggled; however, the AIC performed very well in
the same condition.

Although, these researchers found mixed support for the BIC,
other researchers have found broad support for the BIC. First,
Nylund et al. (2007) performed extensive simulations of different
types of FMMs, including latent class models, latent profile
models, GMMs, and factor mixture models. In their latent
class and latent profile analysis simulations, Nylund et al.
(2007) varied sample size (N � 200, 500, and 1, 000), the
number of variables (8, 10, and 15), population structure
(simple vs. complex), and the number of classes in the
population (3 and 4). They found that the AIC rarely found
the correct number of classes in any setting and often
overestimated the number of classes, whereas the BIC
performed well across a variety of conditions, but struggled
with the ten item LCA with N � 200. We note that the classes
were well separated in Nylund et al. (2007), which likely affected
their findings. Second, Steele and Raftery’s (2009) simulation
research on univariate FMMs found broad support for the BIC. In
their simulations, sample size ranged from 100 to 400 with one
and two class models. The BIC successfully identified the correct
number of classes in 94% of the simulations, outperforming the
AIC and other model fit criteria. However, the BIC struggled
when there were two classes and the classes were not well
separated. The AIC, as with Yang (2006) and Cubaynes et al.
(2012) work, frequently overestimated the true number of classes.

Simulation work focused on GMMs have found mixed results
with respect to the performance of information criteria. Grimm
et al. (2013) found that information criteria generally performed
poorly – accurately determining a two-class population structure
in less than 20% of the replicates. However, important
associations were found that between the simulation
conditions and the likelihood of the information criteria
favoring the two-class model. The BIC was most sensitive to
class separation. For example, the BIC was ten times more likely
to favor the two-class model when the mean difference in the
intercept or slope of the two classes was three standard deviations
apart compared to when they were two standard deviations apart.
The BIC was also sensitive to sample size, the relative size of the
two classes, the number of repeated measurements, and the
location of the class differences (intercept vs. slope). Similarly,
Peugh and Fan (2013) found that information criteria performed
poorly across a variety of circumstances, and observed a strong

association between the performance of the information criteria
and sample size. Peugh and Fan (2013) attributed the poor
performance of information criteria to two factors – sample
size and residual variability. Peugh and Fan (2013) noted that
Paxton et al. (2001) suggested that a sample size of less than 500
was inadequate for heterogenous structural equation models. The
second factor, residual variability, has the ability to mask class
differences even though the amount of residual variability was not
excessive in their simulations.

Compared to the amount of research into information criteria
for model selection in FMMs, there are few studies that have
examined approximate likelihood ratio tests. Nylund et al. (2007)
found that BLRT outperformed information criteria across a
range of models, Tofighi and Enders (2008) found adequate
performance of the LMR–LRT, and Grimm et al. (2013) found
that the LMR–LRT outperformed information criteria across a
range of simulation conditions. Grimm et al. (2013) highlighted
how the LMR–LRT was sensitive to several simulation conditions
including sample size, class separation, relative class sizes, and the
location of the differences (intercept vs. slope).

Simulation research on resampling techniques is even more
limited. He and Fan (2019) evaluated the proposed approaches
using k-fold cross-validation for model selection and found that
these approaches struggled to identify the proper number of
classes. Finally, Lubke et al. (2017) performed simulation research
to examine the benefit of using bootstrap samples when
evaluating class enumeration. While the bootstrap samples did
not lead to a model selection criterion, Lubke et al. (2017) found
that the bootstrap samples can aid model selection compared to
using the AIC and BIC alone.

Benefits and Limitations of Model Fit
Approaches
The conclusions from the simulation research and the varied
recommendations for model comparison with FMMs suggest that
the conclusions were strongly dependent on the simulation
conditions considered (Grimm et al. 2017). For example,
Fernández and Arnold (2016) focused their simulations on
mixture components that were not very distinct, and their
results favored the AIC – an information criterion that
minimally penalizes parameters. Because of the different
recommendations, it’s important to consider the benefits and
limitations of the different model fit criteria.

Information criteria are attempting to appropriately balance
the information available from how well the model captures the
data in terms of the −2LL and the penalty for the number of
estimated parameters. The size of the −2LL is dependent on 1)
model fit – the match (or mismatch) between the model’s
expectations and the data, 2) the sample size, and 3) the
number of variables. Given constant model fit, the −2LL
changes in a linear fashion with sample size and the number
of variables. Figure 1 contains two plots highlighting these
associations with simulated data from a latent profile model.
The data were generated for two classes with a one standard
deviation difference in the mean of each variable between classes.
Given the population structure, the correlations between
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variables conditioned on class membership are near zero, which
can affect these simple conclusions. One hundred samples were
drawn from the population, a 2-class latent profile model was
estimated, and the average −2LL is plotted. The −2LL is directly
proportional to the sample size: the averaged −2LL with N �
2, 000 is approximately twice the averaged −2LL with N � 1, 000.
The effect for sample size is slightly smaller: the average −2LL for
the eight variable models is 1.97 times larger than the average
−2LL from the four variable models.

These associations highlight the challenge for information
criteria when comparing mixture models. For example, given a
constant difference in model fit between two competing models,

the difference in the −2LL is linearly related to sample size;
however, the penalty for each parameter is constant in the AIC
and nonlinearly associated with sample size in the BIC (and
variants of the AIC and BIC). Thus, the simulation studies that
keep the number of variables and population model consistent,
but vary sample sizes invariably determine that the AIC performs
better than the BIC in smaller samples and the BIC performs
better than the AIC in larger samples. Similar findings are present
when considering the number of variables (see Nylund et al.
2007) and model discrepancy (see Grimm et al., 2013), where the
AIC performed better when the classes were not very distinct (but
overestimates the number of classes when the classes are more

FIGURE 1 | −2 log-likelihood as a function of (A) sample size and (B) number of variables in latent profile analysis given a constant difference in a two-class model.
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distinct) and the BIC performed better when the classes were
more distinct.

A second challenge for information criteria is missing data.
Specifically, for many information criteria (e.g., BIC, saBIC,
AICc), the penalty for each parameter is dependent on sample
size, which is a marker for the amount of information available
in the data. However, when missing data are present, there is less
information in the data for the same sample size (assuming the
number of variables is constant). For example, in our simulated
2-class latent profile data (Figure 1), the −2LL changed linearly
with respect to the proportion of missing data, such that the
average −2LL for the full sample was 1.97 times larger than the
average −2LL when 50% of the data were randomly deleted (the
difference in −2LL can be nonlinear depending on the model
and population structure). Thus, missing data have a similar
effect as sample size on the −2LL and therefore, the AIC is likely
to perform better when more missing data are present and the
BIC is likely to perform better when data are more complete.
Given these challenges, it is clear that there will not be a single
per parameter penalty that will lead to proper model selection
across a wide range of FMMs, sample sizes, number of variables,
and missing data.

Approximate likelihood ratio tests have shown tremendous
promise in simulation studies and provide a statistical
framework for comparing FMMs. We identify two
limitations of approximate likelihood ratio tests. The first is
that the approximate likelihood ratio tests are only available
when comparing FMMs that differ by one class with the same
set of model constraints. Thus, the approximate likelihood ratio
tests are not available when comparing a 2-class model with a 4-
class model, two 2-class models with different constraints, or a
2 and 3-class model with different constraints. The second
limitation for the approximate likelihood ratio tests is a
limitation shared by all statistical tests, which is the
association between the value of the likelihood ratio test and
sample size. When working with large sample sizes, the
approximate likelihood ratio tests can be significant
suggesting the model with more classes fits significantly
better than the model with fewer classes even when the
difference in model fit is small and meaningless.

The resampling techniques provide important information
about the sensitivity of estimating the model’s parameters and the
replicability of the model through repeated estimation using
bootstrap samples or k-fold cross-validation. This information
is not contained in other model fit statistics and is important
because FMMs often experience convergence issues. Compared
to the other model fit statistics, simulation research on these
resampling techniques for FMMs is limited and more research is
greatly needed. He and Fan (2019) indicated challenges for the
k-fold cross-validation approaches; however, He and Fan (2019)
noted that k-fold cross-validation was not strongly related to
sample size – a potential plus compared to other model fit criteria.

Given the challenges and limitations of the available model fit
criteria, we take an alternative point of view when comparing
FMMs. The approach we consider looks at model comparison
through the lens of effect sizes to provide context about
differences in model fit. In the next section we outline the

effect size measure and discuss how it can aid the evaluation
of model comparison in FMMs.

AN EFFECT SIZE MEASURE FOR MODEL
COMPARISON

Effect sizes quantify the magnitude of a parameter or the
difference in two entities. For example, Cohen’s d (Cohen,
1988) is an effect size measure when comparing means for
two groups of individuals. Cohen’s d is defined as

d � y1 − y2
s

(6)

where y1 and y2 are the estimated means of the outcome for
groups 1 and 2, respectively, and s is the pooled standard
deviation. Cohen’s d is the standardized mean difference and
provides information about the magnitude of the difference
between groups and is relatively unaffected by sample size
(Cohen’s d is generally unrelated to sample size, but can be
biased in small samples). While Cohen’s d does not replace
statistical tests for group differences (e.g., t-test), it adds to the
discussion about the meaning of statistically significant group
differences. For example, an intervention leads to a statistically
significant effect on participant depression, but if the effect size is
quite small, then further investment into the intervention may
not be warranted.

In multiple regression analysis with numeric predictors, the
commonly reported effect size is the standardized beta weight. In
linear regression, the standardized beta weight is calculated as

β1 � b1(sx1sy ) (7)

where β1 is the standardized beta weight for the predictor variable
x1i, b1 is the estimated unstandardized regression coefficient for
x1i, sx1 is the estimated standard deviation of x1i, and sy is the
estimated standard deviation of the outcome yi. Again, the
standardized beta weight is a rescaling of the unstandardized
regression coefficient to put its magnitude into context. Here, the
scaling is in terms of the ratio of the standard deviations of the
predictor and outcome.

For determining an effect size measure for model comparison,
our goal is to scale the difference in the −2LL relative to a
standard. One way to do this is by dividing the difference in
−2LL by the −2LL of the less parameterized model. This fit
statistic was first proposed by McArdle et al. (2002) and
termed the likelihood increment percentage (LIP) and
calculated as

LIPmodel(j) � 100 · (1 − −2LLmodel(j)
−2LLbaseline

) (8)

where −2LLmodel(j) is the −2LL for the more parameterized model
and −2LLbaseline is the −2LL for the less parameterized (baseline)
model. The LIP yields the percent improvement in the −2LL from
the baseline model for the more parameterized model. The same
metric, but scaled in terms of the proportional improvement in
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model fit, has been implemented in recursive partitioning
algorithms for mixed-effects (Abdolell et al., 2002; Stegmann
et al., 2018) and structural equation models (Serang et al., 2020).

The main reason to do this is to provide context regarding the
relative improvement in model fit. The examination of model
comparison indices, such as information criteria, through
simulation is focused on recovering the number of classes that
are known to exist within the data. Even though researchers
control the distinctiveness of the classes, we don’t have an
appropriate metric for this distinctiveness. When fit indices
fail to uncover the proper number of classes, the blame is put
on the fit index. If the same approach were taken in simulation
studies for the analysis of variance, we may lead to the conclusion
that null hypothesis significance testing (NHST) isn’t working.
For example, NHST is unable to consistently find a significant
difference between two means when Cohen’s d � 0.2 in the
population with N � 200. Instead of blaming NHST, we
conclude that we lack statistical power because Cohen’s d �
0.2 is a small effect size. In FMMs and multivariate models
more generally, we don’t have a standard effect size metric for
model comparison. Thus, one of our goals is to define small,
medium, and large effect sizes for FMMs based on the LIP.

The second reason for considering the LIP for model
comparison is because it should be weakly related to sample
size because it is scaled by the −2LL of the less parameterized
model. We identified sample size as a challenge for information
criteria and approximate likelihood ratio tests because of its
association with the −2LL and the change in −2LL given the
same magnitude of differences between the classes.

To determine how the LIP changes as a function of different
latent class structures and sample sizes, we mimic two previously
conducted simulation studies. The first is Nylund et al.'s (2007)
simulation study for latent profile analysis and the second is
Grimm et al.'s (2013) simulation study for growth mixture
models.

LIP EFFECT SIZES

Latent Profile Models
Simulation research following the population models for latent
profile analysis (latent class analysis with continuous indicators)
in Nylund et al. (2007) was conducted to examine the LIP. For the
LIP, we examined the percent improvement in the −2LL for
adding one class. That is, when comparing the 2 and 3-class
models, the 2-class model served as the baseline model and the 3-
class model served as the model being evaluated, and when
comparing the 3 and 4-class models, the 3-class model served
as the baseline model and the 4-class model served as the model
being evaluated.We also report model selection based on theAIC,
BIC, and saBIC.

Nylund et al. (2007) examined three latent profile population
structures (8-variable simple, 15-variable simple, and 10-variable
complex) under three sample sizes (N � 200, 500, and 1, 000). In
Table 1 we report the mean and standard deviation of the LIP
across replicates. We also report model choice based on the AIC,
BIC, and saBIC as the proportion of replicates in which each

model had the lowest information criteria. Following Nylund
et al. (2007), the BIC performed very well, and the AIC and saBIC
performed admirably, but tended to overestimate the number of
classes. Interestingly, the AIC tended to overestimate the number
of classes as sample size increases, whereas the saBIC tended to
overestimate the number of classes in the smaller sample size
conditions.

The mean LIP and the standard deviation of LIP values across
replicates are contained on the right-hand side of Table 1. The
first LPA structure was the 8-variable simple structure population
model, which had four classes. The mean LIP comparing the 1 to
2, 2 to 3, and 3 to 4-class models were all over 2; however, the
mean LIP comparing the 4- to 5-class model was 0.30 or smaller.
For all sample sizes in the 8-variable population structure, there
was a clear drop in the LIP after the 4-class model. The LIP values
were fairly consistent across sample sizes, as was expected for
effect size type measures. In this 8-variable population structure,
there were two items for each class with a mean of 2 and all
remaining items hadmeans of 0 (with standard deviations of 1) to
indicate the distinctiveness of the classes in this simulation
condition.

The second population structure was the 15-variable simple
structure, where there were three classes in the population.
Each class had five variables with a mean of 2 with remaining
variables having a mean of 0 (with a standard deviation of 1).
Again, there were clear changes in the LIP after the 3-class
model. LIP values were greater than six when comparing the 1
to 2-class model and when comparing the 2 to 3-class model.
The average LIP was less than 0.30 when comparing the 3 and
the 4-class model. Thus, the LIP clearly delineated the
population structure. Again, the classes were well separated
in this population structure. The higher-values of the LIP,
compared to the 8-variable population structure, reflect two
things. First, the classes in the 15-variable simple population
structure were more distinct. That is, five variables
distinguished each class compared to two-variables in the 8-
variable simple population structure. Second, the difference in
the number of estimated parameters when increasing the
number of classes. Specifically, nine parameters were added
when increasing the number of classes by one in the 8-variable
simple population structure, and 16 parameters were added
when increasing the number of classes in the 15-variable
simple population structure. This second reason suggests
determining the percent improvement in model fit per
additional parameter. Dividing LIP values by the difference
in the number of additional parameters makes them more
comparable. For example, dividing the 4-class LIP values for
the 8-variable simple structure by nine yields 0.37, and
dividing the 3-class LIP values for the 15-variable simple
structure by 16 yields 0.53.

The third and final LPA population structure in Nylund
et al. (2007) was the 10-variable complex structure. In this
population structure there were four classes, and no one
variable distinguished each class. There was a class with a
mean of two for all variables, a class with a mean of two for the
first five variables and a mean of zero for the second five
variables, a class with a mean of zero for the first five variables
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and a mean of two for the second five variables, and a class with
a mean of 0 for all ten variables. Additionally, class sizes were
unequal with relative class sizes being 5, 10, 15, and 70% (note
Nylund et al. (2007) reports 75% in the fourth class). As with
the other two population structures, the mean LIP clearly
indicates when more classes were not warranted. The mean
LIP was 4.8 when comparing the 2 and 1-class models, 2.9
when comparing the 3 and 2-class models, and 1.4 when
comparing the 4 and 3-class models. The comparison of the
5-class model to the 4-class model yielded a mean LIP that was
less than 0.4 – a similar value was obtained in the other
population structures. The class differences were not as
distinct in this third population structure, which is
highlighted by the smaller LIP values when moving from
the 3-class model to the 4-class model. Dividing the LIP by

the difference in the number of estimated parameters yields
0.12. Noticeably smaller than the other two population
structures where the class differences were much larger.

Growth Mixture Models
The growthmixture modeling simulations by Grimm et al. (2013)
focused on two-class mixture models and varied sample size
(N � 200, 500, 1, 000), the number of measurement occasions
(T � 5, 7, 9), the mixing proportion (50–50, 80–20, 95–5),
whether the class differences were in the intercept or the
slope, and the magnitude of the differences between the
classes (1, 2, 3 standard deviations). The simulations we
replicated focused on intercept differences, a mixing
proportion of 50–50, and varied sample size; however, we also
discuss simulations involving the number of measurement

TABLE 1 | Model selection in latent profile structures from Nylund et al. (2007) and associated LIP values.

AIC BIC saBIC LIP

N 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

8-Variable simple
200 0 0 69 23 8 0 0 100 0 0 0 0 78 18 4 2.27 (0.42) 2.63 (0.45) 3.27 (0.50) 0.30 (0.10) 0.26 (0.11)
500 0 0 73 20 7 0 0 100 0 0 0 0 99 1 0 2.12 (0.24) 2.44 (0.25) 3.27 (0.29) 0.12 (0.04) 0.11 (0.04)
1,000 0 0 72 17 11 0 0 100 0 0 0 0 100 0 0 2.04 (0.17) 2.37 (0.19) 3.30 (0.22) 0.06 (0.02) 0.06 (0.02)

15-Variable simple
200 0 85 13 2 0 0 100 0 0 0 0 91 8 1 0 6.48 (0.42) 8.55 (0.55) 0.27 (0.07) 0.26 (0.07) 0.21 (0.09)
500 0 83 14 3 0 0 100 0 0 0 0 100 0 0 0 6.29 (0.29) 8.45 (0.33) 0.12 (0.03) 0.11 (0.03) 0.08 (0.04)
1,000 0 74 20 4 2 0 100 0 0 0 0 100 0 0 0 6.22 (0.21) 8.45 (0.23) 0.06 (0.01) 0.06 (0.01) 0.05 (0.01)

10-Variable complex
200 0 1 62 14 23 0 16 84 0 0 0 1 67 12 20 4.88 (0.64) 3.05 (0.67) 1.40 (0.52) 0.31 (0.10) 0.23 (0.37)
500 0 0 74 20 6 0 0 100 0 0 0 0 99 1 0 4.82 (0.41) 2.86 (0.41) 1.32 (0.28) 0.12 (0.04) 0.11 (0.04)
1,000 0 0 44 17 39 0 0 100 0 0 0 0 92 1 7 4.79 (0.29) 2.78 (0.30) 1.31 (0.18) 0.07 (0.02) 0.06 (0.10)

Columns represent latent profile models with a different number of classes, values for the information criteria represent the percent of replicates where themodel had the lowest information
criteria, AIC � Akaike Information Criterion,BIC � Bayesian Information Criterion, saBIC � Sample Size Adjusted Bayesian Information Criterion, LIP � Likelihood Increment Percentage, LIP
values are mean values across replicates with the standard deviation across replicates within parentheses for comparing the model with one fewer class. Bolded columns indicate the
number of classes in the population.

TABLE 2 | Model Selection in Growth Mixture Modeling Structures with intercept differences, five time points, and 50–50 mixing proportion from Grimm et al. (2013) and
Associated LIP values.

AIC BIC saBIC LIP

N 1 2 3 1 2 3 1 2 3 2 3

1. Standard deviation difference in intercepts
200 65 23 12 100 0 0 73 18 9 0.08 (0.05) 0.07a (0.06)
500 71 17 11 100 0 0 92 8 0 0.03 (0.02) 0.03 (0.02)
1,000 76 15 9 100 0 0 96 3 1 0.01 (0.01) 0.01 (0.01)

2. Standard deviation difference in intercepts
200 50 40 10 95 5 0 54 37 9 0.12 (0.08) 0.08 (0.05)
500 19 66 16 91 9 0 47 49 4 0.07 (0.04) 0.02 (0.02)
1,000 2 80 18 70 30 0 18 80 3 0.06 (0.02) 0.01 (0.01)

3. Standard deviation difference in intercepts
200 0 80 20 26 73 1 1 81 18 0.38 (0.15) 0.07 (0.05)
500 0 82 18 0 100 0 0 94 6 0.34 (0.09) 0.02 (0.02)
1,000 0 86 14 0 100 0 0 98 2 0.34 (0.06) 0.01 (0.01)

Columns represent latent profile models with a different number of classes, values for the information criteria represent the percent of replicates where themodel had the lowest information
criteria, AIC � Akaike Information Criterion, BIC � Bayesian Information Criterion, saBIC � Sample Size Adjusted Bayesian Information Criterion, LIP � Likelihood Increment Percentage,
abased on 99% of the replicates because model converged at a local maxima in the likelihood function, LIP values are mean values across replicates with the standard deviation across
replicates within parentheses for comparing the model with one fewer class. Bolded columns indicate the number of classes in the population.
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occasions and the mixing proportion with classes separated by
three standard deviations. The 1, 2, and 3-class models were fit
with the means of the intercept and slope allowed to vary over the
classes. Thus, three additional parameters were estimated when
increasing the number of classes by one. Of the models specified,
the 2-class model is consistent with the population structure.

Table 2 contains model selection percentages based on the
AIC, BIC, and saBIC, as well as the mean and standard deviation
of the LIP values when comparing the 1 and 2-class models and
when comparing the 2 and 3-class models. All of the information
criteria struggled to properly identify the 2-class model when the
intercept means for the two classes were one standard deviation
apart (top portion of Table 2). The LIP also struggled because LIP
values were small and were unable to differentiate the comparison
of the 2-class model to the 1-class model and the 3-class model to
the 2-class model. These findings are consistent with Rindskopf’s
(2003) demonstration that even when two classes are different by
one standard deviation, the data appear normal suggesting the
data came from a single population.

In the middle section of Table 2, the intercept means were
two standard deviations apart. Here, the AIC and saBIC
performed well with N � 1, 000; however, these indices
performed poorly in the smaller sample size conditions.
The BIC performed poorly across all sample sizes with
this degree of class separation. The mean LIP showed a
clear advantage for the 2-class model with N � 500 and
N � 1, 000, but struggled with N � 200. When the intercept
means were three standard deviations apart (bottom of
Table 2), the information criteria performed well with the
BIC leading the way and the mean LIP values clearly indicated
a preference for the 2-class model.

Table 3 contains four more population structures. In all of
these population structures, the means of the intercepts were

three standard deviations apart. In the first two, the mixing
proportion was 80–20 and 95–5, respectively. In Grimm et al.
(2013), the 80–20 mixing proportion led to slightly better model
selection rates for the information criteria, and the 95–5 mixing
proportion led to slightly worse model selection rates compared
to when the mixing proportion was 50–50. These patterns held
for these simulations. Compared to when there was a 50–50
mixing proportion, the LIP values were slightly greater for the
80–20 mixing proportion (∼0.40) and slightly lower for the 95–5
mixing proportion (∼0.21), which was consistent with the
performance of the information criteria.

In the second two population structures, the number of
measurement occasions was changed to seven and nine,
respectively. In these population structures, the intercept
means were three standard deviations and the mixing
proportions were 80–20. The effect of the number of time
points in this population structure was unexpected. The
information criteria correctly identified the two-class models
slightly more with nine measurement occasions, compared to
the five time point data; however, the BIC struggled when there
were seven measurement occasions with N � 200. Interestingly,
the LIP indicated that the effect size was smaller when there were
more time points; however, this finding can be explained. The
difference between the two classes was in the intercept means.
Given the non-zero variance in the slope for each class, the
observed score variance increased over time. Thus, the
standardized difference in the means between the two classes
was smaller at the later time points, which is why the LIP
decreased with more measurement occasions with this
population structure. To further examine the effect of the
number of time points on the 2-class models, we examined
the mean entropy. Entropy was lowest for the 2-class model
with T � 5 at 0.779, highest for the 2-class model with T � 7 at

TABLE 3 | Model selection in growth mixture modeling structures with a three standard deviation difference in the intercepts from Grimm et al. (2013) and Associated LIP
values.

AIC BIC saBIC LIP

N 1 2 3 1 2 3 1 2 3 2 3

Timepoints � 5 and 80-20 mixing proportion
200 1 77 22 18 82 0 1 79 20 0.43 (0.17) 0.07 (0.05)
500 0 76 24 1 99 0 0 89 11 0.40 (0.10) 0.03 (0.02)
1,000 0 82 18 0 100 0 0 99 1 0.40 (0.08) 0.01 (0.01)

Timepoints � 5 and 95-5 mixing proportion
200 11 65 24 63 37 0 14 65 21 0.25 (0.16) 0.08 (0.06)
500 1 72 27 14 86 0 3 90 7 0.22 (0.08) 0.03 (0.02)
1,000 0 78 22 1 99 0 0 97 3 0.21 (0.06) 0.01 (0.01)

Timepoints � 7 and 80-20 mixing proportion
200 4 78 18 93 7 0 6 80 15 0.41 (0.12) 0.05 (0.03)
500 0 78 22 19 81 0 0 92 8 0.34 (0.07) 0.02 (0.01)
1,000 0 84 16 0 100 0 0 97 3 0.32 (0.05) 0.01 (0.01)

Timepoints � 9 and 80-20 mixing proportion
200 0 76 24 9 91 0 0 80 20 0.27 (0.10) 0.04 (0.03)
500 0 81 19 0 100 0 0 98 2 0.26 (0.06) 0.01 (0.01)
1,000 0 82 18 0 100 0 0 99 1 0.25 (0.04) 0.01 (0.01)

Columns represent latent profile models with a different number of classes, values for the information criteria represent the percent of replicates where themodel had the lowest information
criteria, AIC � Akaike Information Criterion,BIC � Bayesian Information Criterion, saBIC � Sample Size Adjusted Bayesian Information Criterion, LIP � Likelihood Increment Percentage, LIP
values are mean values across replicates with the standard deviation across replicates within parentheses for comparing the model with one fewer class. Bolded columns indicate the
number of classes in the population.
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0.837, and 0.801 for the 2-class model with T � 9. Interestingly,
entropy was highest when there were seven time points,
indicating that classification quality was highest for this
population structure.

Interim Summary
Overall, the LIP showed a clear drop when no more classes were
warranted for all of the latent profile models. The drop in the LIP
was less clear for the growth mixture models. In the growth
mixture models, the distinctiveness of the two classes was varied
systematically. The LIP did not show a systematic change after the
two-class model when the classes differed by one standard
deviation in the intercept mean. There was a small drop when
the intercept means were two standard deviations apart, and a
clear drop when the intercept means were three standard
deviations apart. In the growth mixture modeling simulations,
the information criteria performed poorly, which highlights the
challenges in comparing FMMs.

Although the performance of the LIP was admirable, there
were two concerns. First, the LIP was mildly associated with
sample size. That is, the LIP tended to be higher with N � 200
compared to N � 500 and N � 1, 000. Thus, the LIP is likely to be
overestimated with smaller samples. Second, the LIP varied across
replicate simulations. While this was expected, the variance was
fairly large, particularly in small samples. We therefore caution its
use with N < 500.

LIP Effect Sizes
The performance of the LIP leads to the question of how the LIP
should be used for model comparison. We propose first examining
how the LIP changes when increasing the number of classes.
Ideally, the LIP will drop off when no more classes are
warranted – akin to scree plot in factor analysis. Second, we
recommend dividing the LIP by the increase in the number of
estimated parameters when a class is added to the model. This LIP
per parameter (LIPpp) takes model complexity into account.

The LIPpp was approximately 0.37 in Nylund et al. (2007) 8-
variable simple LPA. We consider this to be a large effect size for
the LIPpp. For this effect size, the BIC performed well across all
sample sizes considered. Given the variability in LIP across
replicates, we consider LIPpp values greater than 0.30 to
indicate a large improvement in model fit. The LIPpp was
approximately 0.12 in Nylund et al. (2007) 10-variable
complex LPA when comparing the 3-class model to the 2-
class model, and 0.11 in Grimm et al. (2013) simulations
when the intercept means were three standard deviations
apart. We consider these to be medium effect sizes for the
LIPpp. For this effect size, the BIC performed well when
sample sizes were 500 and 1, 000. Given the variability in LIP
across replicates, we consider LIPpp values between 0.10 and 0.30
to indicate a medium improvement in model fit. Finally, the
LIPpp was 0.02 in Grimm et al. (2013) simulations when the
intercept means were two standard deviations apart. We consider
this to be a small effect size. Here, the AIC performed well with a
large sample size (i.e.,N � 1, 000), but the BIC struggled given the
sample sizes considered. We therefore consider LIPpp values
between 0.02 and 0.10 to represent small improvements in

model fit. We recognize that these effect sizes for the LIPpp
are raw and require further study, and are solely proposed
for FMMs.

DISCUSSION

Model comparison in FMM is challenging and existing model fit
indices, such as information criteria, approximate likelihood ratio
tests, and those based on resampling techniques do not provide
standardized information about the relative improvement inmodel
fit. The LIP, initially proposed by McArdle et al. (2002) for model
comparison, was divided by the difference in the number of
estimated parameters and is a proposed effect size to aid model
comparison for FMMs. This LIPpp provides a measure of the
relative improvement in model fit per parameter when comparing
two models. Different values of the LIPpp were associated with
small to large differences in model fit, and these values may help to
provide context when comparing two models as opposed to solely
examining the statistical significance of the difference in model fit,
or examining which model had lower information criteria. We
found that the LIPpp was slightly inflated with N � 200 and
caution against its use with smaller sample sizes.

When comparing two models, researchers have categorized
differences in the AIC (Burnham and Anderson, 2004) and BIC
(Kass and Raftery, 1995), and proposed an approximate Bayes
Factor, to provide context regarding the magnitude of the
difference in model fit. While not the same as an effect size,
the contextual comparison is helpful when comparing two (or
more) models. The LIPpp provides more direct information
about the magnitude of improvement in model fit because it is
less influenced by sample size than theAIC and BIC, and takes the
difference in the number of estimated parameters into account.

Mahalanobis Distance and Entropy
There are two important pieces of statistical information from
FMMs that are relevant when discussing the
LIPpp – Mahalanobis distance (Mahalanobis, 1936) and
entropy. Mahalanobis distance is a measure of the distance
between two mean vectors standardized by a common or
pooled covariance matrix. Mahalanobis distance has been
utilized as an effect size measure for the separation of two
classes in FMM simulations (Grimm, et al., 2013; Peugh and
Fan, 2012, Peugh and Fan, 2015). The multivariate Mahalanobis
distance is calculated as

D � (μ1 − μ2)′ Σ− 1(μ1 − μ2) (9)

where μ1 and μ2 mean vectors for the first and second classes,
respectively, and Σ is the pooled expected covariance matrix
within each class. Mahalanobis distance indicates how distinct
two classes are from one another. Mahalanobis distance is an
effect size measure; however, it is distinct from the LIPpp. When
comparing a two-class model to a one-class model, Mahalanobis
distance and the LIPpp will be highly related for a given model
(e.g., growth mixture model). However, Mahalanobis distance is
more limited whenmoving tomodels with more classes because it
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is used to make pairwise comparisons, and is independent of the
difference in the number of estimated parameters across models.

Entropy is a measure of classification quality and is
calculated as

entropy � 1 + 1
N log(K) ∑

N

i�1
∑K
k�1

pik(log(pik)) (10)

where N is the sample size, K is the number of classes, and pik is
the posterior probability that person i is a member of class k.
While we expect entropy to be associated with LIPpp, the two
statistics provide different information. Entropy is not a model fit
statistic, but a characteristic of a fitted FMM. Thus, entropy and
LIPpp serve different purposes. We expect entropy to be weakly
related to LIPpp. That is, a model with k classes may have high
entropy and fit much better than the model with k − 1 classes
(high LIPpp); however, it is also the case that a model with k
classes may have high entropy and not fit much better than the
model with k − 1 classes (low LIPpp).

Concluding Remarks
The LIPpp was proposed as a measure of relative improvement in
model fit for comparing FMMs. In our simulation work, the
LIPpp was able to discern the number of classes relatively well.
The LIPpp plateaued when increasing the number of classes was
not warranted. In our simulations, we focused on models with the

same constraints, but a different in the number of classes;
however, the LIPpp could be applied when comparing mixture
models that differ in the number of classes and/or class
constraints. Future research should evaluate the LIPpp in other
contexts where a sequence of models is compared, such as when
studying factorial invariance. Additionally, given the variability in
the LIPpp across replicate samples in our simulation, the LIPpp
should be examined in the context of resampling techniques (e.g.,
bootstrapping) to obtain a distribution of LIPpp values when
increasing the number of latent classes.
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