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Growth mixture modeling is a popular analytic tool for longitudinal data analysis. It detects
latent groups based on the shapes of growth trajectories. Traditional growth mixture
modeling assumes that outcome variables are normally distributed within each class.
When data violate this normality assumption, however, it is well documented that the
traditional growth mixture modeling mislead researchers in determining the number of
latent classes as well as in estimating parameters. To address nonnormal data in growth
mixture modeling, robust methods based on various nonnormal distributions have been
developed. As a new robust approach, growth mixture modeling based on conditional
medians has been proposed. In this article, we present the results of two simulation studies
that evaluate the performance of the median-based growth mixture modeling in identifying
the correct number of latent classes when data follow the normality assumption or have
outliers. We also compared the performance of the median-based growth mixture
modeling to the performance of traditional growth mixture modeling as well as robust
growth mixture modeling based on t distributions. For identifying the number of latent
classes in growth mixture modeling, the following three Bayesian model comparison
criteria were considered: deviance information criterion, Watanabe-Akaike information
criterion, and leave-one-out cross validation. For the median-based growth mixture
modeling and t-based growth mixture modeling, our results showed that they
maintained quite high model selection accuracy across all conditions in this study
(ranged from 87 to 100%). In the traditional growth mixture modeling, however, the
model selection accuracy was greatly influenced by the proportion of outliers. When
sample size was 500 and the proportion of outliers was 0.05, the correct model was
preferred in about 90% of the replications, but the percentage dropped to about 40% as
the proportion of outliers increased to 0.15.
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1 INTRODUCTION

Growth mixture modeling has been widely used for longitudinal data analyses in social and
behavioral research. It is a combination of growth curve modeling (Meredith and Tisak, 1990;
Bollen and Curran, 2006) and finite mixture modeling (McLachlan and Peel, 2000). Growth curve
modeling is a modeling method for analyzing longitudinal data. It describes the mean growth
trajectory and the variability of the individual trajectories around the mean trajectory. The finite
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mixture modeling is a statistical method to provide accurate
statistical inferences when the target population consists of
several heterogeneous groups. Mathematically, this is
accomplished by modeling an unknown distribution (the
target population) using a mixture of known distributions
(heterogeneous groups/subpopulations). As a combination of
the two methods, growth mixture modeling can handle
longitudinal data with several unobserved heterogeneous
subpopulations, each of which is characterized by a distinct
growth trajectory. Since those groups cannot be directly
observed, the groups are called latent groups (or latent
classes). A growth curve model can be seen as a growth
mixture model with one latent class.

As growth mixture modeling has continued to receive
attention, a number of approaches to growth mixture
modeling have been developed. Traditional growth mixture
modeling is built upon the assumption that latent growth
factors and measurement errors are normally distributed.
Namely, outcome variables are normally distributed within
each class. When data violate this within-class normality
assumption, using a traditional growth mixture model may
mislead researchers in deciding the number of latent classes or
in estimating parameters (Bauer and Curran, 2003; Bauer, 2007;
Zhang et al., 2013; Depaoli et al., 2019). In social and behavioral
sciences, data often have distributions that are not normal
(Micceri, 1989; Cain et al., 2017). Robust methods based on
various nonnormal distributions have been developed to address
nonnormal data. For instance, Zhang et al. (2013) and Zhang
(2016) introduced different types of Bayesian growth curve
models by varying the distribution of measurement errors,
including t, skewed-normal, and exponential power
distributions to address nonnormal data. In Zhang et al.
(2013), growth curve models using t distributions
outperformed traditional growth curve models in parameter
estimation when data had heavy tails or outliers. Lu and
Zhang (2014) introduced growth mixture models based on t
distributions for those situations in which data have outliers and
non-ignorable missingness. Muthén and Asparouhov (2015) used
a skewed-t distribution on latent factors to address intrinsically
skewed data and showed that the skewed-t growth mixture model
prefer a more parsimonious solution than traditional growth
mixture modeling for skewed data.

Recently, Tong et al., 2020 and Kim, Tong, Zhou, and Boichuk
(under review) proposed a new Bayesian approach for growth
modeling using conditional medians. The median is a well-known
measure of central tendency that is robust against nonnormality,
such as skewed data or data with outliers. Bayesian methods have
been widely used in latent variable modeling, including growth
mixturemodeling (e.g., Lee, 2007; Lu et al., 2011; Zhang et al., 2013;
Tong et al., 2020). Bayesian methods allow researchers to
incorporate prior information into model estimation and to
conduct inferences of complex models through advanced
sampling algorithms. Tong et al. (2020) considered conditional
medians in Bayesian growth curve modeling and showed that the
conditional median approach provided less biased estimates than
traditional growth curve modeling when data were not normally
distributed. Kim et al. (under review) introduced the conditional

median approach in Bayesian growth mixture modeling and
showed that the median based approach provided less biased
parameter estimates with better convergence rates than
traditional growth mixture modeling.

Deciding the number of latent classes is one of the important
tasks in growth mixture modeling. There has been a number of
studies on selecting the number of latent classes in growth mixture
modeling. For example, Bauer and Curran (2003) showed that
traditional growth mixture modeling tended to over-extract latent
classes when data were non-normally distributed. Nylund et al.
(2007), Tofighi and Enders (2008), and Peugh and Fan (2012)
evaluated the performance of information-based fit indices such as
AIC and BIC and likelihood-based tests in identifying the correct
number of latent classes. The performance of the model
comparison criteria varied, but they appeared to be influenced
by a number of factors, especially the complexity of trajectory
shapes and the magnitude of separations of latent classes. Depaoli
et al. (2019) andGuerra-Peña et al. (2020) used Student’s t, skewed-
t, and skewed-normal distributions on latent factors and explored
class enumeration when data satisfied or violated the normality
assumption. In Depaoli et al. (2019), the class enumeration was
greatly influenced by the degree of latent class separation when the
underlying population consisted of heterogenous subgroups. In
Guerra-Peña et al. (2020), the growth mixture modeling with
skewed-t successfully maintained the Type 1 error rate when
the underlying population was homogeneous but had a skewed
or kurtic distribution.

The median-based growth mixture modeling approach in
longitudinal data analysis is relatively new, and its
performance has not been systematically investigated. In
particular, little is known about the performance of the
median-based growth mixture modeling in deciding the
number of latent classes. To fill this gap, in this study, we
explore this topic within a Bayesian framework. Two
simulation studies were conducted to answer the following
research questions: 1) how well do Bayesian model
comparison criteria used in a growth mixture model analysis
correctly identify the number of latent classes when the
population is heterogeneous and the normality assumption
holds? and 2) how well does the median-based growth
mixture modeling perform in identifying the correct number
of latent classes when the population is heterogeneous and
contains outliers? We examined the class enumeration
performance of the median-based growth mixture modeling
and compared it to that for the traditional growth mixture
modeling and growth mixture modeling based on t-distributed
measurement errors, which is also known to be robust to
nonnormal data in growth mixture modeling (Zhang et al.,
2013; Lu and Zhang, 2014). For model selection, we used
three Bayesian model comparison criteria: deviance
information criterion (DIC; Spiegelhalter et al., 2002),
Watanabe-Akaike information criterion (WAIC; Watanabe,
2010), and leave-one-out cross-validation (LOO-CV; Gelman
et al., 2013; Vehtari et al., 2017). DIC is a widely used model
comparison criterion in Bayesian analyses. WAIC and LOO-CV
are relatively new criteria but have been increasingly used in
Bayesian model comparison.
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The rest of this paper is organized as follows. We first briefly
describe three different growth mixture modeling approaches
considered in this study: traditional growth mixture modeling,
growth mixture modeling based on t distributions, and growth
mixturemodeling based on conditional medians. In the subsequent
section, we present results of the two simulation studies. The first
simulation study presents the performance of DIC, WAIC, and
LOO-CV used in the three types of growth mixture models when
data are normally distributed within each class. The first simulation
study was particularly designed to investigate whether the DIC,
WAIC, and LOO-CV are reliable criteria before we consider
nonnormal data. Then, the second simulation study evaluates
the performance of the three types of growth mixture models
when data contain outliers. We mainly examined the impact of
outliers on class enumeration and parameter estimates. We end
this article with a discussion and concluding remarks.

2 GROWTH MIXTURE MODELS (GMMs)

2.1 Traditional Approach (Traditional GMM)
Growth mixture models (GMMs) are designed to detect
subpopulations that have distinct patterns of growth trajectory.
Suppose that a population consisted of G subgroups (or latent
classes) that have distinct patterns of change. Let yi �
(yi1, . . . , yiT)’ is a vector of T repeated observations for
individual i (i ∈ {1, . . . ,N}) that belongs to class g. Then, a
general form of growth mixture models can be specified as

yi
∣∣∣∣(zi � g) � Λbig + ϵi,

where Λ is a T × q matrix of factor loadings that determines the
shape of the growth trajectories, big is a q × 1 vector of latent
factors for class g, ϵi � (ϵi1, . . . , ϵiT)’ is a T × 1 vector of
measurement errors, and zi represents a class indicator with
P(zi � g) � πg . The latent factors are usually assumed as
big ∼ Nq(βg ,Ψg), where βg is a mean of big and Ψg is a
variance-covariance matrix of big . The measurement errors are
typically assumed to follow a normal distribution, ϵi ∼ NT(0,Σg).
This assumption leads the conditional mean of yi given big to be
E(yi

∣∣∣∣big) � Λbig . It is common to further assume that the
measurement errors have equal variances across time and are
independent of each other. That is, Σg � σ2gI, where σ

2
g is a scale

parameter for class g. We assumed this measurement error
structure for the rest of this study.

2.2 t-Based Approach (t-Based GMM)
The traditional GMM is built based upon the assumption that
data within each class is normally distributed. However, when
data do not satisfy this assumption, the traditional approach may
lead to inappropriate conclusions such as biased parameter
estimates or over-extraction of latent classes. As a robust
approach to the traditional growth mixture modeling, t
distributions have been used in growth mixture modeling, as
they downweight extreme values in the model estimation process
(Zhang et al., 2013; Lu and Zhang, 2014). In this growth mixture
modeling approach, a multivariate t distribution can be assumed

on the latent factors or measurement errors (Tong and Zhang,
2012; Lu and Zhang, 2014). In this study, for the t-based growth
mixture modeling approach, we assumed that the measurement
errors follow a multivariate t distribution,

ϵi ∼ MTT(0,Σg , ]g),
where ]g is the degrees of freedom, 0 is the mean of ϵi, and Σg is a
T × T scale matrix. Then, the distribution of yi conditioning on
big can be written as yi

∣∣∣∣∣big ∼ MTT(Λbig ,Σg , ]g).

2.3 Median-Based Approach
(Median-Based GMM)
In growth mixture modeling based on conditional medians, it
considers medians instead of means so that the growth mixture
model can be more tolerant of non-normally distributed data
(Kim et al., under review). A general form of median-based
growth mixture models is specified as follows:

yit
∣∣∣∣∣(zi � g) � Λtbig(0.5) + ϵit , Q0.5(yit ∣∣∣∣big(0.5)) � Λtbig(0.5),

where Q0.5(·) represents the median, Λt is the t-th row of Λ,
big(0.5) is a vector of latent factors for the median-based model.
This median based approach is established based on a Laplace
distribution. That is, ϵit follows a Laplace distribution, as the
sample median can be viewed as the maximum likelihood
estimate of a Laplace distribution (Yu and Moyeed, 2001;
Geraci and Bottai, 2007; Yi and He, 2009). A Laplace
distribution has two parameters: a location parameter (μ) and
a scale parameter (δ). In this model, ϵit follows a Laplace
distribution with a location value of 0 and an unknown scale
δg (ϵit ∼ LD(0, δg)). Then, the distribution of yit conditioning on
big(0.5) can be written as yit

∣∣∣∣∣big(0.5) ∼ LD(Λtbig(0.5), δg).

3 BAYESIAN ESTIMATION

To estimate parameters of the three types of growth mixture
models, we used Bayesian methods. In this study, we used JAGS
to estimate model parameters. JAGS is a program for Bayesian
analysis using Markov chain Monte Carlo (MCMC) algorithms.
We used the rjags package (Plummer, 2017) to run JAGS in R (R
Core Team, 2019).

For the traditional GMM, the joint distribution of yi, bi, and
zi is

f (yi, bi, zi∣∣∣∣β1:G,Ψ1:G, σ
2
1:G,π) � f (yi∣∣∣∣bi, zi, σ2

1:G)f (bi∣∣∣∣β1:G,Ψ1:G, zi)p(zi|π).
The complete likelihood (Celeux et al., 2006) for the traditional
GMM is

Lc � ∏N
i�1

f (yi, bi, zi∣∣∣∣β1:G,Ψ1:G, σ
2
1:G,π).

The following priors were used to estimate the traditional growth
mixture model: βg ∼ Nq(β0,Σ0), Ψg ∼ InvWishart(]0, S0),
σ2g ∼ InvGamma(c0, d0) for g � 1, . . . ,G, and π ∼ Dirichlet(ζ).
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For the t-basedGMM,we used a normal distribution and gamma
distribution to construct a multivariate t distribution to simplify the
posterior distribution (Kotz and Nadarajah, 2004; Zhang et al.,
2013). If yi

∣∣∣∣∣big ∼ MTT(Λbig , σ2gI, ]g), then it can be represented

as yi
∣∣∣∣∣∣∣∣∣big ,ωi ∼ MNT(Λbig , σ2gωi

I), where ωi ∼ Gamma(]g/2, ]g/2).
In this approach, the joint distribution of yi, bi, zi, and ωi is

f (yi, bi, zi,ωi

∣∣∣∣β1:G,Ψ1:G, σ
2
1:G, ]1:G,π)

� f (yi∣∣∣∣bi, zi,ωi, σ
2
1:G)f (bi∣∣∣∣β1:G,Ψ1:G, zi)f (ωi|]1:G)p(zi|π).

The complete likelihood for the t-based GMM is

Lc � ∏N
i�1

f (yi, bi, zi,ωi

∣∣∣∣β1:G,Ψ1:G, σ
2
1:G, ]1:G,π).

The following prior was additionally used to estimate the t-based
GMM: ]g ∼ Exp(k0), whereExp denotes the exponential distribution.

For the median-based GMM, the joint distribution of yi, bi,
and zi is

f (yi, bi, zi∣∣∣∣β1:G,Ψ1:G, δ1:G, π) � f (yi∣∣∣∣bi, zi, δ1:G)f (bi∣∣∣∣β1:G,Ψ1:G, zi)p(zi|π).
The complete likelihood for the median-based GMM is

Lc � ∏N
i�1

f (yi, bi, zi∣∣∣∣β1:G,Ψ1:G, δ1:G,π).
The following prior was additionally used to estimate the median-
based GMM: δg ∼ InvGamma(c0, d0).

4 MODEL SELECTION

We used DIC (Spiegelhalter et al., 2002), WAIC (Watanabe,
2010), and LOO-CV (Gelman et al., 2013; Vehtari et al., 2017) to
select the number of latent classes for the traditional, t-based, and
median-based GMMs. In the following, we briefly introduce the
three model comparison criteria.

DIC has been widely used in Bayesian model selection. It was
first introduced by Spiegelhalter et al. (2002). DIC is defined
based on the concept of deviance and the effective number of
model parameters. The deviance is defined as

D(Θ) � −2l(Θ) + 2log(h(x)),
where Θ is a set of model parameters, l(Θ) is a log-likelihood,
l(Θ) � log(f (y∣∣∣∣Θ)), and h(x) is a constant that is canceled out
when comparing models. The effective number of parameters
(pD) is defined as

pD � D(Θ) − D(Θ),
whereD(Θ) is the deviance calculated at the posterior mean ofΘ,
and D(Θ) is the posterior mean of D(Θ). Combining these two,
DIC becomes

DIC � D(Θ) + 2pD.

Models with smaller DICs are preferred.

WAIC is a relatively recently developed Bayesian model
comparison criterion. We used the following definition of
WAIC (Gelman et al., 2013).

WAIC � −2 ×∑N
i�1

log⎛⎝1
S
∑S
s�1

f (yi∣∣∣∣Θ(s))⎞⎠ + 2 ×∑N
i�1

VarSs�1l(Θ(s)),
where S is the number of MCMC iterations, and Θ(s) is a draw
from the posterior distribution at the sth iteration. Models with
smaller WAICs are preferred.

LOO-CV evaluates the model fit based on an estimate of the
log predictive density of the hold-out data. Each data point is
taken out at a time to cross-validate the model that is fitted based
on the remaining data. WAIC has been shown to be
asymptotically equal to LOO-CV (Watanabe, 2010). Vehtari
et al. (2017) introduced a method to approximate LOO-CV
using Pareto-smoothed importance sampling, and this is
implemented in the loo package (Vehtari et al., 2019) in R.

We computed the three model comparison criteria based on
marginal likelihoods as recommended in Merkle et al. (2019).
The traditional GMM has a closed form of the marginal
likelihood:

LN(Θ) � ∏
i�1

N

f (yi∣∣∣∣β1:G,Ψ1:G, σ
2
1:G,π)

� ∏
i�1

N ∑
zi

f (yi, zi∣∣∣∣β1:G,Ψ1:G, σ
2
1:G,π)

� ∏
i�1

N ∑
g�1

G

πg f (yi∣∣∣∣∣βg ,Ψg , σ
2
g),

where f (yi
∣∣∣∣∣βg ,Ψg , σ2g) � Φ(yi

∣∣∣∣∣Λβg ,ΛΨgΛ’ + σ2gI), in which
Φ(·∣∣∣∣μ,Σ) represents a multivariate normal density function
with mean μ and variance-covariance matrix Σ.

The marginal likelihoods of the t-based and median-based
GMMs, however, do not have closed forms. For the t-based
GMM, the marginal likelihood is

LT(Θ) � ∏
i�1

N

f (yi∣∣∣∣β1:G,Ψ1:G, σ
2
1:G, ]1:G,π)

� ∏
i�1

N ∑
zi

∫

f (yi,ωi, zi
∣∣∣∣β1:G,Ψ1:G, σ

2
1:G, ]1:G,π)dωi

� ∏
i�1

N ∑
g�1

G

πg∫

f (yi∣∣∣∣∣βg ,Ψg ,ωi, σg)f (ωi

∣∣∣∣]g)dωi.

For the median-based GMM, the marginal likelihood is

LM(Θ) � ∏
i�1

N

f (yi∣∣∣∣β1:G,Ψ1:G, δ1:G,π)
� ∏

i�1

N ∑
zi

∫

f (yi, bi, zi∣∣∣∣β1:G,Ψ1:G, δ1:G,π)dbi
� ∏

i�1

N ∑
g�1

G

πg∫ 

f (yi∣∣∣∣bi, δg)f (bi∣∣∣∣∣βg ,Ψg)dbi.
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Since ∫ 
f (yi

∣∣∣∣∣βg ,Ψg ,ωi, σg)f (ωi

∣∣∣∣]g)dωi and∫ 
f (yi

∣∣∣∣bi, δg)f (bi∣∣∣∣∣βg ,Ψg)dbi do not have closed forms, we used

the integrate function and hcubature function in the cubature
package in R (Narasimhan et al., 2020) to numerically evaluate
the one-dimensional and multidimensional integrals,
respectively. Both functions provide an estimate with a relative
error of the integration. In this study, the error was required to be
less than 0.0001.

5 SIMULATION STUDIES

In this section, we evaluated the performance of the three
Bayesian model comparison criteria and the performance of
the three types of growth mixture models in identifying the
correct number of latent classes. Two simulation studies are
presented. In the first study, we examined the performance of
DIC,WAIC, and LOO-CV used in the traditional GMM,median-
based GMM, and t-based GMM when data followed the within-
class normality assumption. In the second study, we explored the
impact of outliers on identifying the number of latent classes for
each of the growthmixture models to evaluate the performance of
the median-based GMM and compare it to the performance of
the traditional GMM and t-based GMM. For both simulation
studies, we also obtained parameter estimation bias to examine
how well each of the growth mixture models recover parameters
when the number of latent classes was correctly specified.

5.1 Study 1: Examining the Performance of
Bayesian Model Comparison Criteria
5.1.1 Simulation Design
In the first simulation study, we report the accuracy of selecting a
correct model using DIC, WAIC, and LOO-CV. Data were
generated using a traditional two-class linear growth mixture
model with four equally spaced time points. Mean trajectories
from the two classes were set to have different intercepts and
slopes. Parameter values for data generating model were set to be
similar to those used for the simulation study in Nylund et al.
(2007). In Nylund et al., the bootstrap likelihood ratio test (BLRT;
McLachlan, 1987) and Bayesian information criterion (BIC;
Schwarz, 1978) identified the correct number of latent classes
with high accuracy rates. The first class was characterized as
having increasing scores over time (β1 � (2, 0.5)’), and the second
class was characterized as a flat line (β2 � (1, 0)’). The variance-
covariance matrix and residual variance were set to be Σ �
( 0.25 0

0 0.04
) and σ2 � 0.2, and they were assumed to be the

same across the two latent classes. The two groups of growth
trajectories in this setting have a Mahalanobis distance1 (MD)
value of 3.2, which indicates that the two groups are well-
separated (Lubke and Neale, 2006). We also considered a

condition with a lower degree of class separation by
manipulating the intercept of the first class, β1 � (1.5, 0.5)’,
which had MD � 2.7. Mixing proportions were set to be
unbalanced: 75% from the first class and 25% from the second
class. Two different sample sizes were considered (N � 300, 500).
Figure 1 depicts some examples of simulated individual growth
trajectories when MD � 2.7 (left panel) and MD � 3.2 (right
panel). For each of the conditions, we replicated 200 datasets.

5.1.2 Estimation
In order to evaluate the three model comparison criteria in
identifying the correct number of latent classes, we fitted a
series of growth mixture models that differed in the number
of latent classes (one, two, and three classes). For the purpose of
comparison, three different growthmixture modeling approaches
were considered: traditional GMM, median-based GMM, and
t-based GMM. The following priors were used for model
inferences: p(βg) � MN(0, 103 × I) for g ∈ {1, 2, 3},
p(Ψ) � InvWishart(2, I2), p(σ2) � InvGamma(.01, .01),
p(]) � Exp(0.1), and p(π) ∼ Dirichlet(10jG), where G is the
number of latent classes, and jG is a G × 1 vector that has one
for all components for G> 1. These priors were set to have little
information about the parameters. The total number of iterations
was 10, 000, and the first half of the iterations were discarded for
burn-in. The convergence of Markov chains was evaluated by the
Geweke’s convergence test (Geweke, 1991). Our simulation
results were summarized based on replications in which all the
three models (one-, two-, and three-class models) were converged
for each modeling method. The convergence of chains can be
influenced by starting values. The 10, 000 iterations appeared to
be enough, but we allowed each model to be fitted with 10
different starting values at most to obtain converged results.
Additionally, the parameter space for the mean intercept was
constrained in order to avoid label switching problems.

5.1.3 Results
The proportion of datasets that converged for each condition is
shown in Table 1. All models showed adequate convergence rates
in all conditions with rates ranging from 0.97 to 1.00 for the
traditional GMM, 0.93 to 1.00 for the median-based GMM, and
0.95 to 1.00 for the t-based GMM.

For each condition, model comparison was examined using
DIC, WAIC, and LOO-CV for the traditional, median-based, and
t-based GMMs. We compared values across one-, two-, and three-
class models and selected the most preferred model using each of
the criteria. For DIC, a model with a smaller DIC was preferred
over the other competing parsimonious models if the difference in
their DIC values were larger than 10 (Lunn et al., 2012). ForWAIC
and LOO-CV, the loo package provides a function for comparing
competing models. When comparing two models, the function
estimates the difference in their expected predictive accuracy and
the standard error of the difference, which provides the degree of
uncertainty in the difference. We selected models based on the
differences that are significantly different from 0.

The model selection results are shown in Table 2. In general,
the performance of DIC, WAIC, and LOO-CV were influenced
by the degree of class separation and sample size. All three criteria

1Mahalanobis distance was calculated as MD �
�������������������
(μ1 − μ2)TΣ−1(μ1 − μ2)

√
, where

μ1and μ2 represents themean of the first and second latent classes, respectively, and
Σ is the common variance-covariance matrix of latent factors.
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had quite high proportions of correct model selection when the
degree of class separation was high (i.e.,MD � 3.2) or sample size
was large (i.e.,N � 500). Under the conditions withMD � 3.2, the
three criteria performed well in correctly discovering the two-
class model across the three types of growth mixture models. The
three criteria chose the correct model over 98% of the time for the
traditional GMM, over 94% of the time for the median-based
GMM, and over 97% of the time for the t-based GMM. Under the
conditions with MD � 2.7, DIC had higher selection accuracy
than WAIC and LOO-CV across the three different growth
mixture models. For example, when sample size was 300, DIC
preferred the data generating two-class model about 40% of the
time, andWAIC and LOO-CV preferred the two-class model less
than 30% of the time.

Figure 2 presents the magnitude of absolute bias in the
intercept and slope parameter estimates for each of the growth
mixture models when the number of latent classes was the same
as the data generating model. We calculated absolute bias for each
model parameter, and Figure 2 shows the absolute bias that

averaged over fixed parameters to compare the parameter
estimates for the three types of growth mixture models. When
data followed the within-class normality assumption, the three
types of growth mixture models had similar bias values. All three
models tended to have smaller bias when there was a higher
degree of latent class separation (i.e., MD � 3.2) or a larger
sample size (i.e., N � 500). Note that the performance of
variance-covariance components also had similar patterns of
absolute bias.

5.2 Study 2: Examining the Impact of
Outliers on Class Enumeration
5.2.1 Simulation Design
In the first simulation study, we presented the performance of
the three Bayesian model comparison criteria when data were
generated from a normal distribution within each class. The
results showed that the performance of the criteria depended on
the degree of latent class separation and sample size. When
latent classes were well separated (i.e., conditions with
MD � 3.2), the three criteria selected the true model with
high proportions. In Study 2, we designed our simulation
study based on the conditions with MD � 3.2, so that we can
clearly examine how outliers influence class enumeration. In
this simulation study, we manipulated sample size (N � 300,
500) and percentage of outliers (5, 10, and 15%). The other
aspects of the simulation design (population model, parameter
values, and mixing proportions) were the same as those in Study
1. Subjects in the first latent class were set to have outliers for
simplicity. In order to generate data with outliers, r%
(r ∈ {5, 10, 15}) of subjects in the first latent class were
randomly selected to have outliers at arbitrarily selected
measurement occasions. The outliers were set to be higher
than the majority of observations by generating measurement
errors from N(Cσ, σ2), where C was randomly selected from
{3, 5, 10} with probabilities 0.4, 0.4, and 0.2, respectively. We
considered 200 replications for each condition.

FIGURE 1 | Examples of simulated 300 individual growth trajectories from two groups that are relatively close to each other (MD � 2.7, left panel) and two groups
that are relatively far away from each other (MD � 3.2, right panel). For each panel, the red dashed line indicates the growth trajectory for the first class and the blue solid
line indicates the growth trajectory for the second class.

TABLE 1 | Proportion of converged datasets.

Separation Sample size Model G = 1 G = 2 G = 3

MD � 2.7 300 Traditional 1.00 1.00 0.99
Median 1.00 1.00 0.93
t 1.00 0.96 0.96

500 Traditional 1.00 1.00 0.97
Median 1.00 0.98 0.96
t 0.99 0.98 0.95

MD � 3.2 300 Traditional 1.00 1.00 1.00
Median 1.00 1.00 0.98
t 1.00 1.00 0.99

500 Traditional 1.00 1.00 1.00
Median 1.00 1.00 1.00
t 1.00 1.00 0.96

Note. Traditional represents the traditional GMM; Median represents the median-based
GMM; t represents the t-based GMM; G represents the total number of latent classes.
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For each dataset, we fitted a series of growth mixture models
that differed in the number of latent classes (one-, two-, and three-
latent classes) using the traditional GMM, median-based GMM,
and t-based GMM. The prior specification and model estimation
for this study were in the same way as those described in Study 1.

5.2.2 Results
The proportion of datasets that converged for each condition
is shown in Table 3. The three types of growth mixture

models showed adequate convergence rates when the number
of latent classes was 1 or 2. For the three-class growth mixture
model, the traditional GMM had lower convergence rates
when the percentage of outliers increased. The t-based and
median-based GMM had convergence rates over 0.97 across
all conditions.

Tables 4, 5 show the impact of outliers on class enumeration
for the three types of growth mixture models. The proportions
of selecting 1-class, 2-class, and 3-class models using DIC,

TABLE 2 | Proportion for selecting 1-class, 2-class, and 3-class models using DIC, WAIC, and LOO-CV.

DIC

MD = 2.7 MD = 3.2

N

G

300 500 300 500

1 2 3 1 2 3 1 2 3 1 2 3

Traditional 0.60 0.39 0.01 0.13 0.87 0.00 0.01 0.99 0.00 0.00 1.00 0.00
Median 0.59 0.39 0.01 0.12 0.86 0.02 0.03 0.97 0.01 0.00 1.00 0.00
t 0.59 0.40 0.01 0.14 0.85 0.01 0.01 0.99 0.00 0.00 1.00 0.00

WAIC

MD = 2.7 MD = 3.2

N

G

300 500 300 500

1 2 3 1 2 3 1 2 3 1 2 3

Traditional 0.67 0.24 0.09 0.22 0.75 0.04 0.02 0.98 0.00 0.00 0.99 0.01
Median 0.59 0.29 0.12 0.14 0.77 0.09 0.04 0.95 0.01 0.00 0.95 0.05
t 0.65 0.25 0.10 0.21 0.74 0.05 0.02 0.98 0.00 0.00 1.00 0.00

LOO-CV

MD = 2.7 MD = 3.2

N

G

300 500 300 500

1 2 3 1 2 3 1 2 3 1 2 3

Traditional 0.67 0.24 0.09 0.21 0.75 0.04 0.02 0.98 0.00 0.00 0.99 0.01
Median 0.65 0.24 0.11 0.19 0.74 0.07 0.06 0.94 0.01 0.00 0.95 0.05
t 0.65 0.25 0.10 0.21 0.74 0.05 0.02 0.98 0.00 0.00 1.00 0.00

Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents the t-based GMM; G represents the total number of latent classes; The
numbers in bold represent the proportions of times that the true number of latent classes was selected.

FIGURE 2 | Average absolute bias for the traditional, the median-based, and the t-based GMM in conditions with varied degrees of latent class separation and
sample sizes.
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WAIC, and LOO-CV are reported for the traditional GMM,
median-based GMM, and t-based GMM across all conditions.
In the traditional GMM, the model selection accuracy was the
lowest among the three models. Different from the other
growth mixture models, WAIC and LOO-CV performed
better than DIC in model selection (except for the condition
with N � 300 and 5% of outliers). When the percentage of
outliers increased, the accuracy dropped noticeably. When the
percentage of outliers was 15, WAIC and LOO-CV preferred

the two-class model only in about 40% of the time for the
traditional GMM. When N � 500, in particular, the traditional
GMM tended to select the more complicated 3-class model,
treating outliers as from an additional class. In the median-
based GMM, the accuracy slightly decreased as the percentage
of outliers increased, and the accuracy increased as the sample
size increased. DIC had higher accuracy than WAIC and LOO-
CV. DIC preferred the two-class model in at least 87% of the
time when sample size was 300 and at least 94% of the time
when sample size was 500. The t-based GMM had similar
patterns of accuracy to those for the median-based GMM, but
the t-based GMM had higher values. Similar to the median-
based GMM, DIC outperformed WAIC and LOO-CV, and
DIC preferred the two-class model in at least 96% of the time
when sample size was 300 and in almost all replications when
sample size was 500.

Figure 3 presents the magnitude of absolute bias in the
intercept and slope parameter estimates for all conditions
when the number of latent classes was the same as the data
generating model. The absolute bias values in Figure 3 were
obtained in the way described in Study 1. The results for the
conditions without outliers (i.e., r0) were included in this
figure as a benchmark. As the percentage of outliers
increased, the absolute bias for the traditional GMM clearly
increased. The median-based and t-based GMMs also had the
increasing trend as the percentage of outliers increased, but the
magnitude was minor compared to the traditional GMM. The
t-based GMM appeared to have a slightly higher bias than the
median-based GMM when data contained outliers. The
estimation results for the variance-covariance components
had similar patterns.

TABLE 3 | Proportion of converged datasets.

Sample size Outlier Model G = 1 G = 2 G = 3

300 5% Traditional 1.00 1.00 0.99
Median 1.00 1.00 0.98
t 1.00 1.00 0.98

10% Traditional 1.00 1.00 0.90
Median 1.00 0.99 0.99
t 1.00 1.00 1.00

15% Traditional 1.00 0.95 0.84
Median 1.00 1.00 0.97
t 1.00 1.00 0.98

500 5% Traditional 1.00 1.00 0.96
Median 1.00 1.00 0.98
t 1.00 1.00 0.98

10% Traditional 1.00 1.00 0.88
Median 0.99 0.99 0.97
t 1.00 1.00 1.00

15% Traditional 1.00 0.98 0.64
Median 1.00 1.00 0.98
t 1.00 1.00 0.98

Note. Traditional represents the traditional GMM; Median represents the median-based
GMM; t represents the t-based GMM; G represents the total number of latent classes.

TABLE 4 | Proportion for selecting 1-class, 2-class, and 3-class models using DIC, WAIC, and LOO-CV when N � 300.

DIC

Outlier

G

5% 10% 15%

1 2 3 1 2 3 1 2 3

Traditional 0.10 0.75 0.15 0.23 0.46 0.31 0.27 0.23 0.51
Median 0.04 0.95 0.01 0.08 0.90 0.02 0.10 0.87 0.03
t 0.01 0.99 0.00 0.03 0.97 0.00 0.04 0.96 0.00

WAIC

Outlier

G

5% 10% 15%

1 2 3 1 2 3 1 2 3

Traditional 0.36 0.63 0.01 0.44 0.49 0.08 0.41 0.38 0.20
Median 0.09 0.86 0.05 0.21 0.72 0.07 0.24 0.71 0.05
t 0.06 0.93 0.01 0.07 0.90 0.03 0.09 0.91 0.00

LOO-CV

Outlier

G

5% 10% 15%

1 2 3 1 2 3 1 2 3

Traditional 0.36 0.63 0.01 0.45 0.46 0.08 0.41 0.40 0.20
Median 0.12 0.84 0.04 0.25 0.71 0.04 0.28 0.69 0.03
t 0.06 0.94 0.01 0.08 0.90 0.03 0.09 0.91 0.00

Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents the t-based GMM; G represents the total number of latent classes; Outliers
represents the percentage of outliers; The numbers in bold represent the proportions of times that the true number of latent classes was selected.
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6 CONCLUSION AND DISCUSSION

Identifying the correct number of latent classes is one of the
important tasks in growth mixture modeling analysis. It is well
known that traditional growth mixture models do not perform
well when data do not follow a normal distribution within each
class. It may provide biased parameter estimates and detect
spurious latent classes that do not have any substantive
meanings. In this article, we evaluated the performance of
median-based GMM in identifying the correct number of
latent classes and compared it to the performance of
traditional GMM and t-based GMM. The median-based GMM
is known to be robust to nonnormal data, but there had been little

known about how it determined the number of latent classes. We
focused on situations in which data were contaminated by
outliers and compared the performance of the three types of
growth mixture models in identifying the number of latent
classes. We used Bayesian methods for this study, and the
number of latent classes was determined by DIC, WAIC, and
LOO-CV.When data satisfied the normality assumption, the three
growth mixture models had similar performance. Model selection
accuracy was influenced by the magnitude of class separation and
sample size. DIC appeared to have slightly higher accuracy than
WAIC and LOO-CV, especially under the lower level of class
separation. When data had outliers, class enumeration in the
traditional GMM was greatly affected, and the model selection

TABLE 5 | Proportion for selecting 1-class, 2-class, and 3-class models using DIC, WAIC, and LOO-CV when N � 500.

DIC

Outlier

G

5% 10% 15%

1 2 3 1 2 3 1 2 3

Traditional 0.00 0.70 0.30 0.03 0.29 0.67 0.03 0.06 0.91
Median 0.00 1.00 0.00 0.00 0.98 0.02 0.00 0.94 0.06
t 0.00 1.00 0.00 0.00 0.99 0.01 0.00 1.00 0.00

WAIC

Outlier

G

5% 10% 15%

1 2 3 1 2 3 1 2 3

Traditional 0.08 0.90 0.02 0.11 0.62 0.26 0.03 0.39 0.58
Median 0.00 0.92 0.08 0.02 0.88 0.09 0.06 0.85 0.09
t 0.00 1.00 0.00 0.00 0.99 0.01 0.00 0.99 0.01

LOO-CV

Outlier

G

5% 10% 15%

1 2 3 1 2 3 1 2 3

Traditional 0.07 0.91 0.02 0.11 0.63 0.26 0.03 0.39 0.57
Median 0.01 0.93 0.06 0.03 0.89 0.08 0.09 0.84 0.08
t 0.00 1.00 0.00 0.00 0.99 0.01 0.00 0.99 0.01

Note. Traditional represents the traditional GMM; Median represents the median-based GMM; t represents the t-based GMM; G represents the total number of latent classes; Outliers
represents the proportion of outliers; The numbers in bold represent the proportions of times that the true number of latent classes was selected.

FIGURE 3 | Average absolute bias for the traditional, the median-based, and the t-based GMM in conditions with varied proportions of outliers and sample sizes.
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accuracy dropped as the proportion of outliers increased. In this
particular situation, WAIC and LOO-CV tended to have higher
accuracy than DIC. In the median-based GMM, DIC had higher
accuracy thanWAIC and LOO-CV. The median-based GMM also
had accuracy that slightly decreased as the proportion of outliers
increased or sample size decreased, but the accuracy was still high
(e.g., above 0.87 by DIC across all conditions). The t-based GMM
had slightly higher accuracy than the median-based GMM as the
proportion of outliers increased, but the difference in accuracy
decreased as sample size increased.

Finite mixture modeling is mainly used for two purposes: one
is to identify latent groups of individuals that have qualitatively
distinct features, and the other is to approximate a complicated
distribution (Titterington et al., 1985; Bauer and Curran, 2003;
Gelman et al., 2013). In our simulation study with outlying
observations, it may be reasonable that the model comparison
criteria used in the traditional GMM preferred the three-class
model over the two-class model (the data generating model) to
accommodate extreme values, especially when there were a
large sample size (i.e., N � 500) and a high percentage of
outliers (i.e., 15%). This behavior of traditional GMM is well
documented in other studies (e.g., Bauer and Curran, 2003;
Muthén and Asparouhov, 2015; Guerra-Peña and Steinley,
2016). In practice, however, researchers often conduct a
growth mixture modeling analysis to discover meaningful
latent classes, rather than discovering latent classes just to
approximate data. In such case, using a traditional GMM may
confuse researchers in determining the number of latent
classes and interpretation of results. Additionally, if a
relatively large number of observations (e.g., 15% when
sample size is 500) were generated from a distribution that
is different from the rest of the data, this portion of data would
be fair to form a separate class. Outliers in our simulation
study, however, were randomly generated from three different
distributions rather than just one distribution. In reality,
outliers may be purely random numbers independently
generated from different distributions, and it would not be
able to treat them as a separate class.

Both the median-based GMM and t-based GMM had high
model selection accuracy when outliers exist in data. The t-based
GMMhad slightly higher accuracy than the median-based GMM,
but the average absolute bias of intercept and slope parameter
estimates for the t-based GMM was also slightly higher than the
median-based GMM. This study focused on situations in which
nonnormality was caused by outliers in measurement errors.
Although robust methods based on Student’s t distributions may
break down for skewed data, they typically perform well for data
with outliers (Zhang et al., 2013). Median-based GMM is
expected to perform well for other types of nonnormal data.
We additionally investigated the relationship between class
membership recovery and the proportion of outliers using the
data generating model to examine whether the proportion of
outliers influenced the class membership recovery and,
consequently, parameter estimation. Given the well-separated
latent classes in Study 2, the class recovery rates for the three
types of GMMs were quite high. The recovery rate for the
traditional GMM appeared to be influenced by the proportion

of outliers (ranged from 88.1 to 93.9%). The median-based and
t-based GMMs had similar class recovery rates (approximately
0.94) across all conditions. These results suggest that the bias is
more likely to be associated with how each model handles
outlying observations. It is worth evaluating both t- and
median-based GMMs under various types of nonnormal data
and providing general guidelines for robust growth mixture
modeling analysis.

This study used marginal likelihoods to calculate DIC, WAIC,
and LOO-CV. In a Bayesian latent variable modeling analysis, the
conditional likelihood is relatively easier to obtain than themarginal
likelihood because it does not require integration and is readily
available in many Bayesian software programs, such as JAGS,
OpenBUGS, and Stan. However, in recent studies (e.g., Merkle
et al., 2019; Zhang et al., 2019), it is reported that employing the
conditional likelihood in model selection can be misleading. Merkle
et al. (2019) recommended use of marginal likelihood based
information criteria in Bayesian latent variable analysis. In our
pilot study with conditional likelihoods, DIC,WAIC, and LOO-CV
performed poorly in model selection compared to their marginal
likelihood counterparts. There are no systematic evaluations about
the performance of conditional likelihood based information
criteria and marginal likelihood based information criteria in
Bayesian growth mixture modeling. This topic will be further
investigated in our future research.

This article shows that median-based GMM has many
advantages over traditional GMM not only in model
estimation, but also in model selection. This study also
compared the performance of the median-based GMM
with t-based GMM, which is also known to be a robust
approach to growth mixture modeling. Although the
t-based GMM had higher model selection accuracy when
data had outliers, the median-based GMM also achieved
satisfying accuracy, especially when the model selection
was evaluated by DIC. Additionally, the median-based
GMM appeared to be slightly better in parameter
estimation. In conclusion, we recommend the median-
based GMM for growth mixture modeling analysis as it
provides stable class enumeration, robust parameter
estimates, and straightforward interpretation.
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