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Person-centered methodologies generally refer to those that take unobserved
heterogeneity of populations into account. The use of person-centered methodologies
has proliferated, which is likely due to a number of factors, such as methodological
advances coupled with increased personal computing power and ease of software use.
Using latent class analysis and its extension for longitudinal data, [latent transition analysis
(LTA)], multiple underlying, homogeneous subgroups can be inferred from a set of
categorical and/or continuous observed variables within a large heterogeneous data
set. Such analyses allow researchers to statistically treat members of different
subgroups separately, which may provide researchers with more power to detect
effects of interest and closer alignment between statistical modeling and one’s guiding
theory. For many educational and psychological settings, the hierarchical structure of
organizational data must also be taken into account; for example, students (i.e., level-1
units) are nested within teacher/schools (i.e., level-2 units). Finally, multilevel LTA can be
used to estimate the number of latent classes in each structured unit and the potential
movement, or transitions, participants make between latent classes across time. The
transitions/stability between latent classes across time can be treated as the outcome in
and of itself, or the transitions/stability can be used as a correlate or predictor of some
other, distal outcome. The purpose of the paper is to discuss multilevel LTA, provide
considerations for its use, and demonstrate variance decomposition, which requires
numerous steps. The variance decomposition steps are presented didactically along
with a worked example based on analysis from the Social Rating Scale of ECLS-K.

Keywords: multilevel, latent transition, mixture, education, ECLS-K

1 INTRODUCTION

Efforts to classify individual cases into homogeneous groups have long been used in order to better
understand complex sets of information. Classification of cases into homogeneous groups has
important implications in the social sciences, such as education, medicine, psychology, or economics,
where identifying smaller subsets of like cases may be of particular interest. Person-centered
methodologies generally refer to those that take unobserved heterogeneity of populations into
account. That is, rather than treat all individuals as if they originated from a single underlying
population, as is true with variable-centered methodologies, person-centered methodologies allow
for multiple subpopulations to underlie a set of data. The challenge with these methods is identifying
the correct number (i.e., frequency) of subpopulations, or classes, and the parameters (i.e., form)
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associated with each, when the frequency and form are not
known a priori (Nylund et al., 2007; Tofighi and Enders, 2008;
Morgan, 2015).

Mixture modeling, generally, refers to the family of statistical
procedures for identifying homogeneous subpopulations of cases
from one large, heterogeneous data set (McLachlan and Peel,
2004; Collins and Lanza, 2009). The analysis assumes that an
observed dataset is a mixture of observations collected from a
finite number of mutually exclusive classes, each with its own
characteristics. These procedures have been referred to in the
literature under many different names, such as mixture likelihood
approach to clustering (McLachlan and Basford, 1988; Everitt,
1993) and model-based clustering (Banfield and Raftery, 1993).
Depending on the metric level of the variables included in the
study, other terms used to describe this methodology are latent
class analysis, latent profiles analysis, latent class clustering, or
model-based clustering.

Many advances have occurred in mixture modeling as an
analytic methodology, which now includes models like factor
mixture, growth mixture, diagnostic classification, and latent
Markov models. Moreover, mixture modeling is now being
applied in fields ranging from education to brain imaging and
geosciences to robotics. Despite the proliferation of models and
applications that fall within the mixture modeling framework,
there are still new areas and angles to explore and better
understand in order to more fully realize the strengths of this
analytic framework. One such area where limited research has
been disseminated involves nested data structures that are
collected longitudinally. That is, multilevel mixture models are
available to researchers although they have not been discussed as
extensively as other cross-sectional and longitudinal mixture
models. Asparouhov and Muthén (2008) and Kaplan et al.
(2011) presented findings from applications of this type of
model, but additional guidance on the use of these models
may help users better understand their data structures and,
ultimately, make better decisions about their research
questions. One important consideration when using these
models is the ability of the researcher to understand the
magnitude and sources of effects through the decomposition
of variance. This is especially true in models, such as the ones
we present in the next section, that have nested data structure
collected across time.

This is precisely the purpose of this paper. That is, we seek to
1) present and discuss multilevel latent transition analysis, 2)
describe considerations for the use of this model, and 3)
demonstrate a multi-step variance decomposition. The
variance decomposition steps are presented didactically along
with a worked example based on an analysis from the Social
Rating Scale (SRS) of Early Childhood Longitudinal Survey -
Kindergarten (ECLS-K). Several additional notes are important
due to the didactic nature of this paper. First, the latent class
analysis and latent profile analysis differ on the basis of the metric
level of the indicator variables, yet these are conceptually similar
analyses. Latent categorical variables are often referred to as latent
classes regardless of the metric level of the indicator variables. As
such, there are instances where we use “class” and “profile”
interchangeably. For this paper, we are modeling continuous

indicators so the term “latent profile” is most precise, but the
discussion and procedures we present apply to model with
categorical and/or continuous indicators. Second, we
demonstrate the procedures for variance decomposition with a
two-class model for didactic reasons; therefore, any substantive
conclusions about the specific variables or participants used in the
example should be avoided. Third, we used the Grades 3 and 5
SRS scores from restricted-use ECLS-K 1998 datafile; the scores
for Grades 3 and 5 were respectively collected in Spring 2002 and
Spring 2004.

2 INTRODUCTION TO LATENT TRANSITION
ANALYSIS

When using latent class analysis and its extension for longitudinal
data, [latent transition analysis (LTA)], multiple underlying,
homogeneous subgroups can be inferred from a set of
categorical and/or continuous observed variables within a large
heterogeneous data set. Such analyses allow researchers to
statistically treat members of different subgroups separately,
which may provide researchers with more power to detect
effects of interest and closer alignment between statistical
modeling and one’s guiding theory.

In latent class analysis (LCA), membership in one of the
underlying populations is conceptualized as a latent,
categorical variable that is not directly observed. Instead, latent
class membership must be measured using two or more observed,
or indicator, variables, taken as a manifestation of latent variables.
The number of latent profiles underlying a dataset is not known a
priori, and thus, has to be uncovered (Collins and Lanza, 2009).
The process typically involves fitting models that specify different
numbers of profiles in order to determine which model best
approximates the heterogeneous set of data. Each case is assigned
a probability of belonging to each profile based on the alignment
between the characteristics (e.g., response probabilities, means,
variances, covariances) between each case and each profile. When
the characteristics of a case are similar to those of a given profile,
the case has a high probability of being a member of the
subpopulation. When the characteristics of a case are
dissimilar to those for a stated profile, the case has a low
probability of belonging to the profile. Generally, cases are
assigned to the profile to which they have the highest
probability of belonging, which is called modal assignment
(Collins and Lanza, 2009). Ideally, the classification probability
for each person will be high for one and only one profile. An
optimal solution will have high classification probabilities for
each latent class, illustrating that the classes are distinct.

The procedures described above can be applied to cross-
sectional data or data collected at multiple points in time.
LTA, the longitudinal extension of LCA, allows the stability of
an LCA solution to be examined across time. Furthermore, LTA
allows researchers to examine transition patterns among latent
classes across time using one of several strategies. The first
strategy is to regress latent class membership at time t + 1 on
latent class membership at time t, which is analogous to a
multinomial regression. When three or more Waves of data
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collection are completed, this strategy can be done with or
without higher-order effects, which enables a researcher to
explore the lasting direct effects of latent profile membership
on later profile membership through an autoregressive model
(Nylund et al., 2007). However, in this paper we restricted our
investigation to two timepoints for didactic purposes and only a
one lag autoregression structure is possible. A second strategy is
to include a second-order latent class variable that identifies
participants who are most likely to switch latent classes
(i.e., movers) or remain in the same class (i.e., stayers) across
time. Such models have been referred to as a mover-stayer LTA
model. The mover-stayer model is an extension of the Markov
chain model and special case of the mixed Markov model.
Interested readers should see Blumen et al. (1955) and
Goodman (1961) for a thorough presentation of the mover-
stayer model and Vermunt (2004) for a great summary of the
model. The mover-stayer model and its variants could be
considered when certain types of transition are of interested,
such as first marriage or death, where transition back to a
previous state is not possible or when transition is believed to
occur by a random process Vermunt (2004). The mover-stayer
model can be more parsimonious but its selection should
ultimately be aligned with one’s guiding theoretical expectation
and associated research questions.

The modeling strategy chosen has important implications on
the structure of the latent transition matrix, which contains
probabilities of transitioning to another latent class
conditioned on latent class membership at 1) time 1 if only
two waves of data collection occurred or 2) t − 1 if used with more
than two waves of data collection. In the former option, the
transition matrix is unstructured, which allows any transition
pattern to take place. In the latter option, the diagonal of the
transition matrix is constrained to 1.0 among the stayers, which
assigns those participants classified as stayers a transition
probability of zero of switching to another profile (Morgan,
2015).

2.1 Multilevel Latent Transition Analysis for
Longitudinal Nested Data
Although LTA accounts for the collection of data from the same
individuals across time (i.e., time nested within person), the
model can also be extended to account for individuals being
nested within higher level units, such as schools, hospitals,
organizations, etc. In education research, statistical methods
are commonly used that model students nested within schools,
which is the context for the illustration in this paper. In such
cases, the hierarchical structure of organizational data must be
taken into account because independence between observations is
not tenable; that is, students (i.e., level-1 units) are nested within
and share influence of schools (i.e., level-2 units). Thus, multilevel
LTA can be used to estimate the number of latent classes in each
structured unit and the transitions participants make between
classes across time. Finally, the transitions/stability between latent
classes across time can be treated as the outcome in and of itself,
or the transitions/stability can be used as a correlate or predictor
of some other, distal outcome.

Themultilevel LTA can be expressed as a series of multinomial
logistic regressions at level-1 and as a linear regression at level-2
(Asparouhov and Muthén, 2008). To illustrate, consider the
model below that has two latent classes across two time
points. At level-1 the multinomial logistic regression for the
latent classification variable at time 1, C1 � 1, 2, can be
expressed as

P(C1ig � 1) � exp(α1g)
exp(α1g) + 1

, (1)

where C1ig represents the latent class at time 1 for individual i in
group g, and α1g is the intercept of latent class 1 for group g and is
assumed to be normally distributed. The intercept for latent class
2 at time 1 is set to zero for identification because only one
intercept is needed to distinguish two latent classes. The
multinomial logistic regression of latent class at time 2 (C2)
on latent class at time 1 (C1) can be expressed as

P(C2ig � 1
∣∣∣∣C1ig � c) � exp[α2g + cI(C1ig � 1)]

exp[α2g + cI(C1ig � 1)] + 1
, (2)

where α2g represents the latent class intercept at time 2 for
individual i in group g, and c represents the expected change
in logits from themultinomial logistic regression predicting latent
class at time 2 from latent class at time 1. The indicator function
(I(C1ig � 1)) in Eq. 2 demonstrates how the latent regression
parameter c is specific to class 1 which is how class specific
transition probabilities are captured in the model (Asparouhov
and Muthén, 2008; Kaplan et al., 2011). That is, the indicator
function takes on values {0, 1} depending on whether or not latent
class membership at time 1 was equal to 1. Like the latent class
intercept for class 2 at time 1, the latent class intercept for class 2
at time 2 is set to zero for identification. It should be noted the
number of regression weights, c, increases as the number of latent
classes increases. For example, two latent classes implies one c
whereas three classes implies up to four cs. Additionally, the
model above can be extended to incorporate student level
covariates into the transitional structure (Vermunt et al., 1999).

Themultinomial autoregression model above is akin to what is
used in single-level LTA; however, a unique contribution of
multilevel LTA is the incorporation of a latent regression
model of latent class intercepts over time. At level-2, the
random effects of latent class size across schools can be
explained as part of a series of latent linear regression models
such as

α1g � μα1 + εα1 (3)

α2g � μα2 + βα1g + εα2. (4)

The regression in Eq. 3 models the difference in latent class size
across schools at time 1 where α1g is the latent class size in logits
for school g at time 1, μα1 is the average latent class size at time 1,
and εα1 is random effect of latent class size across schools.
Similarly, the regression in Eq. 4 models the differences in
latent class size across schools at time 2, where α2g is the
latent class size in logits for school g at time 2, μα2 is the
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average latent class size at time 2 unconditional on latent
class size at time 1, β is the fixed effect of latent class size at
time 1 on time 2 latent class size, and εα2 is the random effect
of latent class size across schools unique to time 2. The
random effects are commonly assumed to be normally
distributed with unique variance estimates at each
timepoint [e.g., var(α1) and var(α2)]. The level-2 latent
regression of the multilevel LTA model expresses how
latent class sizes change over time among schools. Factors
that influence differences in latent class size over time among
schools can be studied in more detail if level-2 covariates are
included in the model. The incorporation of covariates can be
guided by substantive interest and by information about how
much information can be accounted for by these covariates.
The amount of information that is contained in the level-2
portion of the model can be expressed by different R2-like
measure that can be computed.

The multilevel LTA model has many parameters to describe
the process which generated the differences in observed
characteristics across time, and some of the model features
are directly interpretable whereas other features are less easily
interpreted. In order to help explain the complex features of
the model, various R2-like measures can be computed to
provide information about how the variability in latent class
membership is influenced by 1) time, 2) nested data structure,
and/or 3) individual latent class membership. For example,
Asparouhov and Muthén (2008) and Kaplan et al. (2011)
explicitly described an R2 measure for the proportion of
variance in latent class membership at time 2 that is
accounted for by latent class membership at time 1. And is
readily available for use in single-level LTA as well. This R2

measure is

R2 � c2P(C1 � 1)(1 − P(C1 � 1))
c2P(C1 � 1)(1 − P(C1 � 1)) + π2/3, (5)

where P(C1 � 1) is the probability of being latent class 1 at time 1
and π2/3 is the residual variance associated with the logistic
regression performed at level-1. P(C1 � 1)may also be viewed as
the relative size of latent class 1 at time 1. Although the result in
Eq. 5 is useful, there is more information in a multilevel LTA
model that can be used to gain additional insights into the process
under investigation.

Asparouhov and Muthén (2008) used these other R2-like
measures, such as the proportion of variance in C1 explained
by α1, the proportion of variance in C2 explained by the group
effect at time 1, among others, but they did not describe the steps
necessary to calculate these values. A detailed explanation on how
to obtain such R2-like measures is therefore one of the major
contributions of this work.

One potential limitation of the R2 measure in Eq. 5 is that the
hierarchical structure of the data is ignored, which means that it
may overestimate the effect latent class membership at time 1 has
on latent class membership at time 2. The methods we
demonstrate for decomposing the variance in multilevel LTA
explicitly account for this feature of the data. That is, the variance
decomposition we describe accounts for the nested data structure

by incorporating all model components into the variability in
latent class membership at time 2.

2.2 Considerations for Using Multilevel
Latent Transition Analysis
There are several considerations specific to multilevel LTA that
extend beyond those associated with LCA and LTA. First, one
must consider whether the research question posed requires the
multilevel aspect of the data explicitly incorporated into a
mutlilevel LTA model. Not all questions require that the
nested nature of the data be explicitly modeled (McNeish
et al., 2017). For example, a researcher primarily interested in
transitions of students among latent classes over time may not
need to explicitly account for a school effect if differences among
schools does not influence the students’ transitions. Instead, the
multilevel aspect of the data can be incorporated implicitly
through the use of sampling weights (Stapleton, 2013) or
alternatives such as cluster-robust standard errors (McNeish
et al., 2017). However, the use of multilevel LTA is likely
warranted when researchers believe that characteristics of the
group or school are related to differences in latent class
membership. This is commonly encountered in education and
healthcare applications where between-school and between-
hospital differences, respectively, influence large groups of
participants simultaneously.

In additional to the nested feature of one´s data, another
important consideration is the time scale in which data were
collected. The time scale of data collection may, or may not,
adhere time scale of the transitions that individual may
experience. Collins and Lanza (2009, p. 209–211) expressed
how the transition structure estimated may reveal only chance
transitions due to a underlying structure that transitions very
rapidly (e.g., the example of indicators of depression in the last
week but data were collected one year apart). Therefore,
researchers must think carefully about how observed
transitions among latent classes are related to transitions in
the underlying construct of interest. In multilevel LTA, in
particular, an additional consideration is whether the time
scale of the transition is equal across level-2 units, such as
schools. In healthcare settings, for example, the time scale of
transitioning among depression latent classes may depend in part
on the care received across different clinics if clinics were to have
a general approach to helping patients with, say, depressive
symptoms. As noted above, these considerations should be
applied in addition to those important considerations that
have been identified for LCA and LTA, such as model
selection (Nylund et al., 2007; Tofighi and Enders, 2008;
Morgan, 2015), label switching (Chung et al., 2004; Tueller
et al., 2011), nature of the latent variables (Lubke and Neale,
2008), and incorporation of distal outcome (Lanza et al., 2013;
Bakk and Vermunt, 2016; Nylund-Gibson et al., 2019). An
excellent collection of applied and methodological papers
using these procedures can be found on the Mplus website
(www.statmodel.com/paper.shtml).

Next, we illustrate the use of multilevel LTA and explicitly
model the multilevel nature of the data.
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3 APPLICATION OF MULTILEVEL LATENT
TRANSITION ANALYSIS

3.1 Sample
The data used are a subset of the ECSL-K national dataset
(Tourangeau et al., 2009). The analytic sample for this
demonstration was approximately 7,080 students nested within
approximately 1,100 schools (sample sizes have been rounded to
the nearest 10 in compliance with federal restricted-use data
reporting guidelines). Prior to estimating the multilevel LTA
model, we subset the ECLS-K data file on the students who
remained in the same school from at least Grade 3 to Grade 5. The
average number of students per school was 6.4 (SD � 5.3) and
ranged from 1 to about 30 students.

3.2 Instrumentation
In order to demonstrate the model output and subsequent
decomposition of the model variance, we used the five Social
Rating Scale subscales from the Early Childhood Longitudinal
Survey–Kindergarten (ECLS-K) data. The five major constructs
of interests are: Approaches to Learning (AtL), Self-Control
(SC), Interpersonal Skills (IPS), Externalizing Problem
Behaviors (EPB), and Internalizing Problem Behaviors (IPB)
(Tourangeau et al., 2009). These five constructs of child
behaviors/characteristics are modeled as being reflective of a
child’s need for possible additional behavioral intervention. The
reliability estimates (coefficient α) for these constructs in the
full ECLS-K in spring of fifth grade ranged from 0.77
(Internalizing Problem Behaviors) to 0.91 (Approaches to
Learning). Reading teachers were asked to report how
frequently students exhibited the social skill or behavior
identified by each item. The response scale used a four-point
frequency scale ranging from 1 (Never) to 4 (Very Often). The
same 26 SRS items administered in Grade 3 and 5. A summary
of these raw subscale scores is shown in Table 1.

The raw subscale scores were computed as the average of the
responses to the items on each subscale.

3.3 Procedures
The model was estimated using maximum likelihood estimator
with robust standard errors (MLR) in Mplus v8.4 (L. Muthén and
Muthén, 2017) using 2,000 random starting values and 50 final
stage optimizations. For illustrative purposes, we estimated only a
two-class solution. In practice, additional class enumeration
models would be estimated and compared. For this
demonstration, we elected to not use sampling weights to
reduce the complexity of the example analysis. All inferences
from the following model are restricted to this sample of students

and is not necessarily a representation of the characteristics of
students more broadly.

The path diagram for the multilevel LTAmodel is presented in
Figure 1. We should note that the path diagram includes variance
components to aid in interpretation of variance decomposition
discussion below.

The major inferential goals are the evaluation of the transition
parameters (c, β) and the variability in latent class size across
schools (var(α1), var(α2)).

3.4 Results
The resulting latent class patterns are shown in Table 2. In the
estimation, the latent class structure was fixed to be invariant
across time. Latent class 1 is characterized by students who had
lower ratings on the three positive constructs (i.e., AtL, SC, and
IPS) and higher scores on the constructs reflecting problem
behaviors (i.e., EPB and IPB). Latent class 2 was characterized
as having higher scores on the three positive constructs (i.e., AtL,
SC, and IPS) and lower ratings on the problem behavior
constructs (i.e., EPB and IPB).

The structural model parameters are described in Table 3.
At Time 1, Class 1 was the smaller of the two latent classes,
making up about 32% of the sample, whereas Class 2 made up
about 68% of the sample. Due to the multilevel nature of the
data, the parameter estimate, var(α1) � 0.64, offers additional
insights into the latent class structure at time 1. That is, the
estimate of 0.64 suggests the proportion of students in Class 1
and Class 2 at time 1 varies depending on the school. In other
words, Class 1 contains about 32% of the students at time 1, on
average, but this percentage differs across schools with a 95%
probable range of 9–69%. The larger the variance estimate, the
greater the school effect and greater range of relative class sizes
across schools.

The transition component of the multilevel LTA model is
characterized by the parameters c (c � 2.93, SE � 0.11, p< 0.001)
and β (β � −0.19, SE � 0.11, p � 0.077). From these two
parameters, a transition matrix (τ) is constructed to help
explain the overall effect of time. The details of computing
these values are given in the Multilevel LTA Variance
Decomposition section; but for now, these results are reported
in Table 4 along with the interpretation. We found that the, on
average, about 13% of students who were classified in Class 2 at
Time 1 (i.e., third grade) transitioned into the Class 1 at Time 2
(i.e., fifth grade). Of those students classified in the Class 1 at
Time 1, approximately 26% transitioned into Class 2.

As alluded to above, there are numerous calculations necessary
to extract important modeling results that guide interpretation.
The intraclass correlation (ICC) estimate for this model indicates

TABLE 1 | Summary of observed data.

Year AtL SC IPS EPB IPB

Time 1/Grade 3 3.10 (0.45) 3.24 (0.35) 3.10 (0.40) 1.63 (0.32) 1.62 (0.28)
Time 2/Grade 5 3.10 (0.45) 3.23 (0.36) 3.12 (0.42) 1.66 (0.35) 1.60 (0.26)

Note. N � 7,080, Number of Schools � 1,100, Mean (variance). AtL � Approaches to Learning; SC � Self-control; IPS � Interpersonal Skills; EPB � Externalizing Problem Behaviors; IPB �
Internalizing Problem Behaviors.
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that about 16% proportion of variability in class assignment at
Time 1 can be explained by the school effect. Using the variance
decomposition, 10.4% of the variability in latent class
membership at Time 2 can be accounted for by the school
effect at Time 1. However,15.8% of the variability in latent
class membership at Time 2 can be accounted for by the
school effect at Time 2. The incorporation of school level
covariates into Eq. 3 and Eq. 4 could give insight into what
school characteristics are associated with latent class membership

at Time 2 by investigating the change in the previous two R2

measures in models estimated with and without the covariate
included. At the student level, the class assignment at Time 1
accounted for about 30.3% of the variability in class assignment at
Time 2. The unexplained variability in class assignment at Time 1
also accounted for about 53% of the variability in class assignment
at Time 2. Overall, the multilevel LTA model without any
covariates explained approximately 46.5% of the variance in
class assignment at Time 2. Finally, the inclusion of the

FIGURE 1 | Path diagram of amultilevel latent transition model proposed for ECLS-K Social Rating Scale over twowaves. Note. Subscripts indicate the timepoint of
the data. AtL � Approaches to Learning; SC � Self-control; IPS � Interpersonal Skills; EPB � Externalizing Problem Behaviors; IPB � Internalizing Problem Behaviors; αt �
random intercept for time t, so α1 is the random intercept time 1; Ct � latent class at time t, which takes on values Ct � 1, 2 (For ease of notation, let c � 1, 2 represent
latent class at time 1 and let d � 1, 2 be the latent class at time 2); β � the regression weight associated of random effect at time 1 predicting the random effect at
time 2; c � the change in logits of the latent response tendency variable at time 2 for individuals in class 1 at time 1 (c only applied to cases that are in class 1 at time 1
which is captured by using an indicator function I(C1 � 1) which is a Bernoulli random variable); the residual variance of the level-1 latent response tendency variable
relative to the reference class, C*

t is
π2

3 � 3.29 which is the variance of the logistic distribution.

TABLE 2 | ECLS-K 2-class model of social rating scale measurement model.

Item Means Variances (Time 1/Time 2)

AtL SC IPS EPB IPB AtL SC IPS EPB IPB

Class 1 2.44 2.60 2.45 2.19 1.87 0.23/0.23 0.15/0.15 0.19/0.19 0.18/0.19 0.24/0.22
Class 2 3.43 3.56 3.45 1.37 1.47 0.23/0.23 0.15/0.15 0.19/0.19 0.18/0.19 0.24/0.22

Note. N � 7,080. AtL � Approaches to Learning; SC � Self-control; IPS � Interpersonal Skills; EPB � Externalizing Problem Behaviors; IPB � Internalizing Problem Behaviors.
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multilevel structure explained about 16.2% of the variability in
latent class membership at Time 2.

4 MULTILEVEL LATENT TRANSITION
ANALYSIS VARIANCE DECOMPOSITION

Clearly, as indicated above, examining the proportion of
variability that can be attributed to each component of the
model can aid in interpreting the model effects. Although the
parameter estimates provides some indication of the magnitude
of model effects, the scale can make them difficult interpret.
Furthermore, it is customary in traditional regression to report
the proportion of variability explained by the model, and in
multilevel models reporting the proportion of variability that is
attributable to higher- and/or lower-level units can greatly
inform inferences about the magnitude of effects of those
units on the outcome(s) of interest. In this didactic model,
for example, the estimated regression weight for the effect that
latent class membership in Grade 3 had on latent class
membership in Grade 5, controlling for school-level effects,
was 2.93. Is this effect small, moderate, or large? It is difficult to
make such a determination with the effect on this metric.
Decomposing the variance and reporting the effect as a

percentage makes the effect much easier to interpret. That is,
the proportion of variability of C2 explained by C1 is about
30.3%. Considering that the model explained about 46.5% of the
total variability in C2, school-level variables accounted from
16.2% of the variance in C2. Thus, the school-level variables
accounted for more than one-third of all the variability
explained by the model.

Due to the didactic nature of this paper, we refrain from
commenting on any substantive conclusions regarding the size of
this effect; rather, we seek to demonstrate how the variance
decomposition produces a more intuitive, or at least familiar,
effect size estimate. That said, certain R2-like measures could be
calculated for various effects in the model, including at each
timepoint (i.e., transition) and for the overall model. Next, we
demonstrate the steps required in the decomposing the model
variance using the parameter estimates the multilevel LTA model
(μα1 � −0.76, μα2 � −1.91, var(α1) � 0.64, var(α2) � 0.97,
c � 2.93, and β � −0.19) to calculate the effect sizes reported
in the Results section as estimates of the proportions of variance
explained in latent class membership at Time 2. Before presenting
the steps in variance decomposition, we provide a section below
to demonstrate the variance component derivations. The
derivations are included to inform interested readers regarding
the scale of the variances in the decomposition.

TABLE 3 | ECLS-K 2-class multilevel LTA model of social rating scale results and interpretation.

Parameter Estimate (SE) Interpretation

μα1 −0.76 (0.05) The average logit that separates latent class size among schools. Converting to probability scale,
exp(μα1 )

1+exp(μα1 )
� 0.32, means

that for an average school, individuals have a 0.32 probability of being identified as belonging to class 1 at time 1
μα2 −1.91 (0.08) The average latent class size at time 2 unconditional on latent class size at time 1. This cannot be directly used to obtain the

average latent class size at time 2a. The transition probabilities must be incorporated
γ 2.93 (0.11) γ is the change in logits from time 1 to time 2 for an individual in latent class 1. A large (absolute value) of c indicates that the

relative size of latent classes is likely to change over from time 1 to time 2
β −0.19 (0.11) The change in logits from time 1 to time 2 for a school in latent class 1. The larger (in absolute value) of β indicates that the

relative size of the latent classes is influential in determining relative size of classes over time
var(α1) 0.64 (0.09) The school effect on the relative size of each latent class among school at time 1. Using μα1 � −0.76 and var(α1) � 0.64, a

95% plausible range for the proportion of students in class 1 across school is (0.09, 0.69)
var(α2) 0.97 (0.13) The variability in relative class size among schools at time 2 that is unexplained by school differences at time 1

Note. Model fit information p � 36, LL � −49142, AIC � 98338, BIC � 98516, Entropy � 0.887.
aLatent class proportion/size at Time 1 and Time 2 are typically provided as output in the analysis so there is no need to hand compute these statistics.

TABLE 4 | Transition structure interpretation for an 2-class multilevel LTA model.

Parameter Probability (logit) Interpretation

τ11 0.74 (1.16) Individuals in class 1 at time 1 have 0.74 probability of being classified as belonging to class 1 at time 2
τ12 0.24 (0) Individuals in class 1 at time 1 have 0.24 probability of being classified as belonging to class 2 at time 2. Logit is fixed to 0 for

identification
τ21 0.13 (−1.91) Individuals in class 2 at time 1 have 0.13 probability of being classified as belonging to class 1 at time 2
τ22 0.87 (0) Individuals in class 2 at time 1 have 0.87 probability of being classified as belonging to class 2 at time 2. Logit is fixed to 0 for

identification
Transition (τ) matrix The diagonal of the τ matrix contains the probability of the being identified in the same latent class at both timepoints. The off

diagonal elements are the probabilities of being identified as a different class
— C2 � 1 C2 � 2 —

C1 � 1 0.74 0.26 —

C1 � 2 0.13 0.87 —
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4.1 Variance Component Derivations
To derive the variance components, the structural equations associated
with the path diagram are needed. The structural equation are:

α1g � μα1 + εα1g (6)

α2g � μα2 + βα1g + εα2g (7)

C*
1ig � α1g + εC*

1 ig
(8)

Cp
2ig � α2g + cI(C1ig � 1) + εCp

2 ig
. (9)

The variances associated with these structural component are
defined as follows. The variance of α1g , the random effect at time
1, reduced the variance of the error term only, as μα1 is a
constant.

V(α1g) � V(μα1 + εα1g) � σ2α1 . (10)

The remaining pieces are slightly more complex. For the variance
of the random effect at time 2, a long form derivation is

V(α2g) � V(μα2 + βα1g + εα2g)
� V(βα1g) + V(εα2g) + 2COV(βα1g , εα2g)
� β2V(α1g) + V(εα2g)
� β2σ2α1 + σ2α2 .

(11)

It should be noted that we assumed that the covariance between
the time 1 random effect and the time 2 random effect is 0.

The variance of the latent response tendency variable relative
to the reference class 2 is defined as follows.

V(C*
1ig) � V(α1g + εC*

1ig
)

� V(α1g) + V(C*
1ig)

� σ2α1 +
π2

3
.

(12)

Again, we assumed that the error terms between the random
effect at level 2 and the latent response tendency variable residual
variance for the logistic regression have a covariance of 0. The
residual variance of the latent response residual variance is a
known constant of π2

3 ≈ 3.29.
Lastly, the variance of the latent response tendency variable for

time 2 is defined as

V(Cp
2ig) � V(α2g + cI(C1ig � 1) + εCp

2ig
)

� V(α2g) + V(cI(C1ig � 1)) + V(εCp
2ig
)

� β2σ2
α1
+ σ2

α2
+ c2Pr(C1ig � 1)(1 − Pr(C1ig � 1)) + π2

3
.

(13)

Again, the assumption of a covariance of 0 among the terms is
imposed. The unique part of obtaining the variance of
the latent response variable at time 2 is that an indicator
function is a part of the structural equation. An indicator
function, I(.), is Bernoulli random variable with variance of
Pr(condition true) × (1 − Pr(condition true)). Therefore, the variance

of the indicator function in this case is a function of the size of class
1 (i.e., V(I(C1ig � 1)) � Pr(C1ig � 1) × (1 − Pr(C1ig � 1))).

To summarize, the variance components are

V(α1g) � σ2
α1

V(α2g) � β2σ2
α1
+ σ2

α2

V(Cp
1ig) � σ2

α1
+ π2

3

V(Cp
2ig) � β2σ2

α1
+ σ2

α2
+ c2Pr(C1ig � 1)(1 − Pr(C1ig � 1)) + π2

3
.

4.2 Compute R2-Like Measures
The R2-like measures that we can compute to help interpret the
results from ML-LTA can therefore be defined as follows. First, a
useful initial measure is the intraclass correlation, defined at time 1 as

ICC � σ2α1
σ2
α1
+ π2

3

. (14)

The ICC above will be a useful component to disentangle the
variance of the latent response tendency variable at time 1. The
R2-like measures are as follows.

The estimate of the proportion of variance in latent class
membership at time 2 (C*

2, the latent response tendency on logit
scale) explained by the random effect at time 1 is

R2
1 �

V(α1g)
V(C*

2ig)
. (15)

The estimate of the proportion of variance in latent class
membership at time 2 (C*

2) explained by residual variance of
α2 is

R2
2 �

σ2
α2

V(C*
2ig)

. (16)

The estimate of the proportion of variance in (C*
2) explained by

residual of (C*
1) is

R2
3 �

(1 − ICC) × V(C*
1ig)

V(C*
2ig)

. (17)

The estimate of the proportion of variance in C*
2 explained by

C*
1 is

R2
C1

� c2Pr(C1ig � 1)(1 − Pr(C1ig � 1))
V(Cp

2ig)
. (18)

The proportion of variance in C*
2 explained by the model is the

combination of all the variance components in the denominator
minus the residual variance, that is

R2
model �

β2σ2α1 + σ2α2 + c2Pr(C1ig � 1)(1 − Pr(C1ig � 1))
β2σ2

α1
+ σ2

α2
+ c2Pr(C1ig � 1)(1 − Pr(C1ig � 1)) + π2

3

.

(19)
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Lastly, the proportion of variance in C*
2 explained by adding the

level-2 structure can be estimated as

R2
add �

β2σ2α1 + σ2
α2

β2σ2
α1
+ σ2

α2
+ c2Pr(C1ig � 1)(1 − Pr(C1ig � 1)) + π2

3

.

(20)

It should be noted that similar decomposition is possible for
higher number of latent classes at each time point. However, the
decomposition is more involved given the complexity of more
transitions and random effects at level-2. Methods for expanding
the results described above to k-class solutions are built on ideas
similar to the random effects models for multinomial outcomes
(Hedeker, 2003). We are currently developing the extension to
three latent classes and intend to identify some concise patterns
that will allow for relatively straightforward variance
decomposition with more latent classes.

5 CONCLUSION

In this paper, we have described multilevel latent transition
analysis as an approach to investigating heterogeneous, nested
data. This model has only recently seen increased use in
psychological and educational research, but its use is still
rather scarce. Asparouhov and Muthén (2008) introduced the
multilevel LTA model more than a decade ago and have made
recent contributions with LTA models that incorporate random
intercepts (Muthén and Asparouhov, 2020). Thus, advances are
being made with models and parameterizations to accommodate
more complex data structures, nested longitudinal data from
multiple underlying subpopulations (i.e., mixtures). When
considering alternative models, the choice of modeling
approach should, of course, be determined by one’s guiding
theoretical expectation(s) about the variables of interest. That
said, models are also useful to the extent that they are
interpretable. As noted, analysis of one’s data using multilevel
LTA can also help researchers classify individual cases into
homogeneous groups in order to better understand complex
sets of information. The use of classification of cases into
homogeneous groups is important in the social sciences where
identifying smaller subsets of like cases may be of particular
interest. In presenting multilevel LTA, our goal was to increase
researchers’ knowledge and confidence in using these models
because nested data are ubiquitous in many educational and
psychological research settings.

In order for this goal to be realized, the mechanics of the model
and effect size estimation must be transparent. We believe this
paper has served an important role in this respect because

reporting the results in terms of proportions of variance
explained by the various parts in the model is consistent with
regression analysis, including multilevel modeling, and thus more
familiar to a broader research audience. The contribution of this
detailed decomposition of the variance components gives
researchers another dimension for interpreting the results
from multilevel LTA. The decomposition shown here also
adds to the limited research of nested longitudinal data
structures by providing guidance on how to understand one’s
complex data structure.

Being able to interpret the model results and effect size
estimates is the necessary foundation for using multilevel LTA
to study a broader set of phenomena. The model demonstrated
here included two classes across two waves of data collection,
which may generalize to the many research studies that use
pre-post study designs in the social sciences, for example. The
use of the multilevel LTA could also be expanded to include
other types of relationships, such as using the smaller subsets
of homogeneous groups as an outcome or predictor for more
investigations (Nylund-Gibson et al., 2019; Bakk and Kuha, in
press). That is, latent class membership could be used to
predict a distal outcome. For example, latent class
membership could be modeled as a predictor of, say, high
school graduation or academic achievement to investigate how
early identification of problem behaviors relates to key
educational milestones. In summary, multilevel LTA can be
useful for investigating a longitudinal nested data structures.
Researchers can then use the methods we described here to
gain even more information about the within- and cross-level
relationships among level-1 latent class membership and level-
2 cluster effects. Future work is needed to provide relatively
straightforward variance decomposition or models with more
latent classes and across more timepoints.
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