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This study reports how a validation argument for a learning trajectory (LT) is constituted
from test design, empirical recovery, and data use through a collaborative process,
described as a “trading zone” among learning scientists, psychometricians, and
practitioners. The validation argument is tied to a learning theory about learning
trajectories and a framework (LT-based data-driven decision-making, or LT-DDDM)
to guide instructional modifications. A validation study was conducted on a middle
school LT on “Relations and Functions” using a Rasch model and stepwise
regression. Of five potentially non-conforming items, three were adjusted, one retained
to collect more data, and one was flagged as a discussion item. One LT level description
was revised. A linear logistic test model (LLTM) revealed that LT level and item type
explained substantial variance in item difficulty. Using the LT-DDDM framework, a
hypothesized teacher analysis of a class report led to three conjectures for
interventions, demonstrating the LT assessment’s potential to inform instructional
decision-making.
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INTRODUCTION

Learning trajectory (LT)-based diagnostic assessments represent an alternative approach to
traditional domain-sampling assessments (Briggs and Peck, 2015) in two fundamental ways: 1)
they assess progress along a set of levels in an ordered sequence from less to more sophisticated,
and 2) they are better positioned to formatively guide instructional modifications to improve
student learning during, not after, instruction. Students and teachers can use data from LTs to
find out what a student currently knows, and where that knowledge is in relation to what was
learned prior and what has yet to be learned. Learning trajectories can vary in the grain size of the
levels. A finer grain-size is useful in LT-based diagnostic assessments within the context of
classroom assessments which take place during instruction as a means to provide formative
feedback and guide instructional modifications. A finer grain size can ensure the LT is sensitive
to differences in student thinking as they move from naive to more sophisticated understanding
of target concepts. Teachers, equipped with these fine-grained data, can then interpret these data
to make ongoing modifications to instruction in order to support and improve students’
learning.
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It is a daunting effort to undertake validation of a diagnostic
formative assessment system based on LTs at scale, if that system
fundamentally transforms practice into a data-driven enterprise.
This is especially the case if the data imply changes in curriculum,
instruction, assessment, and/or professional development. For
example, one such system, Math-Mapper 6–8 (MM6-8 can be
accessed at sudds.co) addresses nine big ideas of middle school.1

which rest on 60 constructs with underlying LTs, grouped into 26
clusters of related constructs (Confrey Gianopulos, McGowan,
Shah, and Belcher, 2017). The data are immediately available to
students, teachers, and administrators, and are interpreted in
light of the curriculum, instruction, and professional learning
offerings. Because of its formative goals, to be effective, MM6-8’s
value as a feedback system driving instructional improvement
must be of primary importance in considering its validity and that
of its assessments. Further, as a form of classroom assessment
(Shepard et al., 2018), the criteria for validity, reliability, and
fairness must be adapted towards low-, rather than high-stakes
decision-making.

In this article, we illustrate how validation of such a system
rests squarely on three components, LTs that form the system’s
underlying empirically-based framework, a relevant
psychometric model, and a framework for data-driven
decision-making to guide instructional use of LT-based
assessments. Having worked within a Design Based
Implementation Research approach (Fishman et al., 2013) over
5 years and across multiple partners to developMM6-8, we report
that ongoing collaboration among learning scientists (LS),
psychometricians, and practitioners is required to coherently
tie the three components together. These collaborations are
unlike the interactions often prescribed in the literature for
building scales or measures (Carney and Smith, 2017; Wilmot
et al., 2011; Wilson et al., 2005), which often involve LS and
disciplinary experts early in the process (to review a proposed
trajectory), and then involve practitioners only as users and
implementers at the end of the process. Such a view of a LT
development, writes Lehrer, “tends to privilege conceptual
development and understates the wrenching work of aligning
disparate communities and interests at its service.” (Lehrer, 2013
p. 183). He instead observed that in his team’s work on LTs, “The
movement from initial conjectures from a more stabilized
progression involved both coordination and conflict among
disparate professional communities, including teachers,
learning researchers, and assessment researchers.” (ibid, p.173).
He draws from Galison (1997), a philosopher of science, to
describe the collaborative interactions as a “trading zone,”
where each community knows its own roles and obligations,
but uses “boundary objects” to gain a shared understanding of the
LTs and related items across the other communities.

We developed a formative diagnostic assessment system for
the full scope of topics in middle grades mathematics. We
undertook this size effort to provide mathematics teachers
with systematic access to LTs that synthesize the literature

from the learning sciences. Its goals include strengthening
teachers’ knowledge of: 1) the mathematics underlying the
middle school content, 2) the meaning of LT-levels, and 3)
how to interpret student responses within the hierarchy of the
LT-levels. An overarching goal was to then leverage the power of
digital technology to administer, score, and report on LT-based
assessments in order to provide LT-based diagnostic feedback in
real time. In such a dynamic context, we experienced this trading
zone as both an exhilaration and a burden, which only deepened
our commitment to move the field forward on the issue of how to
conceptualize validation with such complex communities of
ongoing practice (Latour, 1999).

To this end, in this paper, we illustrate (working with a single
LT) how the relevant collaborative perspectives need to be taken
into consideration across the span of a validation argument. We
illustrate that an LT (its hierarchical structure, levels, and items)
serves as a boundary object and it is understood differently by
different participants, all of whom exert influence on its
emergence and on its ongoing evolution. To present the case,
we 1) describe the LT in its most current state, 2) describe the
underlying set of claims that tie its development to classroom
practice, 3) report data from the annual validation, and 4)
describe one class’s data report and what is expected of
teachers from within a LT-data-driven decision-making (LT-
DDDM) model. Our goals are to illustrate the depth of
content- and learner-based distinctions required for serious
progress towards instructional modifications for improved
student learning, and to emphasize why intensive participation
of all groups is required throughout the process.

Before presenting the case as a validation study of a diagnostic,
formative assessment, we ground our work in the context of LTs
and briefly discuss the meaning of validation within the
classroom assessment context.

THEORETICAL FRAMEWORKS

Learning Trajectories
LTs are empirically supported descriptions of patterns of student
reasoning as students learn and as their understanding of target
ideas progresses in terms of sophistication (Clements and Sarama
2004; Confrey et al., 2014b; Lehrer and Schauble 2015). LTs are
not stage theories (i.e., they do not imply complete mastery of
earlier levels before progressing to a target idea), nor are they
logical deconstructions of formal disciplinary concepts (Confrey
et al., 2014a; Lehrer and Schauble, 2015). Their ordering, from
least to most sophisticated, rests on a specific theory of learning,
expressed by Piaget (1970) as “genetic epistemology” or by
Freudenthal (1987) as “guided reinvention”. LTs are thus
positioned within a constructivist view of learning. When
students are provided with carefully ordered tasks and asked
to describe their thinking with others (e.g., an interviewer or
peers) as they solve them, patterns emerge on beliefs they express,
reasons, strategies, and choices of representations. LTs are
grounded in patterns of student thinking resulting from study
of students’ interactions with such “epistemological objects”.
Students’ movement towards more difficult tasks requires

1It is currently being expanded to include topics from Algebra 1, adding two
additional big ideas
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them to engage in a process Piaget called “reflective abstraction”,
critical to the development of mathematical reasoning. LTs, for
our team, are likened to pathways up a climbing wall with
differing points of entry, but with predictable handholds,
footholds, and obstacles (Confrey and Toutkoushian, 2019).
Levels can be viewed as likely landing places that indicate
progress towards the target construct. LTs also draw on socio-
cultural perspectives in that they allow for students to enter from
various points dependent on their prior knowledge and cultural
experiences. For teachers to use LTs, they need to become
sensitive to students’ expression of these different
epistemological objects at each level and to support their
emergence as a student moves between levels.

General Assumptions About an LT
Measurement Model
Progress levels (1 through n) for an LT are designed to reflect
increases in sophistication of mathematical reasoning, with upper
progress levels and their items being more challenging for most
students to learn than lower progress levels for a given construct
and their items. We anticipate that, on average across many
students, the difficulty of the items measuring progress levels will
monotonically increase with the levels. We do not predict, nor
necessarily desire, that all items at one level of an LT are less
difficult than all items at the next level (i.e., a practical implication
that LTs do not comprise a stage theory model). There are at least
two reasons to allow for substantial variation in item difficulty
within a level, and for the overlap of variation of neighboring
levels. Firstly, in mathematics, cases associated with a specific
level can legitimately vary in difficulty based on many factors, and
secondly, students’ performance on these items can be influenced
by instructional factors, including opportunity to learn. These
considerations led us to distinguish three categories of variability
that affect the difficulty of items: intra-level variation (“Intra-
LV”), inter-level variation (“Inter-LV”), and construct-irrelevant
variation (“Irrel-V”) (Confrey and Toutkoushian, 2019). If we
encountered a situation where on average, items are more difficult
for an earlier level than a later level, and we have ruled out Irrel-V,
then we would aggressively seek an explanation based on the
mathematical choices affecting the complexity of the problem (as
related to the meaning of the level) or instructional practices
shared across lots of teachers. If none could be found,
adjustments to the levels would be considered.

A Validation Framework and Argument
The concept of validation began with the articulation of various
types of validity (content, construct, criterion, and consequential)
and evolved into “an integrated evaluative judgment of the degree
to which empirical evidence and theoretical rationales support
the adequacy and appropriateness of inferences and actions based
on test scores” (Messick, 1989, p. 13). It has further evolved to
require an interpretive argument that provides the necessary
warrants for the propositions and claims of those arguments
(Mislevy et al., 2003; Haertel and Lorie, 2004; Kane, 2006).

Pellegrino et al. (2016) identified three components for
constructing a validation argument for classroom assessments:

cognitive, instructional, and inferential. We adapted and
elaborated on their framework to create a validation
framework tailored to MM6–8. The modifications of this
approach for MM6–8, and applications of a principled
assessment design perspective (Nichols et al., 2016) are
described in further detail in Confrey and Toutkoushian
(2019) and Confrey et al. (2019b).

Our validation argument is specified by a chain of claims
about the LT structure with respect to measurement theory and
the related classroom use of data by teachers and students. The
type of evidence necessary for such a validation argument differs
from that for high-stakes assessments, in part because it is
undergirded by a theory of action in the classroom: the
claims need to be actionable and provide evidence of the
impact on instruction. In this article we discuss the claims
that span from the structure of the LT to the use of its
assessment data in the classroom, and provide samples of the
associated evidence (Table 1).

Together, these claims provide a chain of reasoning from
observed item scores to intended interpretations: if the internal
structure of the item pool sufficiently reflects the constructs and
LTs of the learning map, the heatmaps will be accurate
representations of student knowledge and understanding
(Claims 1–3), and the final steps in the argument will depend
on a teacher’s ability to interpret data from the heatmap or
compound bar displays to modify instruction (Claims 4–5) to
improve student learning outcomes (Claim 6).

After observing teachers’ challenges with accurate and precise
data interpretation of MM assessments (Confrey at al., 2018;
Confrey and Shah, 2021; Persson and Ciliano, 2019b), we
developed a framework for “LT-based data-driven decision-
making” (LT-DDDM) (Confrey and Shah, 2021) (Figure 1).
We adapted and modified Hamilton et al. (2009) data-use
cycle to address the specific issues around LT-based
assessments and included an additional component for
reassess and review as means for teachers to evaluate the
success of their evidence-based instructional modifications.

This specific validation study will first focus on Claims 1–3,
and will illustrate how the psychometric analysis was
complemented with a learning science analysis of the
potentially non-conforming items. This will be presented in
the form of four questions accompanied by procedures for
investigation, results, and discussions. To illustrate the basis of
claims 4 and 5 in the validation argument, data from one
authentic heatmap will be analyzed to illustrate the intended
use of the LT-DDDM content- and learner-centered elements.
Claim 6 has been discussed elsewhere (Toutkoushian et al., 2019);
the two aforementioned analyses illustrate the importance of
building, validating, using, and refining LTs as a robust
collaborative activity conducted in trading zones.

A VALIDATION STUDY

Having defined the foundational theoretical object (learning
trajectories), discussed its measurement, and described the
validation argument, we document a validation study for one
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construct, “Relations and Functions.” The overall research
question is:

To what degree can we provide a teacher with accurate
and valid data on her class’s progress along a learning
trajectory on Relations and Functions, and how might a
teacher use these data for the purpose of adjusting and
improving subsequent instruction to meet the students’
needs?

We begin by describing the LT levels, the research sites from
which the data were collected, and then present the results and
discussion of five more specific research questions associated with
the claims.

An LT for “Relations and Functions”
In middle grades mathematics, the topic of functions, is typically
introduced using two contrasting approaches: a set-theoretic
approach and qualitative graphing. The first builds up the

concept of a function from discrete cases, while the second
begins with curve sketching of continuous situations. We
position these two constructs as a pair within our first cluster
in Algebra as Functions within our diagnostic software
application, and have chosen to focus on one construct,
“Relations and Functions” LT (set-theoretic approach;
Table 2) for this validation study. The construct is aligned to
the CCSS-M Standards, e.g., the first six (of seven) levels of this
construct align to 8.F.A.1 and 8.F.A.22. The seventh level aligns to
a high school standard and builds on the earlier levels (no data for
level 7 is yet available in our middle grades work).

The set-theoretic approach introduces various forms of
mappings of one set to another at Level 1. These mapping
experiences involve a variety of representations (mapping
diagrams, coordinate pairs, or tables of values) and types of
mapping [one-to-one (1–1), many-to-1, 1-to-many, and many-
to-many]. At level 2, students can deconstruct a mapping to
distinguish and name a set of the values used as inputs (the
domain) from the outputs (the range). At level 3, students extend
their reasoning about the types of mappings from L1, to new
representations such as graphs and context-based descriptions.
This extension from discrete and finite cases to potentially
continuous and/or infinite cases requires a shift in reasoning
both for graphs and for contextual situations. For graphs,
students have to analyze points in terms of mappings (such as
those associated with the vertical/horizontal line test); for
contexts, they must reason about the uniqueness (or not) of
the relationship between inputs and outputs. At level 4, the
concept of a function is differentiated from a relation as
encompassing only those mappings which are one-to-one or
many-to-one, but not one-to-many or many-to-many.
Students at this level can distinguish functions from relations
presented as mappings, and in tables and graphs, with and

TABLE 1 | Chain of claims and evidence for MM6-8 assessments’ validation argument.

Claim Evidence

1. Awell-fit empirical model that accounts for structures inherent in the clusters and the data will
yield optimal estimates of item difficulty and person ability

Analysis of unidimensionality, comparison of IRT models

2. Overall, the empirical difficulty of items will vary positively with level (positive correlation) Sequential Regression, Spearman rank correlation, and Explanatory Model
Analysis

3. Empirical item difficulties will vary within an LT level in ways closely associated with the
meaning of the level; construct-irrelevant variance can be minimized

Analysis of potentially non-conforming items

4. On class- (or multi-class) level reports (such as heatmaps or compound bar displays),
ordering the levels (and the items by difficulty within the levels) will reveal relative strength of
students’ performances across items and levels and across the class or classes

Observations of teachers’ interpretations of heatmaps and/or compound
bar displays

5. Based on the data on the students’ performance by level, teachers target instruction
appropriately

Observations of data reviews and subsequent instruction

6. Based on teachers’ targeting instruction, students demonstrate learning gains Examination of student learning gains across tests and retest (or pre- and
posttest) by teacher

FIGURE 1 | Learning trajectory-based, data-driven decision making (LT-
DDDM) framework (from Confrey and Shah, 2021).

2Understand that a function is a rule that assigns to each input exactly one output.
The graph of a function is the set of ordered pairs consisting of an input and the
corresponding output. Compare properties of two functions each represented in a
different way (algebraically, graphically, numerically in tables, or by verbal
descriptions). For example, given a linear function represented by a table of
values and a linear function represented by an algebraic expression, determine
which function has the greater rate of change
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without context. At level 5, students can identify domains
and ranges given familiar equations. In transitioning to level 6,
the students can draw on their prior experience in applying
unary operations to numbers to take absolute values or find
squares or cubes. They apply these operations to sets of inputs
and generate absolute value, squaring, and cubing of the inputs
as outputs. Thus, the variable begins to be used symbolically in
a mapping (e.g., x→ x2) and is transformed from an “unknown”
to a “quantity that varies”, a major cognitive transition
fundamental to preparing for functional reasoning (National
Research Council, 1998). Students can analyze multiple
representations to describe domains and ranges. At Level 7,
students are introduced to the use of functional notation,
where the function (as a mapping of a domain to a range) is
named as f, and f is applied to a value of x to produce a value in
the range.

In learning the increasingly sophisticated ideas in a LT,
students make a number of predictable errors. Some of these
rise to the level of a misconception, a systematic error, reached
through a particular form of reasoning that is compelling to
students because it has an element of partial correctness. Table 2
also displays a list of misconceptions associated with the Relations
and Functions LT. Misconceptions can vary from being narrow,
“reverses the domain and the range” to being quite broad,
“overgeneralizes a rule from too few cases”. They are an
important resource in item construction: one wants to provide
data to students and teachers when misconceptions surface.

MATERIALS AND DATA COLLECTION
METHODS

Research Sites
The data for the study were collected during MM6-8 field-testing
(2016–20), conducted in four districts, at six partner schools with
1:1 computing. The districts varied in size, ethnic diversity, and
socio-economic status of student families. Teachers in all partner

schools received an initial 1.5 days of professional development
on LTs and the use of MM6-8. Many schools opted to collaborate
with the research team on classroom data reviews and
professional learning community (PLC) data reviews. Some
schools requested specific assistance with the content; with
those we collaborated over content-specific design studies
(Cobb et al., 2003, Confrey, diSessa; Lehrer et al., 2014). A
brief overview of the districts is provided in table 3.4

Data Sources: Diagnostic Assessments
LT-based assessments are situated within MM6-8, a digital
diagnostic system that includes a hierarchical learning map and
an assessment and reporting system. The middle grades learning
map comprises 60 LTs and their related assessments. MM6-8’s
assessments are administered during the course of instruction of a
unit or topic. Most teachers administer a test about two-thirds of the
way through their instructional unit, allowing sufficient time tomake
any changes to instruction.

Teachers can choose to administer assessments at the cluster-
or construct-level. Assessments are digitally administered, consist
of 8–12 items, and take between 20–30 min to complete. Cluster
tests contain multiple, pre-equated forms with common items
that are sampled evenly across the levels of the constructs among
the different forms to cover the full LTs at a class level; there is an

TABLE 2 | Relations and Functions learning trajectory levels and misconceptions.

L1 classifies finite and discrete relations represented in mapping diagrams, coordinate pairs, or tables of values as one-to-one (1–1), many-to-1, 1-to-many, and many-
to-many (Grade 8)
L2 Given relations represented by finite mapping diagrams, coordinate pairs, or tables of values, identifies their domain and range (Grade 8)
L3 Given graphs or verbal descriptions of two-variable relations, classifies them as 1–1, many-to-1, 1-to-many, or many-to-many (Grade 8)
L4 Defines a function as a relation which is 1–1 or many-to-1, but not 1-to-many or many-to-many, and applies the definition to discrete relations, verbal descriptions of two-
variable relations, or graphs (Grade 8)
L5 Given verbal descriptions of two-variable relations, graphs, or equations for linear functions, identifies their domain and range [including contextual restrictions] (revised3)
(Grade 8)
L6 Identifies domain and range for function mappings such as x→ x2 using familiar symbols such as those for absolute value, and powers with and without context (Grade 8)
L7 Uses functional notation f (x) to denote a function f and evaluates at x � a, where a is an element of the domain to find f (a) � b, an element of the range (Algebra 1)

Misconceptions

M 137 Overgeneralizes a rule from too few pairs of values
M 138 Reverses domain and range
M 139 Believes the range is always unrestricted and includes all numbers
M 228 Believes that they can substitute different values for different instances of x within a single function
M 262 Believes that every horizontal and vertical line must intersect a 1–1 graph
M 263 Assumes all relations must have a stated rule that describes algebraically how to transform an input into an output
M 264 Believes that f (x) means to multiply f and x

TABLE 3 | Descriptive statistics for MM6-8’s district partners.

% Free and
Reduced Lunch (FRL)

Length of partnership
(number of years)

District 1, NJ 10 5
District 2, NC 58 3
District 3, CO 29 2
District 4, NC 36 1

4Further demographic breakdown of students for each district is not available
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equivalent set of re-test forms. Construct tests have only a single
form but contain at least one item per level to fully cover the LT.
Across the different years of implementation, our test assembly
process ensured that new forms contained previously piloted
items, as well as new items. While the short lengths of the cluster
and construct tests could pose challenges for analyzing the data
using item response theory (IRT) for a specific form or test, the
test assembly and item selection processes helped address these
challenges by allowing us to concurrently calibrate the different
forms with overlapping items.

Immediately following an assessment’s administration, data
are returned to students and teachers. Student data are reported
by percent correct, and allow students to review their responses
and either revise and resubmit their responses, or reveal the
correct answers. Data at the class level are reported to the teacher
in the form of a “heat map” (Figure 2), which lists the levels
vertically (bottom to top) and lists the students from lowest to
highest performing on the construct (left to right). Each cell
represents a student’s score for an item at that level, color-coded
from orange (incorrect) to blue (correct). One can visualize a
boundary between the mostly orange and mostly blue squares by
utilizing a Guttman-shaped curve (Guttman, 1950). To the left
and above the curve student performance is weaker; to the right
and below the curve student performance is generally stronger.
From this representation, teachers learn to identify a horizontal
boundary, above which students as a whole class show evidence of
difficulty on one or more levels, and a vertical boundary, to the
left of which a subgroup of students are struggling with the
material overall.

To conduct the validation study, we proposed a set of questions
associated with the claims that support our validation argument.
The associations are listed at the end of the question. Each question
is followed by the procedure used to answer it, a presentation of
results, and a discussion.

PROCEDURES, RESULTS, AND
DISCUSSION

Question 1. Considering Potential
Multidimensionality and Different Possible
Types of IRTModels, WhichModel Does the
Data Best Fit? (Claim 1)
Procedure for Q1: Item Response Theory Analyses
The analyses for this question involved comparing different
models to establish which model was preferred for the cluster.
Because the majority of the data comes from cluster tests that
contain items from both the Relations and Functions LT and the
Qualitative Graphing LT, the first step in the analyses involved
comparing different IRT models to establish whether the two LTs
should be modeled together in a unidimensional model or
considered separately in a multidimensional model, as well as
which IRT model should be used to derive the item difficulty
estimates. To examine the independence, we estimated a
unidimensional model (Model 1) which was equivalent to a
model that assumes the correlation of both of the constructs is
equal to 1 (Hatcher, 1994) and a two-dimensional model (Model 2)
that assumed a simple structure, with each item aligned with the
construct it was supposed tomeasure. We looked at the correlation
of the latent construct scores fromModel 2 and relative fit statistics
of both models for evidence of whether the construct scores are
independent (Model 2) ormutually dependent (Model 1). After the
question of independence of the constructs was settled, we further
compared partial credit Rasch and two-parameter logistic (2 PL)
models of the data to choose the final model of the data. Either
model could be preferred for the data. The Rasch model has only
one parameter, item difficulty, which might ease interpretation,
while the 2 PL model has two parameters, item difficulty and item
discrimination, whichmight providemore nuanced information or

FIGURE 2 | Class report: heatmap of the Relations and Functions the LT. Vertical axis: levels of LT, ordered from low (bottom) to high (top). Horizontal axis:
student pseudonyms ordered by overall construct score, from low (left) to high (right). Each cell represents a single student’s score on an itemmeasuring a single level.
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a better fit for the data. Comparing the two models helps ensure
that the item estimates for the later steps of analysis are as accurate
as possible.

The IRT calibrations and model fit comparisons were conducted
using the “MIRT” package (Chalmers, 2012) in R. The student
response data, which included a mixture of dichotomous and
polytomous data from cluster and construct tests, was read in,
cleaned, and modeled in R. The relative fit statistics used were the
Bayesian information criterion (BIC), sample-size adjusted BIC
(SBIC), Akaike’s fit index (AIC), and corrected AIC (AICc). We
also applied the chi-square difference test when comparing nested
models and used the Metropolis-Hastings Robbins-Monro
algorithm (MHRM) for all calibrations (Cai, 2010).

Results for Q1
The student response data came from 929 assessments at the
cluster or construct level that were administered from school year
(SY) 2016–17 through SY 2019–20. The data-cleaning process
involved removing items that were retired or had fewer than 25
student responses, as well as assessments with fewer than six
active items. The final number of items used in the analysis was 49
(26 items in Relations and Functions and 23 items in Qualitative
Graphing). The number of student responses per item ranged
from 25 to over 600 responses (average number of responses �
110) due to the items appearing on a differing number of forms
over the years. 85% of the responses came from eighth grade
students and 15% of the responses came from seventh grade
students. The majority of the data came from cluster tests, but
there were 204 Relations and Functions construct tests and 67
practice sessions included in the dataset as well.5

Once the dataset was finalized, the data were fit to the first two
models to explore the independence of the constructs. The
correlation of the latent construct scores in Model 2 was 0.88
(95% CI: 0.80, 1.01). Following guidance from Anderson and
Gerbing (1988), the high correlation and confidence interval
including the value of 1 for this model is evidence that the
two constructs should be treated as mutually dependent and
unidimensional. Further evidence was provided by the fit indices
(Table 4) that show smaller values for Model 1 in the AIC, AICc,
SBIC, and BIC to indicate better fit. The chi-square difference test
similarly was rejected with p > 0.05. All of this evidence suggested
that Model 1 should be favored over Model 2 and that the data
from the two constructs should be considered mutually dependent
for this analysis and so should be calibrated together in a
unidimensional model.

We compared the fit of two unidimensional models (Rasch
and 2 PL) to determine which one the data fit better. The fit
statistics primarily suggested the Rasch model over the 2 PL
model with the AIC, AICc, SBIC, and BIC favoring the Rasch
model. A further look at the R2 change statistic (de Ayala, 2009),
which quantifies the difference in variance explained by the two
models, revealed a minor 0.83% improvement in fit of the Rasch
over the 2 PL model. The small practical differences between the
models were also reflected in a high correlation of the theta
estimates of the models (r � 0.99). We ultimately chose the
simpler and better fitting Rasch model to generate the item
difficulty estimates for the subsequent analyses.

Discussion of Q1
The results of this analysis supported the decision to use a
unidimensional model with data from the Relations and
Functions LT and Qualitative Graphing LT considered
together. This was supported by considering the correlation of
the two constructs in a multidimensional model and fit statistics
for the unidimensional and multidimensional models. The final
model chosen was a unidimensional Rasch model.

Question 2: To What Extent Does the
Pattern of Item Difficulties Within and
Across LTs for a Cluster Agree With the
Pattern of Content Sophistication Within
and Across LTs? (Claim 2)
Procedure for Q2
This section examines the structure of the item pool through the
lens of empirical item difficulty, with difficulty defined by the b
parameter from the Rasch Model in Q1. Because the Rasch model
provides b parameters for each of the possible points in
polytomous items, we chose to use the b parameter associated
with getting all parts of an item correct (full credit) to be most
similar to the dichotomous items which are scored as full or no
credit. To answer Q2 we utilized linear regression to examine the
relationship between item difficulty 2) and LT level, expressed as
discrete numbers (1, 2, 3, ...) for each construct. We interpreted
models with a positive slope and a high R2 as evidence that the
pattern of content sophistication in the LTs is in fact reflected in
the pattern of empirical item difficulties. Additionally, in order to
determine if mis-fitting items were distorting the regression, after
running a baseline model we sequentially.6 removed a single item

TABLE 4 | Comparison of fit statistics of two Confirmatory IRT models.

Model AIC AICc SBIC BIC logLik X2 diff df p

1: equal slopes 1-D IRT 11,450.29 11,477.86 11,626.18 11,645.78 −5,619.15 NA NA NA
2: equal slopes within each LT, 2-D MIRT 11,456.79 11,485.47 11,635.99 11,655.96 −5,620.40 −2.50 2 1.00

5Previous analysis within the team has suggested that construct test and single
session practice data of six or more items performs similarly to cluster test data in
IRT analysis, although more research on that data is warranted as more data is
accumulated

6While this type of sequential variable selection has well-documented challenges,
including biasing regression statistics and coefficients and vulnerability to
sampling error (e.g., Miller, 2002; Roecker, 1991), we decided to use this as an
exploratory method to identify and prioritize potentially non-conforming items
and areas of LTs that should be looked at more closely in the analysis for Question 3
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based on its absolute residual value, re-ran the regression, and
compared the new R2, residual sum of squares (RSS), and slope to
the previous regression. We wanted to maximize the R2 value
above 0.70 while also retaining as many items as possible. Finally,
we examined the Spearman rank correlation of LT level and the
item difficulty parameter b for the remaining subset of items. We
interpreted strong positive correlations as further evidence that
the pattern of content sophistication in the LTs are indeed
reflected in the pattern of empirical item difficulties.

Results for Q2
Figure 3 and table 5 show the results of the sequential regression
models generated for the construct “Relations and Functions” up
to Level 6. We do not have data on Level 7, because the tool has
not yet been piloted among high school students. The baseline
model included all of the items, had a slope of 0.64, a sum of
squares of 13.73, an R2 value of 0.69 and adjusted R2 of 0.68,
suggesting that the relationship between LT level and item
difficulty for this model was strongly positive and that it
explained 69% of the variance in LT level by item difficulty.
To improve the fit of the regression line, the absolute residual
value for all of the items was considered; the item with the largest
value was removed (Item 1263, n � 129). The regression run with
the remaining 25 items showed minor improvement from the
baseline model: the sum of squares decreased, however, the slope

decreased to 0.59, and the R2 decreased to 0.68. Following the
same pattern, four subsequent regressions were run, first
removing Item 1265 (n � 68), then Item 1816 (n � 49), then
Item 2242 (n � 25), and then Item 1267 (n � 37): the sum of
squares decreasing to 5.65, while R2 fluctuated and ended up
at 0.72.

Finally, to provide further evidence about the relationship
between LT level and item difficulty the Spearman rank
correlation coefficient was computed for the final model in
each construct. It indicated a strong positive correlation of
0.88, significant at the p < 0.00 level.

Discussion of Q2
After removing five items that were sequentially identified as
potentially non-conforming, based on their fit to a regression
line modeling the desired positive relationship between item
difficulty and ordered LT levels, the model of remaining items
provided evidence of the increasing content sophistication of LT
levels. The high values of R2 and adjusted R2 values suggest that
a sufficient amount of variance in item difficulty can be
explained by LT level. The high and positive value of the
Spearman Rank correlation coefficient for the construct
provided additional evidence supporting the agreement in the
patterns of items and LT level.

Question 3: Which Items at Which Levels
Show Evidence of Non-conformance to the
Pattern of Item Difficulties Within and
Across LTs, What Are the Likely Causes of
Such Non-conformance, and What Should
Be Done With Such Items? (Claim 2 and 3)
Procedure for Q3
The following procedure is used to examine each item
provisionally-designated as non-conforming:

1. The LS team examines the item’s structure and empirical
response behavior relative to its position in the LT, and
suggests reason(s) for the item appearing not to conform.

2. Categories of variation relevant to each item are assigned:
construct-irrelevant variation (Irrel-V), Intra-level (Intra-LV)
or Inter-level (Inter-LV) variation.

3. Actions (one or more), based on the analysis of variation, are
recommended from the following options:
a. Retire the item
b. Revise item to remove irrelevant variation
c. Revise item to adjust difficulty within level
d. Maintain item as is, and post an alert indicating that this

item is known to be unusually hard or easy
e. Edit the level’s description to clarify range of or inclusion

of items
f. Move the item or set of items to another level, or
g. Adjust order of levels

Action b addresses issues associated with Irrel-V, actions c-e
address Intra-LV, and actions f-g address Inter-LV.

FIGURE 3 | Linear regression of LT level (x-axis) predicting item difficulty
(b, y-axis). Regression lines run sequentially after removing one item based on
absolute residual value. Circled items were removed and remained out of the
model for subsequent regressions.
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Examination for Irrel-V seeks to identify factors such as
language or readability, representational ambiguity, use of
unfamiliar terminology or context, being solvable by test-
taking tricks, and other construct-irrelevant distractions such
as too many steps, too many distractors, or too much time
required to solve it. Irrel-V can also be identified by
psychometric flags unrelated to the regression screening,
during testing. Such psychometric flags are triggered if the
DIF statistics, readability, word count, duration, or model-
based misfit exceeds a threshold.

One tries to eliminate Irrel-V. However, a degree of Intra-LV
is appropriate and expected based on restrictions on the test
length of LT-based formative assessments, and because the items
should assess the various aspects of the meaning of the level.
General Intra-LV factors can include mathematical issues
concerning the numeric values, directness of the question,
familiarity or ease with the representation, availability of a
calculator, or availability of additional visual support. The
analysis is conducted by examining the description of the
level, associated misconceptions, data from the item analysis,
and other items at the level for comparison.

If one or more of the items at a level are identified as showing
Inter-LV, the item(s) is/are considered relative to other levels. If
the fit is better at a different level (e.g., with respect to substance
and difficulty), the item(s) is/are moved. Such a relocation
requires that the stepwise regression be run again to check
whether different items become potentially non-conforming.

Results for Q3
Below, we illustrate the content- and learner-based distinctions
considered in deciding adjustments, if any, to make with regard to
of the five non-conforming items shown in Figure 3. Discussions of
the other three items can be found in Supplementary Appendix SA.

Item 1267. The first non-conforming item (Figure 4) was
difficult for the level; only 46% of the responses received full
credit, and, 32% of the respondents reversed the answer,
classifying the y � 3 graph as “1-to-many” and the x � 3
graph as “many-to-1”. In order to answer this item, students
would draw on their skills, for classifying mappings into one of
four categories, to visualize y � 3 as a many-to-one relationship
(perhaps by analyzing the associated ordered pairs). Similarly,
they should visualize x � 3 as a one-to-many relationship.
Teachers often introduce the vertical line test (does a vertical
line intersect a graphmore than once) to procedurally disqualify a
graph as a function, without adequately relating it to the analysis
of that graph having a one-to-many mapping. Further, because a

vertical line coincides with this graph (intersects with an infinite
number of points), the vertical line test may be difficult for
students to apply to the graph of x � 3. Therefore, analyzing
this case in terms of a mapping diagrammay prove more effective
for students. These factors persuaded us that the item elicits a
conceptual distinction that should be discussed by the teacher, so
we decided to leave the item and flag it as difficult for the level.

Item 1265. The second non-conforming item (Figure 5)
reviewed by the LS team asked students to consider modeling
the transport of 1,350 students on 72-passenger buses. The item
has three parts: the first involved choosing a function that could
model the scenario, the second involved finding the domain, and
the third involved finding the range.

In reviewing the first part, we noticed that only 40%
respondents (n � 68) correctly picked y � x/72, 16% incorrectly
picked y � 72/x and 22% incorrectly picked y � 72x. Writing
equations is not a skill aligned to this LT level, hence we removed
this part of the item.

For the second part, we noticed that while 47% of the
respondents (n � 68) correctly picked the restricted domain of
all integers from 0 to 1,350, 18% selected the non-restricted
domain “all number less than 1,350” and 13% selected the
non-restricted domain “all integers”. For the third part, 44%
of the respondents (n � 68) correctly picked the restricted range
“all integers from 0 to 19” while another 10% selected an
incorrectly restricted range of all integers from 0 to 18.

These results suggest that students may not be recognizing that
an item’s context can introduce domain and range restrictions. At
L2, there is no ambiguity in specifying domain and range, as
students work with finite, discrete sets. At level 5, the students are
specifying domains and ranges for continuous functions, and
answers may be constrained to certain categories of numbers,
undefined at certain points, or restricted due to contexts. We
addressed the issue in two ways: 1) we revised the stem of the
question to clarify that students were expected to select the most
precise (instead of best) description of the domain (and range) and
2) we revised the level description to contain the phrase “including
contextual restrictions” to signal that instruction should attend to
restricted domains and ranges of continuous or dense functions. In
our LT chart (Table 2), this appears in brackets to indicate that the
change occurred as a result of this analysis.

Discussion of Q3
Of the five items identified in this construct as potentially non-
conforming, three were adjusted (1263, 1265, and 1816). Two of
the five items were retained without adjustment: one to collect

TABLE 5 | Regression equations, R2 and sum of squares for sequential regression models.

Construct Model Slope Intercept SS R2 Adj. R2

Construct 59 (A) Baseline 0.64 −2.11 13.73 0.69 0.68
R1: Without Item 1263 0.59 −1.99 11.54 0.68 0.67
R2: Without Items 1263 & 1265 0.56 −1.94 9.96 0.68 0.67
R3: Without Items 1263, 1265, and 1816 0.51 −1.81 8.08 0.66 0.64
R4: Without Items 1263, 1265, 1816, and 2242 0.49 −1.82 6.82 0.68 0.67
R5: Without Items 1263, 1265, 1816, 2242, and 1267 0.50 −1.89 5.65 0.72 0.71
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more data (2242) and the other, flagged as difficult, to promote
discussion (1267).

These decisions reflect the careful attention to and clarification
of cases and issues that are associated with levels 3–6. At level 3,
recognizing that categorization of mappings (from level 1) must
be applied to the analysis of graphs, the LS team particularly
valued the inclusion of the horizontal and vertical lines in
the options. Teachers often teach students only to procedurally

test if a graph is a function by observing if a vertical line passes
through multiple points, without directly relating it to the
categorization scheme from the lower level. The LS team
concluded that trying to apply that test to a vertical line was
likely to stimulate more conceptual discussion, so recommended
retaining the item.

When reviewing the level 5 data, the LS team encountered
three novel issues, insufficiently foreseen when building the LT:

FIGURE 4 | Item 1267 aligned to L3: “Given graphs or verbal descriptions of two-variable relations, classifies them as one to one, many-to-1, 1-to-many, or many-
to-many”; difficulty parameter b � 0.71 (predicted: −0.39).
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one pertaining to graphs or context and the others pertaining
to use of a contextual problem. First, it became apparent that
when specifying domains and ranges in continuous graphs
or contexts, if the relevant discrete values were not specified,
students found it difficult to precisely infer these sets to define
domain and range. The LS team recognized that the use of “best”
in the problem was vague and relied on “insider” knowledge.
The word “precise” was substituted as a more accurate
description. Secondly, the LS team realized that students did
not immediately recognize that contextual situations could
directly result in restrictions in the domain and range. And
finally, when identifying domains and ranges in contextual
problems, one is expected to report on all possible values for
inputs and outputs, and not just the values associated with an
optimal solution. This analysis led the team to realize that the
level description should explicitly include the potential of
restrictions due to context.

Question 4: After Accounting for
Non-Conforming Items, to What Extent Do
the LT Levels Explain Item Difficulty, and

Can Additional Sources of Variation in
Difficulty be Identified? (Claim 3)
Procedure for Q4
After removing the five non-conforming items from the
regression analysis, we further explored the theoretical
structure of the LT by examining the extent to which LT level
explained item difficulty. The purpose of empirically testing the
structure of the LT in this analysis is similar to the Q2 sequential
regression analysis, this research question moves the focus from
the individual items to LT level as a whole. We applied the linear
logistic test model (LLTM) (Fischer, 1973) plus error (De Boeck
et al., 2011) which explains the Rasch item difficulty in terms of
item covariates. The model can be written as:

ηpi � θp +∑
K

k�1
βkX(p,i)k + εi

where θp is the random person effect, βk represents the fixed effect of
item covariateX(p,i)k and εi is the error term. The subscripts p, i, and
k represent persons, items, and item covariates, respectively. ηpi is a
logit link function of the form (ln(πpi/(1 − πpi)) where πpi represents
the probability of answering an item correctly. Item covariates that

FIGURE 5 | Item 1265 aligned to Level 5 “Given verbal descriptions of two-variable relations, graphs, or equations for linear functions, identifies their domain and
range (including contextual restrictions)”; difficulty parameter b � 2.17 (predicted: 0.61).
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produce smaller error variances are considered better predictors of
item difficulty than those that produce larger error variances. We
compared three nested models that each added an additional
covariate by examining the change in error variances produced
by the models. The baseline model used only construct to explain
item difficulty. The LT level model crossed constructs with levels and
used those as the covariates in the model. The third model added
item type as an additional covariate that may cause items to perform
differently (e.g., Patz and Junker, 1999). The four item types are
multiple choice, select multiple, one-letter, and numeric response. In
general, multiple choice items in MM are less difficult than numeric
response, however, we have found that this varies by content. In
addition to looking at the change in variance among the different
models, we also examined the fixed effects estimates and significance
of the LT levels in the second and thirdmodels to see if the estimates
increased in difficulty up the LT. All of the analysis for this question
was conducted using the lmer function of the “lme4” package (Bates
et al., 2015). As with the initial IRT calibrations, the data from the
relational cluster were analyzed as a whole but the results for this
study will focus on those for the Relations and Functions LT.

Results for Q4
The residual standard deviations and variances of the random
intercepts for the items in the three models is shown in Table 6.
The second model showed a large reduction in residual variance
of 72% (from 1.09 to 0.30). This suggests that including LT level
accounts for 72% of unexplained residual variance from the
baseline model, providing strong evidence of the explanatory
power of the LT levels for this construct. The third model (item
type added as a covariate) had a reduction of residual variance of
43% from the second model, suggesting that the different item
types also account for a significant amount of variance in item
difficulty. Finding these significant decreases in residual variance
for the models with LT level and item type highlights the

possibilities of this type of model for providing validity
evidence about the explanatory power of the LT.

We also examined the fixed effect estimates of the third model
(Table 7) for evidence about the structure of the LT. The
estimates in the table represent the effect that component (LT
level or item type) had on the Rasch item parameter, d, which
quantifies an item’s “easiness” (d is the multiplicative inverse of
the item difficulty parameter b). After accounting for the item
type covariates, the estimates generally follow an expected pattern
of moving from higher (easier) values for the lowest LT level to
lower values (more difficult) for the highest level. Level 2 does
appear to be out of order but is also not significant and only based
on two items at the level; it bears further attention as more data
are collected. The other levels’ estimates are significant (at least
p < 0.10) and suggest an increase in difficulty with level.

The other covariates of item type suggest the ways in which item
typemay affect itemdifficulty in this relational cluster. For instance, the
estimates suggest that, relative to the one Letter items which were the
intercept, multiple choice items were systematically and significantly
easier, while multi-part items were more difficult although that
estimate was not significant. As the psychometrics team works with
the LS team to identify more item characteristics that could contribute
to variance, such as context, the LLTMcould be used to test andmodel
how those characteristics may contribute to item difficulty.

Discussion of Q4
Using LLTM analysis to compare models with construct, LT level,
and item type as covariates, we found that adding the covariates of
LT level and item type reduced the amount of error variance,
suggesting that LT and item type helped explain the variance in
item difficulty. The LT levels were associated with the largest
increase in item difficulty and were generally ordered sequentially
in terms of magnitude, which provides further evidence of the
relationship between item difficulty and the pattern of levels. The
significant decrease in error variance once item type was added
suggests that item type and other variables, such as context or
readability, may be able to give additional insight into causes of
item difficulty variation and provide a meaningful setting for
collaboration between psychometrics and LS.

Question 5: When Provided One Class’s
Data on Student Performance, How Should
Teachers Interpret the Data and Decide on
What Modifications to Make to Instruction?
(Claims 4 and 5)
Procedure for Q5
In order to examine the question of whether the LT can validly be
interpreted to provide adequate guidance for instructional

TABLE 6 | Random effects: Residual variances by model and fixed effects of model 3.

Model Std. Variation Variance Reduction in variance

Model 1: Construct 1.04 1.09 ----
Model 2: Construct and Level 0.55 0.30 72%
Model 3: Construct, Level & Item Type 0.42 0.17 43%

TABLE 7 | Fixed effects estimates for relations and functions LT from model 3.

Estimate Std. Error z value Pr (>|z|)

Level 1 1.13 0.21 5.44 0.00***
Level 2 −0.71 0.42 −1.69 0.09
Level 3 0.39 0.31 1.27 0.21
Level 4 −0.38 0.23 −1.67 0.09
Level 5 −1.63 0.41 −4.00 0.00***
Level 6 −1.82 0.25 −6.95 0.00***
Item type: 1 Letter --- --- --- ---
Item type: Multiple Choice 1.09 0.26 4.13 0.00***
Item type: Multipart −0.07 0.60 −0.12 0.90
Item type: Multiple Select 0.17 0.27 0.64 0.52

. � p < 0.10; * � p < 0.05; ** � p < 0.01; *** � p < 0.001.
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modification, we chose to analyze (actual) heatmap data for one
eighth grade class (Figure 6). In lieu of a teacher’s analysis of this
heatmap, we conducted a hypothetical analysis to illustrate: 1)
what is expected from teachers using such data, 2) the degree of
precision needed for making content- and learner-based
conjectures about how to modify instruction.

Our hypothetical teacher, Ms. B, begins by scanning the
heat map in order to use the data formatively to modify her
instruction. She notes that most of the students show mastery
of levels 1–3, but moderate difficulty at level 4 and struggle with
level 5. Four students exhibited some difficulties at the lower levels;
one student struggled across the board. Note: these data are
from a class at one of our schools; with the small n’s, all
analyses would be tentative and flexible, as is necessary in
classroom instruction.

Ms. B then engages in data interpretation, beginning
contextualizing the data (Mandinach et al., 2011). This
requires two types of analysis. The first requires her to
examine the performance on various items as situated in the
LT’s hierarchical structure. She considers how behavior on items
and their distractors relates to the meaning of items’ level, and,
further, how the level is situated in its sequence of levels. In the
second analysis, she considers how the data patterns relate to: 1)
her use of curricular and instructional approaches and 2) the
specific needs of students in her class. Based on these analyses, she
generates specific conjectures about how to modify her
instruction to improve learning outcomes. A teacher is asked
to write these in the form of “based on data from <topic> LT
showing evidence of <student learning> in (designated levels,
items, or options), I conjecture that <some/all> students will
improve learning if they develop more proficiency in <idea>.”

Based on the heatmap, Ms. B. knows her class needs work on
level 5, but she first reviews the levels below 5. She recalls that at
levels 1 and 3, students classified mapping diagrams, ordered
pairs, tables and graphs as 1-to-1, 1-to-many, many-to-1, and

many-to-many. At level 4, items assess whether students could
identify functions from among mappings.

Among the response patterns for the L4 item (Figure 7), she
observed that many students received partial credit and, further,
that their incorrect responses were observed across all options. So,
aware that she and the book had stressed the vertical line test, her
first interpretation was that it was not surprising that ¾ths of the
students correctly rejected the circle as a function. On the fourth
option, 92% of students answered correctly and she conjectured
that because the y-value of 12 appeared three times in the list of
coordinate pairs, the students correctly classified this as many-to-
one, which would be a function. But then she was surprised that
50% of the students got option two wrong, because it tested
similar ideas as option 4 (no x-values were associated with
multiple y-values, and a y-value (y � 7) had two arrows going
to it, but so it was also many-to-one and therefore a function).

On option 1, she noted that over half the class described the
table of values as a function, even though there were x-values that
mapped to multiple y-values and different x-values mapped to the
same y-value, making the relation many-to-many, and not a
function. She wondered if perhaps the students had not had
enough experience with many-to-many relations. Re-examining
the textbook, she confirmed that it had very few examples of
mapping problems involving many-to-many relations. Many texts
do not treat this as a separate category, expecting students to
categorize these examples as both 1-to-many and many-to-1.

Looking back at the heat map, Ms. B noted that most of her
class was unsuccessful at level 5, where students had received one
of two problems to solve.7 The task in Figure 8 required students
to find the domain and range for an applied problem that
provided an equation relating the number of gallons of gas to

FIGURE 6 | Class report: heatmap for the Relations and Functions LT.

7For this article, we selected one of these two problems to illustrate how Ms. B’s
review may have been conducted. See Appendix for review of the other level 5 item
review
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their purchase cost. The fuel tank capacity and the cost per gallon
were given; students were asked to give the domain and range.
One third of the students correctly specified the domain and
range as a closed interval. One third described the domain but
failed to put a lower bound at zero on either the number of gallons
or the price, 17% reversed the two correct answers, and 17%
thought the domain and range consisted of the single coordinate
pair that solved the problem. Examining their performance on
level 2, Ms. B confirmed the students understood that the input
was the domain, and the output was the range. She decided she
needed to emphasize that there can be restrictions on the domain
and range that come from the context. And she wanted to discuss
why the answer was an interval and not one single maximizing
value. She knew that this class had a tendency to rush, racing to
solutions without careful attention when reading.

In applying the LT-DDDM framework, Ms. B would be asked
to consolidate her interpretations into a set of conjectures to
test with instructional modifications. For this data set, we
hypothesize that she might propose three conjectures (written
in first person):

1. Based on data from Relations and Functions LT showing
evidence that 42% of students neither fully interpreted the
variables in context nor restricted the domain or range, with
an additional 17% exhibiting one or the other of said

behaviors, in L5 items 1818 and 2,200, I conjecture that
many students will improve learning if they develop more
proficiency in fully interpreting the variables and writing
precise intervals for domain and range based on the context.

2. Based on data from Relations and Functions LT showing evidence
that 58% failed to recognize the many-to-many relationship in the
table and 50% failed to recognize the 1-to-many relationship in the
mapping diagram at the level 4 item 1,270, I conjecture that many
students will improve learning if they develop more proficiency in
categorizing tables and mapping diagrams into cases that include
experience with many-to-many relations.

3. Based on data from Relations and Functions LT showing
evidence that 25% of the students were not able recognize
the many-to-many relationship in the graph of a circle at the
level 4 item 1,270, I conjecture that some students will improve
learning if they develop more proficiency in relating the
vertical line test to the various categorizations of mappings.

Discussion of Q5
These conjectures generated from the hypothetical analysis of the
heatmap conducted using the LT-DDDM framework are specific
and diagnostic compared to the typical kinds of interpretations
drawn from results on individual items in domain sampling
tests. Even provided with LT-data in heatmaps within MM6-8,
teachers exhibited difficulties in generating precise and accurate

FIGURE 7 | Item 1,270 aligned to Level 4 “Defines a function as a relation which is one to one or many-to-1, but not 1-to-many or many-to-many, and applies the
definition to discrete relations, verbal descriptions of two-variable relations, or graphs”.
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interpretations of data and subsequently translating them into
classroom tasks (Confrey and Shah, 2021). However, our ability
to interpret a class’s heatmap using the LT-DDDM framework
and generate specific diagnostic conjectures shows promise, even
as it requires additional research to thoroughly complete a
validation study. Thus, our validation argument which spans
the design, use and interpretation of data from an LT-based
assessment is bolstered by the addition of a clear articulation of an
approach to instructional change. We outline one in which
teachers are viewed as essential partners in the process of data
interpretation and use.

However, successful use of the framework relies on teachers
buying into and trusting the LTs and their underlying theory of
learning. The trajectories not only describe behaviors and
cognitive beliefs at each level, but they describe the underlying
movement from naive to sophisticated reasoning. For the
Relations and Functions LT, based on a foundation in
categorizing different kinds of mapping in discrete and finite
settings, learners extend that reasoning into rich contexts and a
variety of relations (expressed as graphs and equations) to define
and work with domains, ranges, and definitions of functions. It is
the movement that matters, and the levels are indicators of that
movement. Thus, teachers need the theory of LTs, specific
knowledge of the relevant trajectory, and the LT-DDDM to
interpret and apply the data.

LIMITATIONS

This study included data interpretations from a single teacher
which provides a biased perspective on the analyses of items.
Future studies should collect data from teachers with a variety of
experience with teaching and MM. Another limitation involves
the inherent tension between the use of IRT which focuses
primarily on empirical estimates of ability and the emphasis
on the contextualization of learning inherent to learning theories

such as LTs (e.g., Snow and Lohman, 1989; Mislevy, 1996). We
attempt to address this challenge by considering multiple IRT
models and closely investigating, rather than eliminating, items
that do not fit expected patterns. The use of IRT in this validation
process was based on practical considerations, as well as
established methods in the field, however, alternative models
could be considered for the future.

CONCLUSION

Diagnostic formative classroom assessments based on LTs have
the potential to provide relevant and timely data to students and
teachers that can lead to data-driven instructional improvements.
To realize that potential, however, clear expectations regarding
validation processes must be developed for LT-based diagnostic
formative assessment systems. Those processes must be woven
into a larger validation argument that spans the construction of
the measures, the gathering and interpretation of measurement
data in relation to psychometric models, and the measures’ use
and impact in the classroom. In this article, we have presented the
structure of our validation argument as a set of six claims and
showed how those claims rest on a theory of learning that
underlies the concept of an LT, an application of a
psychometric model to LTs, and a framework of LT-based
data driven decision-making.

We have published a variety of articles communicating our
progress to date. Confrey (2019a) summarized the current state of
international scholarship on mathematics LTs for the
Organization of Economic Cooperation and Development
(OECD). With respect to MM6-8, Confrey et al. (2020)
summarized the results of the first round of validation studies
across all 60 constructs in the learning map. Two other articles
describe our validation framework and report on validation
studies focusing on the first four claims for two clusters
(Measuring Characteristics of Circles and Finding Key Percent

FIGURE 8 | Item 1818 aligned to Level 5 “Given verbal descriptions of two-variable relations, graphs, or equations for linear functions, identifies their domain and
range”.
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Relationships) (Confrey et al., 2017; Confrey and Toutkoushian,
2019). Confrey et al. (2019a) and Confrey and Shah (2021) report
on patterns of how teachers use MM6-8 in practice, both
individually and collectively in PLCs. Our interest in writing
this article has been to emphasize that validation processes need
deep, enduring, content-driven collaborations among
psychometricians, learning scientists, and practitioners. In
reporting on our validation study, we offer detailed examples
of content, measurement, and pedagogical exchanges.

Specifically, in this article, after articulating an overall
structure of a validation argument using claims and evidence,
we applied it in order to conduct a validation study of a specific
LT (“Relations and Functions”). We were able to show a
significant correlation (0.88) between item difficulty
parameters (excluding those of potentially non-conforming
items) and the LT levels allowing us to psychometrically
recover the LTs structure. For the excluded items, based on
the LT, we proposed explanations for variation in item
difficulty, made adjustments to the items, and proposed other
actions that focused attention on the learner. We interpreted
class-level data to demonstrate that it could be used to generate
actionable conjectures for instructional interventions.

This validation study underlines the critical importance of the
deep professional collaboration--among LS, psychometricians and
practitioners in building and validating diagnostic formative
assessment systems at scale--that resembles a “trading zone”
(Lehrer, 2013). In a trading zone, there is no external medium
of exchange to co-measure the expertise of another; instead, what
each participant brings as expertise must prove valuable to the
others in the pursuit of the shared goals, in this case the
improvement of student learning. In the Relations and
Functions example, learning scientists received information
from the psychometricians on item difficulty as modeled in the
Rasch model. The LS team and the psychometrician generated and
debated possible explanations for and adjustments to potentially
non-conforming items. Adjustments would be tested in subsequent
rounds of validation studies. Similarly, data reports to practitioners
can be interpreted in the context of curriculum, students, or
circumstances of testing, shedding light on interpretations and
changing conditions. Multiple perspectives strengthen the
evidentiary base for validation arguments.

The need for deep and enduring collaboration is predicated on
the fact that learning fundamentally evolves. Successful
assessment thus has a moving target that requires timely and
relevant feedback. The details about the content learning matter:
students need the right feedback at the right time. Further, the

approach needs to recognize that learning takes place in social
settings, and hence needs to support the dialogue and interactions
among peers and with teachers, making the idea of positioning
along an LT subject to interactions. As a result, we regard LTs as
boundary objects among these diverse groups of experts, and as
such, believe that they will be useful to the degree that they are
shaped by all parties working in ongoing, mutually respectful
partnership.
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