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Learning progressions and learning map structures are increasingly being used as the
basis for the design of large-scale assessments. Of critical importance to these designs is
the validity of the map structure used to build the assessments. Most commonly, evidence
for the validity of a map structure comes from procedural evidence gathered during the
learning map creation process (e.g., research literature, external reviews). However, it is
also important to provide support for the validity of the map structure with empirical
evidence by using data gathered from the assessment. In this paper, we propose a
framework for the empirical validation of learning maps and progressions using diagnostic
classification models. Three methods are proposed within this framework that provide
different levels of model assumptions and types of inferences. The framework is then
applied to the Dynamic Learning Maps

®
alternate assessment system to illustrate the utility

and limitations of each method. Results show that each of the proposed methods have
some limitations, but they are able to provide complementary information for the evaluation
of the proposed structure of content standards (Essential Elements) in the Dynamic
Learning Maps assessment.
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A DIAGNOSTIC FRAMEWORK FOR THE EMPIRICAL EVALUATION
OF LEARNING MAPS

Learning progressions (LPs; also known as learning trajectories) are a model of pedagogical
thinking to describe shifts between understanding new knowledge and more advanced targets as
a sequence of possible transformations (Simon, 1995). LPs grew out of the Science Education for
Public Understanding Program (Roberts et al., 1997) with “construct maps,” which are
conceived of as “strategically developed cycles and sequences of instructional activities that
guide learning pathways” (Duschl et al., 2011, p. 131). Thus, LPs are meant to describe the
process of acquiring new knowledge over a given period of time or within a specific learning or
content area (National Research Council, 2007).

LPs in science and mathematics education are currently seen as promising strategies for the
redesign and reform of curriculum, instruction, and assessment in educational environments
(Corcoran et al., 2009; Duschl et al., 2011). LPs mainly rely on cognitive science research on
how students learn a particular concept to describe a path of skill acquisition (Alonzo and
Steedle, 2009). The NRC volume, Knowing What Students Know (National Research Council,
2001), recommends the use of cognitive models take a central role in the assessment design
process. Consistent with this idea, LPs can provide a framework for the development of both
large-scale and classroom-based assessments to measure how student understanding develops
in a given domain.
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Validating the Structure of LPs
Of critical importance when considering the potential uses of LPs
in practice is a validation of the hypothesized structure. If the
structure is incorrect, then any inferences and instructional
decisions that are made based on the structure are at risk of
being incorrect as well. Traditionally, evidence supporting the
structure of LPs has fallen into two categories. Procedural
evidence is focused on the process of how the proposed
structure of the LP was created. Empirical evidence is focused
on statistical methods that can be used to validate the LP once
data have been gathered to measure the proposed knowledge and
skills and their connections. Both types of evidence are briefly
described below, although the main focus of the remainder of the
paper is on empirical evidence.

Procedural Evidence Approaches
Procedural evidence refers to the processes and procedures used to
create the LPs. These processes typically involve an extensive
research and literature review that is used to define the skills and
how they are connected, external review of the LPs by outside
experts, and various types of alignment checks and evaluations along
the way. For example, the Science Education for Public
Understanding Program (Roberts et al., 1997) created LPs with
educator input and examples of student works along the progression.
By following the increasing complexity of the associated materials, it
is possible to also follow the logic of the LP organization. Similarly,
the Teacher Analysis of Student Knowledge (Supovitz et al., 2013)
developed a progression for teachers’ understanding of their
students’ mathematics knowledge. This progression was then tied
back to the Common Core State Standards, providing procedural
evidence through the vertical articulation of the standards and its
alignment to the LP. The Dynamic Learning Maps® (DLM®)
alternate assessment project followed similar approaches when
developing the learning map models for English language arts,
mathematics, and science (Andersen and Swinburne Romine,
2019; Swinburne Romine and Schuster, 2019). For DLM
assessments, the learning map models were first developed by
content experts based on existing research literature. The draft
maps underwent an external review process by educators and
additional content experts and was then revised based on
reviewer feedback.

Collecting procedural evidence is undoubtedly critical to the use
of any developed LP. Without evidence-based research and expert
input to support a conceptually sound structure, empirical evidence
is unlikely to be sufficient to validate the structure of an LP. Indeed,
having an entirely data-driven LP may result in a structure that is
overfit to the collected data (i.e., too specific to the particular data
that were collected) or conflicting with the wider research literature.
However, procedural evidence is also insufficient in isolation.
Although LPs can be developed using best procedural practices,
there is always some level of uncertainty in the resulting structure.
Thus, it is important to collect data and provide empirical evidence
to corroborate the proposed structure.

Empirical Evidence Approaches
Empirical evidence involves collecting and analyzing data to
evaluate the structure of an LP. There are many forms that

this type of evidence could take. One example is analyzing
examinee responses to items that align to specific levels within
an LP. This was the approach taken by Briggs et al. (2006), who
developed an assessment using ordered multiple-choice items to
assess students’ level of achievement within an LP. In this
assessment design, answer options are tied to specific levels in
the progression, and the aggregated response patterns can
provide evidence to support the structure (i.e., across all levels
of assessment, a student’s selected responses should consistently
correspond to a level in the progression).

Another possibility for empirical evidence is to relate the
proposed LP to external outcomes. In the Length Measuring
Learning Trajectory (Barrett et al., 2012), showed that use of their
LPs in instruction was able to predict student growth within the
targeted skills, and was associated with higher achievement in
those areas during a final assessment. A similar approach was
used by Jin et al. (2015) to develop LPs of science content. Using
item response theory, Jin et al. (2015) first calibrated separate
models for each level of the LP to show the distinctness of the
progression. They then also showed that as teachers’
understanding of the LP increased, so did the performance of
their students on the post-test. This approach of using external
data for evidence was also employed by Supovitz et al. (2018) on
the Teacher Analysis of Student Knowledge. In this project,
teachers were asked to blindly rate student responses to items
measuring different levels of a mathematics LP. Teachers were
asked to place their students on the LP in the location that best
represented their acquired knowledge. The student responses
were then compared to the teacher placement in the LP. The
findings showed that teachers were able to place students on the
LP consistent with the students’ item responses.

Empirical evidence can also take the form of classical item
statistics. Herrmann-Abell andDeBoer (2018) developed an LP to
model the concept of energy in science. Items were written at
three levels of complexity for each main idea within the energy
concept (i.e., a three-attribute LP for each main idea). They then
used Kendall’s τ correlation to evaluate the association between
item difficulty and the progression complexity. The expectation
was that a positive correlation would be observed. That is, as
complexity increased within the progression, so too would item
difficulty. Using the correlations, Herrmann-Abell and DeBoer
(2018) were able to demonstrate that as the LPs became more
complex, the items did get harder on average, thus supporting the
overall structure. However, this method is limited when there is a
small sample of items. For example, 20 items measuring each of
the three levels would result in only 60 data points to use for the
calculation of the correlation. This can lead to greater uncertainty
in the estimated correlation if there is not a sufficient number
of items.

A similar approach was taken by Clark et al. (2014) in an early
evaluation of the DLM pilot administration. In the pilot study,
students were administered test items at multiple levels of
cognitive complexity, corresponding to different areas of the
learning map structure. Clark et al. (2014) observed that for
students with similar expressive communication skills and subject
knowledge, the percentage of students providing a correct
response decreased as the level of the testlet increased, thus
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providing preliminary evidence of the general ordering of the
structure.

Taken together, empirical evidence has the ability to support
or refute the proposed LP structure. However, the methods used
to date for evaluating empirical evidence are all somewhat limited
in that none use a model-based method that is consistent with the
multidimensional nature of LPs. For example, when using
multidimensional item response theory models, the different
attributes of the LP can be modeled as separate, albeit related,
latent abilities, but the structure of the LP cannot be fully enforced
without applying a threshold to the latent trait to indicate
presence or absence of each attribute in the LP (see Deng
et al., 2017; Schwartz et al., 2017). Additionally, although the
methods are useful for linear LPs, they may not generalize to a
more complicated learning map structure, where multiple
pathways can lead to the same knowledge acquisition. Thus, a
flexible and generalizable framework of empirical validation is
needed to fully evaluate these structures.

MAP VALIDATION WITH DIAGNOSTIC
CLASSIFICATION MODELS

The purpose of this paper is to describe and illustrate, with
examples, empirical approaches to learning map (and LP)
validation using diagnostic classification models (DCMs).
Specifically, three methods with varying levels of complexity
and model assumptions are defined and then illustrated using
the DLM alternate assessment. The methods are described in the
context of the DLM assessment; however, these methods
generalize to other learning map or LP models as well.

Diagnostic Classification Models
DCMs (also known as cognitive diagnostic models) are a class of
multidimensional psychometric models that define a mastery
profile on a predefined set of attributes (Rupp and Templin, 2008;
Rupp et al., 2010). Given an attribute profile for an individual, the
probability of providing a correct response to an item is
determined by the attributes that are required by the item.
Whereas traditional psychometric models (e.g., item response
theory) model a single, continuous latent variable, DCMs model
student mastery on multiple latent variables or skills of interest.
Thus, a benefit of using DCMs for calibrating and scoring
assessments is the ability to support instruction by providing
fine-grained reporting at the skill level. Based on the collected
item response data, the model determines the overall probability
of students being classified into each latent class for each skill.

DCMs can also be used to test different learning map or LP
structures. Given a number of attributes (e.g., nodes in a map, or
stages/steps in an LP), there are 2A possible attribute profiles,
where A is the number of attributes. This represents all possible
combinations of mastery and nonmastery across the attributes.
Thus, by limiting the number of possible profiles, we can test
different LP structures. For example, Templin and Bradshaw
(2014) used a hierarchical DCM (HDCM) to test an attribute
structure of skills related to English grammar, where some
attributes had to be mastered for other attributes to be

mastered. This hierarchical model adapts the log-linear
cognitive diagnosis model (Henson et al., 2009), which is
discussed next in more detail.

The Log-Linear Cognitive Diagnostic Model
The LCDM provides a generalized DCM that subsumes many of
the other more restrictive DCMs. For example, the deterministic-
input noisy-and-gate (de la Torre and Douglas, 2004) and
deterministic-input noisy-or-gate (Templin and Henson, 2006)
are both subsumed by the LCDM (Henson et al., 2009). In the
LCDM, the item response function is expressed as a linear model
with a logit link function. For example, the response function for
an item, i, measuring two attributes, conditional on the
respondent’s, r, attribute profile for these two attributes,
αr � [αr1, αr2], is given by:

P(Xri � 1 |αr)
� exp(λi,0 + λi,1,(1)αr1 + λi,1,(2)αr2 + λi,2,(1,2)αr1αr2)

1 + exp(λi,0 + λi,1,(1)αr1 + λi,1,(2)αr2 + λi,2,(1,2)αr1αr2)
(1)

Where αra is a binary indicator for whether attribute a has
been mastered by respondent r. For the estimated parameters, λi,0
represents the intercept, λi,1,(a) is the simple main effect for
attribute a on item i, and λi,2,(a,a′) is the two-way interaction
between attribute a and a′ on item i. Further interactions can be
added as necessary for items that measure more than two
attributes. This leads to the general of LCDM:

P(Xri � 1 |αr � αc) �
exp(λi,0 + λTi h(αr, qi))

1 + exp(λi,0 + λTi h(αr, qi))
(2)

Where qi is the vector of Q-matrix entries indicating whether
attribute a is measured by item i, and λi is vector of the item
parameters for item i, not including the intercept. Finally, h(αr, qi) is
a vector function specifying whether a parameter is present, based on
the attribute profile and Q-matrix entry. For example, if a test
measured three attributes and a given item measured only attributes
one and two, the main effect for attribute three would not be
included. Thus, λTi h(αr, qi) can be expressed as:

λTi h(αr, qi) � ∑
A

a�1
λi,1,(a)αra + qia + ∑

A−1

a�1
∑
b> a

λi,2,(a,b)αraαrbqiaqib + . . .

(3)

The LCDM specification has several advantages. First, the
parameters are straightforward to interpret, as they are on the
same log-odds scale as a standard logistic regression.
Additionally, the parameters can be restricted to estimate
other models for model comparison. For example, if all
parameters except the intercept and highest-order interaction
for each item are fixed at 0, the model is equivalent to the
deterministic-input noisy-and-gate model. Thus, multiple
models with different assumptions can be fit using the same
framework and directly compared. Finally, as mentioned
previously, the LCDM can be extended to test attribute
hierarchies. Given these benefits, the LCDM framework is
used for map validation for the DLM alternate assessment.

Frontiers in Education | www.frontiersin.org January 2022 | Volume 6 | Article 7147363

Thompson and Nash Empirical Map Evaluation

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Extending the LCDM for Attribute Hierarchies
When attribute hierarchies are present not all attribute profiles
are present. That is, if mastery of attribute one is a prerequisite for
mastery of attribute two, then the attribute profile [0,1], should
not be possible, as this profile represents mastery of attribute two
only. In other words, the set of possible attribute profiles is
reduced. The reduction in possible attribute profiles creates
redundant profiles in the LCDM specification. Continuing the
example, if profile [0,1] is not possible, then it follows the main
effect for attribute two is a redundant parameter. That is, only a
main effect for attribute one and the two-way interaction for
attributes one and two are relevant for this example item. This
leads to the HDCM specification described by Templin &
Bradshaw (2014). For our example item, Eq. 1 can be re-
expressed as:

P(Xri � 1 |α*
r) �

exp(λi,0 + λi,1,(1)αr1 + λi,2,(2(1))αr1αr2)
1 + exp(λi,0 + λi,1,(1)αr1 + λi,2,(2(1))αr1αr2)

(4)

In Eq. 4, the item response function now includes only the
item intercept, λi,0, the main effect for attribute one, λi,1,(1), and
the two-way interaction between attributes one and two, λi,2,(2(1)).
The (2 (1)) notation in the two-way interaction term indicates
that attribute two is nested within attribute one. Extending
beyond two attributes, Eq. 3 can be re-expressed as:

λTi h(α
p
r , qi) � λi,1,(a)αraqia + λi, 2,(b(a))αraαrbqiaqib

+ λi,3,(c(b,a))αraαrbαrcqiaqibqic + . . . (5)

Note that Eq. 5 assumes a linear hierarchy of the attributes, as
is the case for the structures that will be explored in this paper.
However, additional parameters may be included if the attribute
hierarchy is not strictly linear.

THE DYNAMIC LEARNING MAPS
ALTERNATE ASSESSMENT

The DLM assessments are built based on learning map models,
which are a type of cognitive model consisting of interconnected
learning targets and other critical knowledge and skills (DLM
Consortium, 2016). In the DLM assessment, the alternate
content standards, or Essential Elements, are specific
statements of knowledge and skills and are the learning
targets for the assessment. To ensure that all students are
able to access grade-level academic content, each Essential
Element is associated with five levels, called “linkage levels,”
that represent the content of the Essential Element at varying
levels of complexity. For ELA and mathematics, there are five
linkage levels within each Essential Element. The Target level is
aligned to the Essential Element and represents the grade-level
expectation for students taking the DLM assessments. Preceding
the Target level are three precursor linkage levels that represent
the Essential Element at varying levels of complexity to allow all
students an entry point for accessing the assessment content and
working toward grade-level expectations. The precursor linkage
levels are Initial Precursor, Distal Precursor, and Proximal

Precursor. There is also one linkage level, Successor, that
extends beyond the Target grade-level expectation. The
linkage levels are assumed to follow a hierarchical structure
whereby higher linkage levels can only be mastered if the lower
levels have also been mastered.

To evaluate the linkage level structure within a given Essential
Element, student response data to items measuring adjacent
linkage levels are needed. However, the DLM assessment
administration is designed to align assessment content to each
student’s unique level of knowledge, skills, and understandings.
This means that students often test on only one linkage level that
best matches their skill level for each Essential Element; however,
teachers may choose to assess their students on additional linkage
levels, depending on student performance and opportunity to
learn additional content.1 Additionally, DLM assessments follow
a simple Q-matrix. That is, each item measures only one
attribute—the linkage level the student is testing on.2 Thus,
the operational assessment offers insufficient opportunities to
collect the cross-linkage-level data needed to fully evaluate the
connections between linkage levels. Limited cross-linkage-level
data have been collected through field testing, where students
receive field test testlets at a different linkage level than what was
assessed during the operational assessment.

To illustrate the DCM framework for map validation, a single
Essential Element was selected that has sufficient cross-linkage-
level data to support meaningful inferences from the estimated
models. Specifically, we examined the mathematics Essential
Element M.EE.4.G.1: Recognize parallel lines and intersecting
lines. Figure 1 shows the hierarchical structure of the linkage
levels for M.EE.4.G.1.

METHODS

Under the DCM framework of map validation, three methods are
defined for testing a map structure: patterns of mastery profiles,
patterns of mastery assignment, and patterns of attribute
difficulty. To demonstrate the methods, analyses are focused
on the assumption of the linear hierarchy of linkage levels
depicted in Figure 1.

Method 1: Patterns of Mastery Profiles
The first method, patterns of mastery profiles, evaluates the
ordering of the linkage levels within Essential Element
M.EE.4.G.1 by comparing a full and constrained DCM.
Specifically, a saturated LCDM (Henson et al., 2009) is
estimated and compared to a constrained HDCM (Templin
and Bradshaw, 2014) that matches the structure of the
hypothesized linkage levels. By comparing a model with all
possible profiles to a model with only hypothesized profiles,
we can evaluate whether the nonhypothesized profiles

1For a description of instructionally embedded assessment, see Clark et al. (2019)
and Swinburne Romine and Santamaria (2016).
2For a complete description of DLM assessments, including a discussion of the
assessment blueprint and student populations, see (DLM Consortium, 2016).
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FIGURE 1 | Hierarchical ordering of linkage levels for Essential Element M.EE.4.G.1.

TABLE 1 | Possible and hypothesized mastery profiles.

Profile Initial precursor Distal precursor Proximal precursor Target Successor

1 0 0 0 0 0
2 1 0 0 0 0

3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 0 1 0
6 0 0 0 0 1
7 1 1 0 0 0

8 1 0 1 0 0
9 1 0 0 1 0
10 1 0 0 0 1
11 0 1 1 0 0
12 0 1 0 1 0
13 0 1 0 0 1
14 0 0 1 1 0
15 0 0 1 0 1
16 0 0 0 1 1
17 1 1 1 0 0

18 1 1 0 1 0
19 1 1 0 0 1
20 1 0 1 1 0
21 1 0 1 0 1
22 1 0 0 1 1
23 0 1 1 1 0
24 0 1 1 0 1
25 0 1 0 1 1
26 0 0 1 1 1
27 1 1 1 1 0

28 1 1 1 0 1
29 1 1 0 1 1
30 1 0 1 1 1
31 0 1 1 1 1
32 1 1 1 1 1

Note. Monotonically increasing hypothesized profiles are shaded.

Frontiers in Education | www.frontiersin.org January 2022 | Volume 6 | Article 7147365

Thompson and Nash Empirical Map Evaluation

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


significantly affect the model’s performance. If the hypothesized
structure holds, we expect the models to have comparable fit to
the observed data.

In the full LCDM, described above, there are 2A possible
mastery profiles, where A is the number of attributes, or in the
case of DLM assessments, linkage levels. In the HDCM, only the
profiles hypothesized by the map structure, the monotonically
increasing profiles, are estimated. For Essential Element
M.EE.4.G.1, there are five linkage levels, which are the
attributes in the DCM. With five attributes, there are 25 � 32
possible mastery profiles. However, under the hierarchical
assumption of the linkage levels, not all of those profiles are
possible. If the hierarchical structure is correct, only the
monotonically increasing profiles should be possible. This is
illustrated in Table 1.

To test the presence of attribute hierarchies, Templin and
Bradshaw (2014) suggest a likelihood ratio test between the full
LCDM and HDCM models, with a simulation-derived p-value.
However, using a fully Bayesian estimation process opens the
door to more efficient methods of evaluating and comparing the
LCDM and HDCM. Accordingly, both the LCDM and HDCM
models were estimated using R version 3.6.1 (R Core Team, 2019)
and the RStan package interface to the Stan probabilistic
programming language (Carpenter et al., 2017; Stan
Development Team, 2020). If the hierarchical structure holds,
then it would be expected that the two models have comparable
model fit. Because the full LCDM includes more parameters and
possible mastery profiles, the full LCDMwill always fit better than
the constrained HDCM. However, if the HDCM shows
comparable fit, then this indicates that removing those
additional parameters and mastery profiles does not have an
adverse effect on model performance. If the HDCM fits
significantly worse than the LCDM, then this is evidence that
the proposed structure is too restrictive. Absolute model fit is
assessed through posterior predictive model checks. Relative fit is
assessed through information criteria.

Absolute Fit
Absolute measures of model fit measure the extent to which the
model actually fits the data. In the proposed method, absolute fit
is assessed using posterior predictive model checks, which
involves generating simulated replicated data sets, creating
summary statistics for each replicated data set, and then
comparing the distributions of the summary statistics to the
value of each statistic in the observed data (for more details
and examples, see Gelman, Carlin, et al., 2013; Levy and Mislevy,
2016; and McElreath, 2016). In a Bayesian estimation process, a
posterior distribution is generated for each parameter in the
model. The size of the posterior sample depends on the length
of the Markov-Chain Monte Carlo chains. For the models
described in this paper, four chains were estimated with 2,000
iterations each, and the first 1,000 were discarded for the warm-
up period. This results in 4,000 retained draws (1,000 from each
chain) that make up the posterior samples for each parameter.
Thus, 4,000 replicated data sets can be created. Each data set is
generated using the values of the parameters at a given iteration.
This means that the uncertainty in the parameter estimates is

incorporated into the simulation of the replicated data sets.
Furthermore, these replicated data sets represent what the data
would be expected to look like if the estimated model is correct.
Thus, deviations in the observed data from the replicated data sets
would indicate model misfit.

Once the replicated data sets have been generated, summary
statistics can be calculated. In this study, we calculate an expected
distribution of raw scores. For this summary, the number of
students at each total raw score (sum score across items) is
calculated, resulting in a distribution of the expected number
of students at each total raw score. The observed number of
students at each score point is then compared to these
distributions using a 95% credible interval. For a global
evaluation of model fit, this summary can be taken one step
further. The mean of the distributions for each score point can be
thought of as the expected number of students for that score
point. These expected counts can be used to calculate a χ2 -like
goodness-of-fit statistic. This is calculated in the same way as a
traditional χ2 statistic but will not follow the distributional
assumptions of the χ2. However, an empirical distribution can
be estimated using the replicated data sets. For each replicated
data set, the χ2 is calculated using the number of students
observed at each score in that replication and the expected
counts (the means of the distributions). Thus, a χ2 is
estimated for each replication, creating a distribution of
expected χ2 statistics. The χ2 from the observed data, χ2obs, is
then compared to this distribution, and a posterior predictive
p-value (ppp) is calculated as the proportion of the empirical χ2

distribution that is greater than the observed χ2obs. If the ppp is less
than 0.05 (or another chosen threshold), then the model is
rejected (i.e., the observed data are inconsistent with the
replicated data sets, and therefore, the model fit is not sufficient).

Absolute model fit is crucial to the evaluation of any model,
including DCMs. If the model does not fit the data sufficiently,
then any inferences made from the model are prone to error.
However, absolute fit indices are unable to adequately compare
competing models. For example, if both the LCDM and HDCM
demonstrate sufficient absolute fit, as would be expected if the
hypothesized structure is correct, these indices are unable to
differentiate which model fits better. For this comparison, relative
fit indices are needed.

Relative Fit
Relative model fit indices directly compare two models to
determine which provides a better overall fit to the data.
These are common measures in many models outside of
DCMs. For example, the Akaike information criterion (Akaike,
1974) and Bayesian information criterion (Schwarz, 1978) are
widely used and recognized. Another relative fit comparison is
cross validation. In cross validation, a portion of the data is
withheld from the estimation process, and fit is assessed on this
held-out portion. This is then repeated multiple times with
different training and testing sets. The performance of the
model across the held-out portions is then compared between
models. Although cross validation can be computationally
expensive, it can be approximated using predictive information
criteria (Gelman, Hwang, et al., 2013). In the proposed method,
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an approximation of leave-one-out cross validation, known as
Pareto-smoothed importance sampling leave-one-out cross
validation (PSIS-LOO; Vehtari et al., 2017, 2019), is used. This
method estimates the predictive density of the model, balancing
predictive power with model complexity. This method is also
readily available for models estimated with RStan using the loo
package (Vehtari et al., 2020). When examining the PSIS-LOO of
competing models, the magnitude of the difference in the
expected log predictive density (the predictive power) of each
model is compared to the standard error of the difference. If the
magnitude of the difference is much larger than the standard
error (e.g., 2.5 times as large; Bengio and Grandvalet, 2004), then
one model is preferred over the other.

In addition, we can also compare models using model stacking
(for an overview, see Hinne et al., 2020). These methods assign a
weight to each model that corresponds to the weight that should
be given to predictions from each model. Thus, these methods
allow for more refined inferences (Vehtari and Ojanen, 2012) and
are less prone to overfitting than methods based on information
criteria (Piironen and Vehtari, 2017). For the models in this
paper, we use the Bayesian stacking method described by Yao
et al. (2018).

Although relative fit indices can provide information about
which model may be preferred in a comparison, these values are
not useful in isolation. An expected log predictive density from
the PSIS-LOO is dependent on the size of the sample and the
likelihood function and therefore not comparable across different
types of models or data sets. Additionally, these methods do not
tell you if the model fits the data. The comparisons are all relative
to the other models. For example, the PSIS-LOO may indicate a
preference for the reduced model over the saturated model;
however, it could be that both models fit poorly, but the
reduced model is less poor. Therefore, it is important that
these methods be used in conjunction with absolute fit indices
to ensure a comprehensive assessment of model fit.

Method 2: Patterns of Attribute Mastery
The second method reduces the model complexities that exist in
Patterns of Profile Mastery method. For example, it does not rely
on the use of cross-attribute data needed to estimate relationships
between attributes. Thus, this method can be particularly useful in
test designs where there is planned missingness at the attribute
level, as in the DLM assessments. In this method, rather than
estimating the LDCM with mastery profiles across all attributes,
an independent LCDM with a dichotomous latent variable is
estimated for each attribute. A polytomous attribute could be
specified, but we use dichotomous attributes in this study to
reflect the most common implementations of DCMs (Ma, 2021).
This is similar to the approach taken by Jin et al. (2015), who used
multiple independent unidimensional item response theory
models to model each attribute. Thus, if there are five
measured attributes in the learning map, five single-attribute
LCDM models would be estimated. Each LCDM then has two
possible classes: master and nonmaster of the given skill. With
only two classes, this model is equivalent to a latent class analysis
(see Bartholomew et al., 2011). These models are again estimated
using RStan (Stan Development Team, 2020). After the

estimation of the models, we calculated the probability of each
student being a master of each skill. Thus, each student has a
probability of mastery for each attribute that they tested on,
calculated from the separate model estimations.

Patterns are then examined across the assessed attribute
masteries. That is, across the attributes that were assessed, do
the observed mastery patterns conform to the expected patterns?
The patterns of the probabilities can be compared directly or
dichotomized into 0/1 mastery decisions using a mastery
threshold (e.g., 0.8). If the hierarchical structure holds, then it
would be expected that the probability of attribute mastery would
decrease as the learning map progressed to more complex levels.
Similarly, if using a dichotomized mastery status, a student
should not receive a master classification on an attribute
unless all the lower-level attributes also received a master
classification.

Method 3: Patterns of Attribute Difficulty
The third method represents another step down on the scale of
model dependency. Whereas the first method (Patterns of
Mastery Profiles) and the second method (Patterns of Mastery
Assignment) both use some version of the LCDM, this third
method does not depend on any specific DCM model. Similar to
Herrmann-Abell and DeBoer (2018), this method involves the
calculation of item difficulties for each attribute and then
comparison of the pattern of difficulties across attributes
within cohorts of students with similar skill levels. Within
each student cohort, it is expected that the items should get
harder as the attribute level increases.

For this method, we define the difficulty of the attribute as the
average p-value of each linkage level for students in the cohort.
The p-values for given structure or LP are estimated using a
logistic regression. Students’ item scores are predicted by the
students’ complexity band and the linkage level of the item. By
using a logistic regression rather than calculating the p-values
directly, we are able to estimate the marginal effect of linkage level
on item difficulty (e.g., Searle et al., 1980; Lenth, 2021).
Additionally, using a logistic regression allows for the direct
calculation of a posterior distribution and credible intervals,
rather than relying on asymptotic assumptions that may not
be met in all situations using observed data (Shan and Wang,
2013). The model is estimated using the brms R package
(Bürkner, 2017, 2018), which provides a Bayesian estimation
of the logistic regression using Stan. The estimated model
parameters can then be used to create a posterior distribution
of the average p-value for each combination of complexity band
and linkage level. The posterior distributions of the p-values can
then be compared within cohorts, with the expectation that the
average p-values should get lower as the attribute level increases
(i.e., items get harder). By calculating the difference in the
p-values along with effect sizes that incorporate the
uncertainty in the posteriors, we can identify potential
misspecifications in the map structure.

Data
To demonstrate this DCM framework of map validation in
practice, all three methods were applied to data from DLM
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assessments from 2015–2016 to 2018–2019 for one example
Essential Element, M.EE.4.G.1. This Essential Element was
chosen based on the availability of cross-linkage-level data.
Additionally, this Essential Element exhibits a potential
misspecification in the defined structure, while still
maintaining sufficient model fit (as described in the Results).
Thus, this Essential Element provides an ideal use case for
demonstrating the methods proposed in this paper. Following
these analyses, this Essential Element was sent to the test
development team for further review and potential revisions.

The full student sample for this Essential Element was filtered
to only include students that tested on multiple linkage levels
within this Essential Element. During the operational DLM
assessment, cross-linkage-level data are primarily obtained by
teachers choosing to assess a student on an Essential Element
multiple times at different linkage levels.3 However, during the
spring 2018 and spring 2019 assessments, a new field test design
was used to assign students content at a linkage level adjacent to
the level they were assessed in the operational assessment. Thus,
additional cross-linkage-level data were collected to evaluate the
structure of the Essential Elements. For the third method
(Patterns of Attribute Difficulty), students were grouped into
cohorts based on their complexity band, which is derived from
educator responses to the First Contact survey and determines a
student’s starting linkage level in the assessment.4 The questions
on the First Contact survey assess a student’s subject matter
knowledge as well as their expressive communication skills. There

are four complexity bands: Foundational, Band 1, Band 2, and
Band 3, where Foundational is the lowest and Band 3 is the
highest.

In total, 1,101 students were assessed on Essential Element
M.EE.4.G.1 at multiple linkage levels. Table 2 shows the
demographic breakdown of the included students. The sample
is majority male and white, which is also true for the full
population of students who take the DLM assessments (Nash
et al., 2015; Burnes & Clark, 2021).

Table 3 shows the number of students within each complexity
band cohort who were assessed on each linkage level
combination. As shown, data for the Band 1 cohort include
609 students. Of these, 410 students were assessed on the
Initial Precursor and Distal Precursor linkage levels, 215 were
assessed on the Distal Precursor and Proximal Precursor linkage
levels, and 16 were assessed on more than two linkage levels. The
columnsmay not sum to the total because of overlap in the counts
(i.e., a student who tested on the Initial Precursor, Distal
Precursor, and Proximal Precursor linkage levels would be
counted in the IP/DP, DP/PP, and >2 Levels Tested columns).
No students in the Band 3 cohort were assessed on multiple
linkage levels for Essential Element M.EE.4.G.1.

RESULTS

To demonstrate the DCM framework for learning map and LP
validation in practice, the three methods were applied to the DLM
assessment data for Essential Element M.EE.4.G.1. The results for
each method are presented separately.

Method 1: Patterns of Mastery Profiles
The full LCDM and the constrained HDCM were fit to the
observed data. Model convergence was evaluated using the R̂
statistic described by Vehtari, Gelman, et al. (2020), which should
be below 1.01. The maximum R̂ values were 1.0030 and 1.0032 for
the LCDM and HDCM, respectively. Additionally, Vehtari,
Gelman, et al. (2020) recommend examining the effective
sample size to ensure that the parameters adequately explored
the sample space. The authors recommended that the effective
sample size should be at least 100 per chain (i.e., 400 for the
models estimated here). The minimum effective sample sizes for
the LCDM and HDCM were 1,570 and 1,992, respectively. Thus,
the estimation diagnostics indicate that both the LCDM and
HDCM successfully converged, and the parameters adequately
explored the sample space.

In addition to the estimation diagnostics, it is also important to
examine the estimated items parameters. Because the DLM
assessments use a simple Q-matrix design (i.e., each item
measures only one linkage level), there are two parameters for
each item. These are the intercept and the main effect, which
represent the probability of providing a correct response when the
respondent has not or has mastered the linkage level, respectively.
Note that these parameters are on the log-odds scale. In the
LCDM, the item intercepts ranged from −0.77 to 0.12, with a
mean of −0.66 and a standard deviation of 0.24. The main effects
ranged from 1.65 to 3.23 with a mean of 2.23 and a standard

TABLE 2 | Demographic subgroups for included sample of students.

Subgroup n %

Gender
Male 724 65.8
Female 377 34.2

Race
White 814 73.9
African American 154 14.0
Two or More Races 64 5.8
Asian 34 3.1
American Indian 19 1.7
Native Hawaiian or Pacific Islander a a

Alaska Native a a

No Response 3 0.3
Hispanic Ethnicity
No 987 89.6
Yes 112 10.2
No Response 2 0.2

English Learner (EL) Participation
Not EL Eligible or Monitored 1,043 94.7
EL Eligible or Monitored 58 5.3

aData suppressed due to n < 10.

3See Chapter 4 of the 2014–2015 Technical Manual—Integrated Model (DLM
Consortium, 2016) for a complete description of how assessment content is
assigned to students.
4For a complete description of the First Contact survey, see Chapter 4 of the
2014–2015 Technical Manual—Integrated Model (DLM Consortium, 2016) and
the First Contact census report (Nash et al., 2015).
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deviation of 0.72. The HDCM showed a similar pattern, with
intercepts ranging from −0.92 to 0.42 with a mean of −0.41 and a
standard deviation of 0.38 and main effects ranging from 1.51 to
3.17 with a mean of 2.26 and a standard deviation of 0.70. The
relatively small intercepts and large main effects for both models
indicate that the items are able to successfully discriminate
between masters and non-masters.

Finally, we can examine the reliability of the attribute
classifications. If the classifications are not reliable, then
mastery patterns would be equally unreliable. In this study,
reliability is assessed through classification consistency and
classification accuracy, as described by Johnson & Sinharay
(2018). These measures range from 0 to 1, where 1 represents
perfect consistency or accuracy. Table 4 shows these two
reliability indices for each of the LCDM, HDCM, and the
separate attribute estimations (Method 2, detailed below). The
classification consistency and classification accuracy were both
uniformly higher for the HDCM compared to the LCDM.
However, even the LCDM had adequate, if not ideal,
consistency and accuracy (∼0.7 across all attributes). Thus, the
classifications are sufficiently reliable to examine the mastery
profile patterns.

Absolute fit was assessed through the χ2obs statistic, calculated
from the posterior predictive model checks (see Thompson,
2019). For this statistic, a ppp value of less than 0.05 generally
indicates insufficient fit of the model to the observed data. Using
this criterion, both the LCDM (χ2obs � 31.0; ppp � 0.079) and the
HDCM (χ2obs � 37.7; ppp � 0.059) showed adequate model fit.
That the HDCM showed adequate model fit indicates that the
hierarchical structure of linkage levels is sufficient for describing
the observed data.

Because both the LCDM and HDCM showed adequate
absolute model fit, we can examine relative fit indices to
determine if the additional complexity of the LCDM provides
a significant improvement to predictive power of the model. The
difference in PSIS-LOO between the LCDM and HDCM was
–21,745.8, indicating a preference for the LCDM. The standard

error of the difference was 200.5. Because the magnitude of the
difference is much larger than the standard error (i.e., greater
than 2.5 times as large; Bengio and Grandvalet, 2004), we can
conclude that this is a meaningful difference. Additionally, the
Bayesian stacking method proposed by Yao et al. (2018) strongly
preferred the LCDM, giving >99% of the predictive weight to the
LCDM, compared to only <1% for the HDCM. Thus, although
the HDCM adequately represents the underlying data for the
example mathematics Essential Element, the relative fit analyses
indicate that the additional parameters of the LCDM do provide a
significant improvement to the predictive capabilities of the
model, even after accounting for model complexity.

Figure 2 shows the percentage of students placed in each
mastery profile for both the LCDM and HDCM. Overall, when
using the LCDM, 17% of students were estimated to be in an
unexpected class. Of these students estimated to belong to an
unexpected mastery profile, 84% (15% of all students) were
estimated to be in a profile where the reversal was between
the Proximal Precursor and Target, or Target and Successor,
linkage levels (e.g., [1,1,0,1,0], [1,1,1,0,1]). Thus, the improved
predictive accuracy provided by the LCDM is likely due to the
ability of the LCDM to discriminate additional, albeit unintended,
mastery patterns across the higher linkage levels.

Method 2: Patterns of Attribute Mastery
A single-attribute LCDM was estimated for each of the five
linkage levels for Essential Element M.EE.4.G.1. Across all five
models, the maximum R̂ was 1.0059, and the minimum effective
sample size was 1,140. Thus, all five of the separate LCDMmodels
successfully converged, and the parameters successfully explored
the sample space. As was done with the full LCDM and HDCM,
we also examined the item parameters and attribute reliability
indices for the separate single attribute models. Across all five
models, the item intercepts ranged from −1.27 to 0.32 with a
mean of −0.47 and a standard deviation of 0.52. The main effects
ranged from 1.46 to 3.15 with a mean of 2.32 and a standard
deviation of 0.60. The reliability estimates for the separate models

TABLE 3 | Sample sizes for cross-linkage-level data, by complexity band.

Complexity band IP/DP DP/PP PP/T T/S Two non-adjacent >2 levels tested Total N

Foundational 82 0 0 0 0 0 82
Band 1 410 215 0 0 0 16 609
Band 2 22 168 219 22 6 26 410

Note. IP, Initial Precursor; DP, Distal Precursor; PP, Proximal Precursor; T, Target; S, Successor.

TABLE 4 | Attribute reliability estimates for the LCDM and HDCM.

Linkage level Consistency Accuracy

LCDM HDCM Separate LCDM HDCM Separate

Initial Precursor 0.829 0.847 0.999 0.790 0.840 0.929
Distal Precursor 0.775 0.792 0.827 0.842 0.864 0.894
Proximal Precursor 0.722 0.890 0.844 0.727 0.895 0.879
Target 0.667 0.927 0.683 0.682 0.906 0.863
Successor 0.894 0.996 0.999 0.675 0.943 0.903
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are included in Table 4. Overall, the classification consistency
ranged from 0.683 to 0.999, and the classification accuracy ranged
from 0.863 to 0.929. Together, the item parameters and reliability
indices indicate that the classifications from the separate models
are also adequately consistent and accurate.

Using the separate models, we then calculated students’
resulting posterior probability of mastering each assessed
linkage level and dichotomized into master and nonmaster
categories using a threshold of 0.8. A threshold of 0.8 was
chosen because this is the threshold used for scoring the
operational DLM assessments (see Chapter 5, DLM
Consortium, 2016, for a complete description of assessment
scoring). In total, 47 students (4%) showed a pattern of

attribute mastery inconsistent with the proposed hierarchical
structure of the linkage levels.

Figure 3 shows the percentage of students that were flagged
for each of the linkage level combinations. The highest incidence
of observed inconsistency was between the Proximal Precursor
and Target linkage levels, where 20 (9%) of the 219 students who
were assessed on these two linkage levels were estimated to be
masters of the Target linkage level but not the Proximal Precursor
linkage level. This may indicate that there is a possible
misspecification in the linkage level structure or may be an
artifact of the way test content is developed. In general, the
content assessed at the higher linkage levels is much closer
conceptually than the content assessed across the lower

FIGURE 2 | Student mastery profile classifications. Expected profiles estimated in the hierarchical diagnostic classification models (HDCM) are labeled in bold text.
LCDM � linear cognitive diagnostic model.
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linkage levels. This is because the lower linkage levels often assess
foundational skills, whereas the Successor linkage level generally
assesses a skill just beyond the Target linkage level (DLM
Consortium, 2016). For example, we can see the conceptual
distance for this Essential Element in Figure 1. For this
Essential Element, the skills assessed range from “Recognize
attributes of an object” to “Recognize perpendicular lines;
recognize parallel line segments in shapes.” Thus, it may be
that the knowledge, skills, and understandings assessed at
Proximal Precursor and Target linkage levels are very close
conceptually and, therefore, could be reversed more easily.

Method 3: Patterns of Attribute Difficulty
Student cohorts were based on the subject-specific complexity
band, calculated from the First Contact survey, as described in
Clark et al. (2014). Students were grouped into four cohorts based
on expressive communication and academic skill levels as follows:
Foundational, Band 1, Band 2, and Band 3. No students from
Band 3 were included in this analysis because no students from
this complexity band were assessed on multiple linkage levels for
this Essential Element. Figure 4 shows the uncertainty intervals
for the estimated average p-value for each complexity band and
linkage level where students were assessed. Due to the missing
data resulting from the DLM administration design (i.e., students
are not intended to test on every linkage level), not all cohorts
have data on all linkage levels. For example, students in the
Foundational complexity band were only assessed on the Initial
Precursor and Distal Precursor linkage levels. Overall, the average
p-values follow the expected pattern, with lower linkage levels
having higher p-values (i.e., easier) than the higher linkage levels,

within each student cohort. The exception is the Successor
linkage level for students in the Band 2 complexity band. The
estimated p-value for this linkage level is higher than those
estimated for the Target, Proximal Precursor, and Distal
Precursor linkage levels. However, there is a large amount of
uncertainty in this estimate, likely due to the relatively small
sample size of Band 2 students testing at the Successor linkage
level (n � 22; Table 3).

Table 5 reports the difference in average p-values for each
linkage level combination observed in the data. Table 5 also
includes two effect sizes. Cohen’s h (Cohen, 1988) is a
standardized difference in proportions. Using cutoffs
recommended by Sawilowsky (2009), the magnitude of Cohen’
h can be used to classify the observed effects as very small
(0.01–0.2), small (0.2–0.5), medium (0.5–0.8), large (0.8–1.2),
very large (1.2–2.0), and huge (≥2.0). The common language
effect size (McGraw and Wong, 1992; Liu, 2015) is a measure of
overlap in the distributions from each group. The common
language effect size indicates the probability that a value
sampled at random from the first group will be greater than a
value randomly sampled from the second group. Thus, in
Table 5, positive Cohen’s h values and common language
effect sizes close to 1.0 indicate that the lower linkage level in
the comparison is easier than the higher linkage level, as expected.

Almost all comparisons are in the expected direction. The only
exceptions are the comparisons between the Successor linkage
level and the Distal Precursor, Proximal Precursor, and Target
linkage levels for students in the Band 2 cohort. The common
language effect sizes for these comparisons indicate that there
is very little overlap in the plausible ranges of theses p-values;

FIGURE 3 | Percentage of students flagged for reversals at each linkage level combination for Essential Element M.EE.4.G.1.
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however, the Cohen’s h values are all in the very small to small
range. Additionally, although the difference is in the expected
direction, the comparison for Band 2 students between the
Proximal Precursor and Target linkage levels is near zero.

Thus, as was also indicated from the results of the other two
methods, it appears that there may be a misspecification in the
structure of the higher linkage levels.

DISCUSSION

In this paper, we present a framework for evaluating a proposed
learning map structure using DCMs. Three methods were described
with decreasing levels of model dependency. These methods were
then applied to the hierarchical linear structure of linkage levels for an
example Essential Element from the DLM mathematics assessment.
The findings demonstrate the utility of the proposed framework for
map validation using DCMs. By including methods with different
levels of model dependency, the less model-dependent methods are
still able to provide useful information when the highly model-
dependent methods may not be feasible due to assessment design
or data sparseness. Additionally, evidence of fit or misfit for the
proposed structure from multiple methods provides a more
comprehensive set of information from which final inferences can
be made.

Framework for Map Validation
In the first method, Patterns of Mastery Profiles, the comparison
of the full LCDM to the constrained HDCM provides the most

FIGURE 4 | Credible intervals of the average p-value for each complexity band and linkage level.

TABLE 5 | Difference in average linkage level p-values and effect sizes, by
complexity band.

Comparison Difference Cohen’s h CLES

Foundational
Initial Precursor—Distal Precursor 0.205 0.414 >0.999

Band 1
Initial Precursor—Distal Precursor 0.193 0.401 >0.999
Initial Precursor—Proximal Precursor 0.273 0.563 >0.999
Distal Precursor—Proximal Precursor 0.081 0.162 >0.999

Band 2
Initial Precursor—Distal Precursor 0.181 0.388 >0.999
Initial Precursor—Proximal Precursor 0.261 0.550 >0.999
Initial Precursor—Target 0.270 0.568 >0.999
Initial Precursor—Successor 0.117 0.256 0.995
Distal Precursor—Proximal Precursor 0.080 0.161 >0.999
Distal Precursor—Target 0.090 0.180 >0.999
Distal Precursor—Successor −0.064 −0.132 0.092
Proximal Precursor—Target 0.009 0.019 0.684
Proximal Precursor—Successor −0.144 −0.293 0.001
Target—Successor −0.153 −0.312 0.001

Note. CLES, common language effect size.
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robust evaluation of the attribute structure. This method presents
a clear test of mastery profiles that are expected and unexpected,
given the proposed attribute structure. Additionally, because the
LCDM includes all possible profiles, this method offers a path
forward for revising existing structures in cases in which the
HDCM shows poor model fit. By examining the profile
classifications in the LCDM, we can identify which unexpected
profiles see the greatest numbers of students, informing future
work to improve the proposed structures in consultation with
subject matter experts.

The second method, Patterns of Attribute Mastery, can be
used when the first method is not feasible due to sparse data. For
example, if students do not test on all available attributes, the
model may struggle to accurately estimate the relationships
between attributes. To account for this, attributes can be
estimated individually, with mastery classifications made for
each attribute tested by the student. By estimating each
attribute individually, the estimation of attribute-level
relationships becomes moot. However, the trade-off is an
assumption that mastery of any given attribute is independent
of mastery of the other attributes. Thus, the Patterns of Attribute
Mastery method offers additional flexibility in the modeling
process but concedes the ability to directly test for the
presence of unexpected profiles. However, it is possible to look
at specific combinations of attributes to determine where a
misspecification may be located.

Finally, the third method, Patterns of Attribute Difficulty,
does not directly estimate any DCM. Rather, this method
examines the average difficulty of items measuring each
attribute for cohorts of students. Unlike the other two
methods, this third method does not require estimated
mastery classifications, even though these classifications could
be incorporated. Although the applied example in this paper
operationalized average difficulty as p-values, other measures of
difficulty could be used. For example, Herrmann-Abel and
DeBoer (2018) used the difficulty parameter from their Rasch
model. In a diagnostic assessment using DCMs, one could
examine the patterns of the probability providing a correct
response to items measuring each attribute within a mastery
profile. However, this would require the estimation of a DCM. A
key benefit of this method is that the estimation of a latent
variable model is not required. Accordingly, this method may be
applicable to evaluating LPs or learning maps associated with
assessments that are scaled with more traditional psychometric
models (e.g., classical test theory or item response theory).
Although this method doesn’t offer an explicit test of the
proposed structured, evidence in support of or against the
structure can be inferred by the posterior distributions of
average difficulty for each attribute. That is, if one attribute
is dependent on another, the former attribute should be more
difficult, as the student would need to have mastered both skills
to provide a correct response. Additionally, because this method
allows additional groupings (e.g., student cohorts), it is possible
to evaluate whether there are specific groups for whom the
proposed attribute structure may not be appropriate.

These methods can be used as a comprehensive set of
methods, or separately, for the evaluation of a proposed

map structure. Together, these methods provide a well-
rounded examination of the connections between
attributes. The Patterns of Mastery Profiles method
provides the most robust overall evaluation, as a fully
model-based assessment of map structure. The Patterns of
Attribute Mastery method, by not relying on the concurrently
estimated mastery profile, is able to incorporate attribute-level
scoring rules. The Patterns of Attribute Difficulty method
goes beyond mastery classifications to incorporate additional
information into the overall evaluation (i.e., attribute
difficulty). Thus, even if the Patterns of Mastery Profiles
does not support the structure, the other two methods can
provide some level of support, as well as inform potential
improvements to the map structure. For example, the Patterns
of Attribute Mastery method can provide more fine-grained
results that may be easier to interpret than the full mastery
profile, and the Patterns of Attribute Difficulty method is able
to indicate if particular groups of students may be less well
represented by the proposed structure.

Additionally, the latter two methods can be used
independently for map evaluation when the Patterns of
Mastery Profiles method is not feasible (e.g., due to data
sparseness). However, the latter two methods have not been as
thoroughly developed and evaluated as the first method;
additional research is needed to fully understand how effective
the second and third methods are for detecting hierarchies under
different data conditions. Although the evidence that can be
provided by the other methods is not as strong as the
evidence provided by Patterns of Mastery Profiles method, it
may be sufficient depending on the intended uses of the map
structure. In particular, the Patterns of Attribute Difficulty
method requires only some measure of difficulty (p-values).
Extreme data sparseness may result in exceptionally wide
uncertainty intervals for this method, making inferences
difficult; however, this is true of almost all methods when the
sample size is small.

Application of the Framework
The applied example demonstrates the utility of this
framework using a content standard expressed at different
levels of complexity from the DLM alternate assessment
system. Across all three methods, the example Essential
Element showed compatibility with the hierarchical
structure of linkage levels. In the Patterns of Mastery
Profiles, the HDCM showed adequate model fit, indicating
support for the linear structure of the DLM linkage levels.
However, the relative fit indices indicated a preference for the
LCDM, with 17% of student being placed in unexpected
profiles. This suggests that although the HDCM fits, the
model is significantly improved by the inclusion of the
unexpected profiles. In the Patterns of Attribute Mastery,
the results showed that almost all students exhibited an
expected pattern of attribute mastery (only 4% of students
demonstrated an unexpected profile). Of the students who did
not have an expected pattern, most students showed a reversal
at the higher linkage levels. Finally, the Patterns of Attribute
Difficulty also showed that average linkage level p-values also
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follow expected patterns of difficulty within student cohorts.
The exception was for students in the Band 2 complexity band
who were assessed at the Successor and Target levels.

Thus, the totality of the evidence from this study supports
the linear hierarchy for most linkage levels associated with the
Essential Element. However, the results also indicate that
although the hypothesized structure is supported; there are
still opportunities for improvement among the higher linkage
levels. Both the Patterns of Mastery Profiles and Patterns of
Attribute Mastery methods indicated that reversals in the
expected patterns were more common for the Target and
Successor linkage levels. These results may be influenced by
the missing data associated with the DLM administration
design. For example, in the first method, of the 17% of
students with an unexpected pattern, 71% (12% of all
students) were estimated to have mastered only the highest
linkage level (i.e., pattern [0,0,0,0,1] in Figure 2). However, no
students who were assessed on the highest level were also
assessed on the lowest level, and very few were assessed on
both the highest and second lowest levels. In these cases,
“non-mastery” of the lowest levels was a function of missing
data, rather than students demonstrating non-mastery. Thus,
the 17% of students with an unexpected pattern in the first
method is likely inflated due to missing data patterns that are a
result of the intended administration design of DLM
assessments. Additionally, it should be noted that because
the higher linkage levels are closer together conceptually, it
may be easier to falsely identify a misspecification. For
example, in the Patterns of Mastery Profiles, the
constrained HDCM identified almost no students (n � 16;
1% of all students) in profiles [1,1,1,0,0] or [1,1,1,1,0]. That is,
students tended to master either 0, 1, 2, or all 5 linkage levels
(Figure 2). This indicates that the highest three linkage levels
may not be completely distinct, making it easier for a student
to show an unexpected pattern. This may also partially explain
the discrepancy in the proportion of students with an
unexpected pattern between the first and second methods
(17 and 4%, respectively). When the attributes are forced to be
independent, a decision must be made for each attribute
individually, whereas correlating the attributes allows for
the mastery of one attribute to influence another. If the
attributes are not completely distinct, these approaches will
result in different decisions, as was observed in this example.
Overall, the ability to evaluate a proposed structure and assess
potential areas for improvement highlight the benefits of
using a multimethod approach to evaluating hypothesized
map structures.

Learning maps or progressions can be used as instructional
tools to foster students’ attainment of learning goals
(Shepard, 2018). Providing teachers with a “roadmap” for
instructional planning can support students’ learning needs
on their way to meeting grade-level expectations. For
example, the DLM score reports include a profile of all the
linkage levels a student has mastered and which skills come
next in the progression of each Essential Element (for
example score reports, see Chapter 7 of DLM Consortium,
2016). However, for a learning map to be useful for

instruction and learning, the proposed map structure must
be supported by empirical data. This paper provides a
proposed framework that can be used to support empirical
evaluation of map structures, thereby increasing the potential
benefit of using learning map structures in instruction and
assessment.

CONCLUSION

Future work will continue to refine the methodology of the DCM
framework for map validation and apply the methods to all DLM
Essential Elements in mathematics, English language arts, and
science as additional data are collected, as well as beyond the
DLM assessments. In this paper, we considered only a linear
hierarchy of attributes, which is utilized for DLM Essential
Elements. However, other attribute structures may be
appropriate for other contexts. Thus, nonlinear attribute
structures could be examined in future applications of the
proposed framework.

Methodologically, modifications can be made to the
estimation process in the Patterns of Mastery Profiles, such as
simplifying the parameterization of the structural model (e.g.,
Thompson, 2018), which could be used to improve model
estimation with limited cross-attribute data. Furthermore, the
Patterns of Attribute Mastery can be refined to develop a flagging
criterion for what constitutes a meaningful discrepancy. That is,
more work can be done to determine how many students can be
placed in an unexpected pattern before the overall structure of the
attributes comes into question. For example, in the applied
example, 4% of students exhibited an unexpected pattern
across tested linkage levels, but it is unclear what percentage
(e.g., 5%, 10%) could be reasonably tolerated before the
hierarchical assumption is threatened. Similarly, more research
is needed to evaluate the power and precision of both the Patterns
of Attribute Mastery and Patterns of Attribute Difficulty methods
for detecting hierarchies, and potential violations of a proposed
hierarchical structure.

In summary, the methods presented in this paper provide
multiple approaches for evaluating the structure of an LP or
learning map. Each method makes different assumptions and
supports different types of evidence. Together, they provide a
comprehensive and flexible framework to evaluate and improve
hypothesized attribute structures. Further work in this area will
both inform the literature on student learning processes and
provide further guidance for the development of learning map
and progression-based assessments.
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