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The development of executive functions is remarkable in early childhood. Therefore,
research on how to support the development of executive functions is actively being
conducted. It has already been indicated that executive functions are related to the
prefrontal cortex. Recent evidence suggests that the prefrontal cortex is involved in mental
abacus (MA). Further, the study of the abacus—the base of MA—is good for not only
mathematics but also nurturing the brain. However, although the abacus is easy to learn,
learning opportunities have shrunk because of the widespread use of calculators. Through
this educational pilot case study, I examined whether it is possible that even easy
calculations during the introduction of abacus calculation in early childhood may have
an effect on executive function support. I measured the activation of cerebral blood flow in
the prefrontal cortex of a young child while he worked on the Wechsler Intelligence Scale
for Children-IV; Working Memory Index tasks (forward digit-span task, backward digit-
span task, and letter–number sequencing task); and the abacus calculation task using
HOT-2000 (NeU, Japan), a two-channel wearable functional near-infrared spectroscopy
device. The results revealed a significant difference between the abacus calculation task
and the forward digit-span task; however, there was no significant difference between the
abacus calculation task and other tasks. In other words, the brain in the prefrontal cortex
was more activated in the abacus task than in the forward digit-span task. Difficulty levels
were found to be in the order of the forward digit-span task, backward digit-span task, and
letter–number sequencing task. Thus, there is a possibility that even simple abacus
calculation has a positive effect on executive functions, especially working memory
support, in early childhood. This study’s results provide a breakthrough in cognitive
psychology, educational psychology, neuropsychology, and other fields related to child
support, which are struggling to find valuable, practical practices for children in the field
(i.e., schools and homes) beyond the laboratory.
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INTRODUCTION

Executive function has received much attention as an ability that
is essential for success in life (Diamond, 2013; Moriguchi et al.,
2016). Additionally, executive functions develop significantly
during early childhood (Moriguchi and Hiraki, 2013;
Watanabe, 2021a) and should, therefore, be supported during
this period (Moriguchi, 2015; Watanabe, 2021b). Working
memory (WM) is greatly involved in executive function
(Baddeley, 2012; Zelazo and Carlson, 2012; Diamond, 2013;
Saito and Miyake, 2014). Furthermore, executive function can
be enhanced through intervention (Diamond and Lee, 2011;
Jaeggi et al., 2011). Early intervention in WM is more effective
if done during early childhood (Dehaene, 2020). There is also a
relationship between executive function and the activation of
cerebral blood flow in the prefrontal cortex (Moriguchi, 2008;
Moriguchi and Hiraki, 2011; Watanabe, 2021a; Watanabe,
2021b). The prefrontal cortex takes a significant amount of
time to mature until adolescence (Gogtay et al., 2004). During
executive function tasks, the activity of the prefrontal cortex
becomes stronger in late infancy (Moriguchi, 2015). In the
field (schools, childcare sites, and homes), it is desirable to
support executive functions in a way that is easy, including its
measurement and content, rather than through laboratory
methods. If the possibility of support is not suggested in the
first place, it is of little use in the field. Therefore, it is desirable
that the content and method be simpler (Watanabe, 2021a;
Watanabe, 2021b). In education, in terms of the support of
executive functioning, it has been suggested that for progress
to be made, scientists must engage with teachers and schools and
that parents, teachers, and researchers must work together to
conduct systematic and rigorous research to continue to find
effective strategies based on scientific evidence (Dehaene, 2020).

In recent years, in China and Japan, it is said to be related
mental abacus (MA) and executive functions. MA is based on the
abacus calculation method but is done without an abacus (Frank
and Barner, 2012). Accurate MA performance can lead to
improved math calculations and will aid children’s math
learning. Furthermore, MA can support WM (Hatano and
Osawa, 1983; Tanaka et al., 2002; Lee et al., 2007; Chen et al.,
2011; Dong et al., 2016; Weng et al., 2017; Kamali et al., 2019).
WM has been found to be related to the prefrontal cortex
(Petrides, 2000; Curtis and D’Esposito, 2003; Narayanan et al.,
2005; Funahashi, 2017). When the load on the WM is excessive,
the activation is small. And when the load is small, the activation
is small. On the other hand, when the task is moderately difficult,
activation is large (Watanabe, 2008). Because MA is designed
with an abacus in mind, rather than mental arithmetic, having an
understanding of abacus calculation is a prerequisite for MA.
Additionally, introducing abacus calculation is easy, even for
young children (5–6 years old) who can recite, read, and write
numbers.

“Abacus” is soroban, and “abacus calculation” is shuzan in
Japanese. An abacus is a calculating aid. A ball is located on a
skewer and can be moved up and down, and the position of the
ball is used to express a number. An abacus can be used for
addition, subtraction, multiplication, and division. In Japan, it is

common to have one 5-ball and four 1-ball abacus (Figure 1).
Currently, the abacus is formally taught in third and fourth grades
of elementary schools in Japan but for only 2–3 h. However, the
abacus became an important factor for finding employment at
banks and other clerical jobs in the country during the 1960s
(Sumitomo Life Insurance Company, 1986), and this was so
common that companies held abacus competitions
(Matsushita Electric Industrial Co., Ltd., 1986). However, the
value of the abacus has been decreasing since the 1970s, as
calculators became more popular in homes because of their
better performance and lower prices. For example, the number
of test takers for the abacus exam peaked at 2.05 million in the
1980s and dropped to 180,000 in 2005 (Kaneshima, 2010).
Therefore, around 1985, to curb the threat of the spread of
calculators, people began to argue about the difference
between calculators and the soroban (Hakamada, 1984).
Furthermore, with the development of brain science, it was
claimed that the soroban is effective for “right brain”
education (Kubo, 1986), and even now, it continues to be
advertised in this manner in published works (Horino, 2006;
Kou, 2018). Although there is little or no evidence for abacus use,
its relationship with the prefrontal cortex has been suggested
(Sawaguchi, 2013). Conversely, some brain science evidence has
been amassed regarding the value of MA. For example, the
prefrontal cortex is activated by MA (Tanida et al., 2004). This
is especially true for beginner students. (Chen et al., 2006).

Brain activity can be measured using
magnetoencephalography (MEG), electroencephalography
(EEG), magnetic resonance spectroscopy (MRS), positron
emission tomography (PET), functional near-infrared
spectroscopy (fNIRS), and functional magnetic resonance
imaging (fMRI). In recent decades, the use of fNIRS has been
rapidly increasing because of its safety, portability, and flexibility.
fNIRS can be used for both newborns and the elderly and can be
used inside and outside the laboratory (Pinti et al., 2020). fNIRS is
a non-invasive neuroimaging technique that uses near-infrared
light to measure changes in the concentration of oxygenated
hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb)
in the brain tissue (Ferrari and Quaresima, 2012; Scholkmann
et al., 2014). Furthermore, in recent years, wearable fNIRS has
also been utilized (Pinti et al., 2015; Pinti et al., 2020). Among
wearable devices, the use of a two-channel device, which is
inexpensive, has also become popular (Keshmiri et al., 2017;
Keshmiri et al., 2018; Komuro et al., 2018; Nozawa and
Miyake, 2020; Watanabe, 2021a; Watanabe, 2021b). Thus,
the use of the two-channel wearable fNIRS device is ideal if
it needs to be used for children and in everyday situations
outside the laboratory.

FIGURE 1 | Abacus.
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To begin with, handling an abacus is not complex; however, it
is difficult to conduct a clinical effort on a large scale away from
the laboratory, such as at home. An educational pilot study is
suitable and useful for deriving the hypothesis and is thus the
approach used in this study (George and Bennett, 2005; Yin,
2014). Moreover, as a first step in testing the hypothesis, this
study was conducted with a single subject to explore the
possibilities. In the field, it has been previously highlighted
that there are situations in which a single study is more
valuable (Kawai, 2013).

Hypothesis (1): Even a simple abacus calculation has the
potential to be useful in supporting executive functions
(especially the part about WM.).

MATERIALS AND METHODS

Research Design
To test the hypothesis, I decided to use the case study approach.
Then, for verification of one young child, brain activity in the
prefrontal cortex was measured for each task using fNIRS.
Further, the value of brain activity for each task (total Hb in
the left and right prefrontal cortex) was measured. Then, the
average value of each task was calculated. To compare the mean
values, a test of difference of means (t-test) was performed using
IBM SPSS Statistics ver. 27.0.1.0.

WISC-IV was used as the index task, and the abacus task was
used as the comparison task. In other words, I examined the
characteristics of a young child’s brain activity using the
behavioral evidence of WISC-IV and compared it with brain
activity in the abacus task as an index.

Target
The subject of the study required a young child who was just
beginning to learn abacus calculation. Therefore, the subject of
the study was a 5-year-old child attending a typical kindergarten.
Hewas neither attending a special learning school norwas he in need
of any special assistance. At the age of 5, he began attending an
abacus school twice a week, but he had not yet learned MA. To
reduce bias as much as possible, I selected subjects who had
participated in brain activity measurement experiments before
and who had established a trusting relationship with the
experimenter. I explained the research to the parents of the child
orally and in writing and obtained their informed consent before
conducting the study. Additionally, a report was submitted to the
University Committee for Regulations for Behavioral Research with
Human Participants at the author’s university. The experiment was
conducted at the subject’s home. Note that the introduction of
abacus calculation should be practiced at an appropriate level for an
individual because it is not just numerical calculation. The activation
of the prefrontal cortex by abacus may lead to the acquisition of
executive functions. In other words, the purpose of this study was to
moderately activate the prefrontal cortex through abacus learning.
Furthermore, notably, the subject was my own child. This means
that the authors were teachers and childcare providers (with teaching
experience, licenses, and certifications), university teachers and
researchers (pedagogues, cognitive psychologists, and

neuropsychologists), and his parent. In other words, the aim was
to create a close collaboration among researchers, teachers, and
parents in research and practice.

Ethics
This study was performed in accordance with the Code of Ethics
of the World Medical Association (Declaration of Helsinki). It
was approved by the Kwansei Gakuin University Committee for
Regulations for Behavioral Research with Human Participants
(Approval Number: 2020-06; Approval Date: June 12, 2020).
Written informed consent was obtained for experimentation with
human subject. The privacy rights of the human subject was
safeguarded.

Task
WISC-IV-Working Memory Index Task
Digit-Span Task
Forward Digit-Span Task. In this task, the experimenter reads
out a sequence of numbers to the subject; afterward, the
subject orally repeats the numbers in that order. The total
number of questions is eight. Each question is further divided
into two sub-questions that comprise two sequences of the
same length. The length of the sequence consists of two-to
nine-digit questions, which was initially two digits, and
increases by one digit after each question. If the score is 0
in both series of questions (both sub-questions), the tasks will
be aborted.

Backward Digit-Span Task. In this task, the sequences of
numbers are read out by the experimenter to the subject;
afterward, the subject orally repeats the numbers in the reverse
order. The number of questions is eight. Each question is further
divided into two sub-questions comprising two sequences of the
same length. The length of the sequence consists of two-to eight-
digit questions, beginning with two digits and then increasing by
one digit after each question. However, the second question does
not increase by one digit and remains in two digits. If the score is 0
in both series of questions (both sub-questions), the tasks will be
aborted.

Letter–Number Sequencing Task
In this task, the experimenter reads out a sequence of several
letters in numerals and hiragana. The subject has to sort the
numbers in ascending order and the letters alphabetically and
then answer orally. The number of questions is 10. There are
three sub-questions in the core problem. The sub-questions
comprise three series of equal length: two two-digit questions,
three three-digit questions, two four-digit questions, and one each
of five-digit, six-digit, and seven-digit questions. The test will be
aborted if the score reaches 0 on all of the sub-questions of each
question.

Abacus Calculation
The calculation content is as follows. 3 + 2, 3 + 4, 8 + 1, 4 + 4, 4 +
2, 10 + 5, 17 + 2, 16 + 2, 15 + 4, 18 + 1, 9 + 5, 6 + 7, 3 + 9, 6 + 5, 2 +
9, 9−4, 7−3, 8−3, 8−6, 9−3, 13−3, 18−5, 13−1, 19−2, 18−3, 17−9,
13−9, 11−3, 16−7, and 12−7.
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Protocol
The protocol was as follows. First, I selected a suitable subject for
the study such as “early learners of the abacus.” In this case, it was
necessary to build sufficient rapport. However, as it was a parent
and child, no special time was necessary to build such rapport.
Meanwhile, it was necessary to implement the task in a relaxed
situation. Thus, the task was conducted at the subject’s home and
at the desk where he usually studies. It was also determined that
the subject had previously experienced brain activity
measurements. In addition, if there was a request to use the
restroom or take a break before/during the task, the subject was
permitted to do so. If the subject was in the middle of the task,
then he simply had to start the task from the beginning. Each task
was conducted in a series of steps (about 1 hour) with no long
breaks.

WISC-IV-WMI Task
This task was performed according to the procedure described in
the general manual (Wechsler, 2004). The forward digit-span
task, backward digit-span task, and letter–number sequencing
task were performed in that order. The task was completed when
the “cancel” condition was met. Thus, the time for task execution
differed. Moreover, brain activity during the child’s activities was
measured.

Abacus Task
There were 30 questions in total. There was no time limit. Brain
activity during the child’s activities was measured (Figure 2). The
order of the tasks was as follows: abacus calculation, forward
digit-span task, backward digit-span task, and letter–number
sequencing task. A break of at least 30 s was taken between
each task.

Calculation
This study tested Hypothesis 1 using the case study approach.
Then, for verification of one young child, brain activity in the
prefrontal cortex was measured for each task using fNIRS. The
value of brain activity for each task (total Hb in the left and right

prefrontal cortex) was measured. Then, the average value of each
task was calculated. To compare the mean values, a test of
difference of means (t-test) was conducted using IBM SPSS
Statistics ver. 27.0.1.0.

Cerebral blood flow in the prefrontal cortex of the young child
was measured with HOT-2000, a two-channel fNIRS device made
in Japan, priced at 198,000 yen. As HOT-2000 is a wearable
device, it can be used outside the laboratory and even at home.

The measurement principle of HOT-2000 is as follows.
Changes in blood flow associated with brain activity are
monitored using near-infrared light. Blood flow increases near
the area where the brain is active. Two sensor blocks are
implanted in the part of the brain that targets the prefrontal
cortex. The light of a wavelength of approximately 800 nm is
used. The detectors are located at approximately 1 and 3 cm from
the light beam. With each index of brain activity, the change in
total Hb (left–right) is determined. The value is calculated by
subtracting the signal at SD distance 1 cm from the signal at SD
distance 3 cm at a certain rate. Spike noise has been removed.
Therefore, the total hemoglobin change (left–right) was adopted
as the measured value.

The baseline correction was set at 0 in the beginning, and the
average brain activity during the task was examined {[Σ(f(x)-min
f(x))/total number of milliseconds], x: time, and f(x): total
hemoglobin}. Total hemoglobin was acquired every millisecond.

RESULTS

This study explored the actual situation of one child. Thus, it was
a within-individual comparison based on repeated
experimental data.

The numerical and average values for each of the abacus
calculation task, forward digit-span task, backward digit-span
task, and letter–number sequencing task are as shown in Table 1.

For the left lateral brain activity, the mean values were, in
increasing order, the forward digit-span task, backward digit-
span task, abacus calculation task, and letter–number sequencing
task. For the right lateral brain activity, the mean values were, in
increasing order, the forward digit-span task, abacus calculation
task, backward digit-span task, and letter–number
sequencing task.

Table 2 illustrates the results of a significant difference in the
t-test owing to the difference between the mean values for the left
and right brain activities in each task. There was a significant
difference between abacus calculation and forward digit-span
task. There was no significant difference between the abacus
calculation task and the backward digit-span task or
letter–number sequencing task.

Table 3 shows the effect size (Cohen’s d and Hedges’s g)
corresponding to the difference between the mean values for the
left and right brain activities in each task. The effect size of
Cohen’s d and Hedges’s g was large in the relationship between
abacus and the forward digit-span task.

The result indicate that the abacus moderately activates the
prefrontal cortex, as the abacus is more demanding than the
forward digit-span task and it provides support with a load

FIGURE 2 | Child calculates the task with an abacus.
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equivalent to that of the backward digit-span or letter–number
sequencing task.

DISCUSSION

Value of the Research
Currently, executive function support is important for young
children (Moriguchi, 2015; Watanabe, 2021b). However, there
are indicators that providing this support is somewhat
difficult. Further, the need for this support is based on
scientific evidence, not just behavioral evidence. Therefore,
increasing attention is being paid to brain science research.
From the perspective of supporting children, there are high
expectations for the future use of wearable devices such as
fNIRS instruments.

In this study, I focused on the abacus, which has not been
studied much as a subject in terms of executive function (EF)
support. The study of MA has attracted much attention in recent
years; however, for some reason, the abacus, which is the base of
MA, has not received much attention. Nonetheless, the abacus is
markedly easier to introduce in terms of support.

The WISC-IV tasks of forward digit-span, backward digit-
span, and letter–number sequencing are basically difficult in this
order. Furthermore, the possibility of measuring children’s brain
activity with fNIRS brain activity has also been highlighted
(Watanabe, 2021a; Watanabe, 2021b).

Based on these findings, the following hypothesis was
considered.

Hypothesis (1): Even a simple abacus calculation has the
potential to be useful in supporting EFs (especially the part
about WM.). The possibility of this hypothesis was tested in a

TABLE 1 | Numerical and average values for each of the Abacus, forward digit-span, backward digit-span, and letter–number sequencing tasks.

Abacus Forward digit-span Backward digit-span Letter–number sequencing

Left Right Left Right Left Right Left Right

1st 0.268466 0.414732 0.2325 0.197751 0.141872 0.422138 0.147612 0.425169
2nd 0.53505 0.555675 0.212778 0.167159 0.114199 0.232552 0.442409 0.575447
3rd 0.282273 0.389903 0.167282 0.361327 0.434217 0.44249 0.629194 0.504194
4th 0.4165 0.398729 0.377778 0.304672 0.8174 0.573821 0.509387 0.621678
5th 0.447747 0.311879 0.273544 0.273651 0.400166 0.469185 0.404723 1.33256
Ave. 0.390007 0.414184 0.252776 0.260912 0.381571 0.428037 0.426665 0.69181

TABLE 2 | T-test values for each task.

Forward digit-span Backward digit-span Letter–number sequencing

Left Right Left Right Left Right

Abacus t-value 2.214 2.89 0.062 −0.203 −0.389 −1.649
p-value 0.058† 0.02* 0.952 0.844 0.708 0.138

Forward digit-span task t-value −0.977 −2.544 −1.996 −2.575
p-value 0.357 0.035* 0.081† 0.033*

Backward digit-span task t-value −0.301 −1.527
p-value 0.771 0.165

†p < 0.1,*p < 0.05,**p < 0.01.

TABLE 3 | Cohen’s d and Hedges’s g for each task.

Forward digit-span Backward digit-span Letter–number sequencing

Left Right Left Right Left Right

Abacus Cohen’s d 1.400 1.828 0.039 −0.129 −0.246 −1.043
Hedges’s g 1.264 1.650 0.035 −0.116 −0.222 −0.942

Forward Cohen’s d −0.618 −1.609 −1.262 −1.628
digit-span Hedges’s g −0.558 −1.452 −1.138 −1.470

Backward Cohen’s d −0.190 −0.966
digit-span Hedges’s g −0.172 −0.872
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case study on one young boy. The results of the iterative
experiment and comparison of the intra-individual data
suggested the following.

In this regard, the mean value of the WISC-IV task results
shows that the order of difficulty is as follows: forward digit-
span task, backward digit-span task and letter-number
sequencing task; this indicates the accuracy of the results of
the brain activity measurement. In particular, there is a
significant difference in the test results between forward
digit-span task and letter–number sequencing task, so there
is a considerable difference between the two. In conjunction
with these, the mean value of the abacus task is equivalent to that
of the backward digit-span, and the test results show that abacus
has a significant difference with the forward digit-span. In other
words, it is assumed that the brain activity during abacus
calculations is more equivalent to the backward digit-span
task than the forward digit-span task. Additionally, the brain
is not activated by content that it already knows or does not
know but is loaded when the content is moderate. Considering
these points, it can be observed that the abacus is more
demanding than the forward digit-span task and provides
support with a load equivalent to that of the backward digit-
span or letter–number sequencing task.

The abacus has been highlighted as being effective for the
“right brain,” but scientific evidence has been lacking. In this
study, I was able to highlight the abacus as having possible value
in supporting EFs. This is because the prefrontal cortex is
moderately activated during abacus calculations. Furthermore,
it can be stated that the measurement of brain activity in the
prefrontal cortex by fNIRS can be used effectively in abacus tasks,
and the possibility of its support can be explored. That is, it is
important to note that it is easy to measure EF at home and in the
field and that it is possible to support executive function. We can
measure cerebral blood flow based on indicators that have
behavioral evidence; then, we can also measure and compare
the subject matter of the targeted support to derive the possibility
of that support.

Recently, in the field of education, it has been suggested that in
order to make progress, scientists must collaborate with teachers
and schools; moreover, parents, teachers, and researchers must
collaborate to conduct systematic and rigorous research to
continue to find effective strategies based on effective scientific
evidence (Dehaene, 2020). Regarding this point, I was able to
make a proposal that allows parents, teachers, and researchers to
work together to easily use scientific evidence.

Ripple Effects
In psychology, clinical psychology, educational psychology, and
childcare, regarding support for executive functions, proposing a
connection with “abacus” and being able to show that support for
young children is possible at home is a new proposal and is likely
to be a breakthrough.

The study of two-channel fNIRS on tasks that require some
degree of freedom for young children at home is likely to be a
breakthrough in neuropsychology, brain science, and
educational technology, as it will further expand the scope
of research.

In the field of education, research and practice that unite
researchers, teachers, and parents is desired. However, the
integration of these three parties is quite difficult. In this
study, instead of integrating three independent parties, the
three parties were the same person. Although there are few
such research methods, they are valuable enough if used as a
model case. As a method of incorporating research results from
neuropsychology, brain science, and educational technology into
the field of education, the above method is quite an innovative
research method, and if similar research results are acquired, it is
highly likely that research will make rapid progress.

Limitations
This research has some limitations. This is a case study; thus, there is
a possibility of bias in the trend. As it has been indicated that there
are large individual differences in the measurement of cerebral blood
flow, further large-scale studies are needed. Additionally, only WMI
was used as an index of WM. Thus, it is necessary to expand the
scope of the study to include other indicators. Finally, only the data
of activation of cerebral blood flow in this study is not sufficient
evidence of improvement in executive function; therefore, behavioral
evidence and continuous measurements are necessary.
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