
Comparative Judgement for Linking
Two Existing Scales
Tom Benton*

Cambridge Assessment, Cambridge, United Kingdom

This article describes an efficient way of using comparative judgement to calibrate scores
from different educational assessments against one another (a task often referred to as test
linking or equating). The context is distinct from other applications of comparative
judgement as there is no need to create a new achievement scale using a Bradley-
Terry model (or similar). The proposed method takes advantage of this fact to include
evidence from the largest possible number of examples of students’ performances on the
separate assessments whilst keeping the amount of time required from expert judges as
low as possible. The paper describes the method and shows, via simulation, how it
achieves greater accuracy than alternative approaches to the use of comparative
judgement for test equating or linking.
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INTRODUCTION

Test equating and linking refers to methods that allow us to identify the scores on one assessment
that are equivalent to individual scores on another. This paper concerns the use of comparative
judgement (CJ) for linking tests. This context for the use of CJ differs from others in that all the
representations included in the CJ study (that is, the exam scripts) already have scores assigned from
traditional marking. Therefore, there is no need to use CJ to re-score them. Rather, the aim is simply
to calibrate the existing scores from separate assessments onto a common scale. Only enough
representations to facilitate calibration need to be included in the associated CJ study. This paper will
describe how CJ has been used for test linking in the past, and, more importantly, show how we can
improve on existing approaches to increase efficiency.

The idea of using CJ for test linking and equating has existed for a long time. The usual motivation
for research in this area is the desire to calibrate assessments from different years against one another.
Specifically, to identify grade boundaries on 1 year’s test that represent an equivalent level of
performance to the grade boundaries that were set on the equivalent test the previous year. A method
by which CJ can be used for this task was formalized by Bramley (2005). The method works broadly
as described below.

Suppose we have two test versions (version 1 and version 2) and, for each score on version 1, we
wish to find an equivalent score on version 2. That is, the score that represents an equivalent level of
performance. To begin with, we select a range of representations from each test version. By
“representations,” for this type of study, we usually mean complete scanned copies of students’
responses to an exam paper (“scripts” in the terminology used in British assessment literature).
Typically, around 50 representations are selected from each version covering the majority of the
score range. Next, the representations are arranged into sets that will be ranked from best to worst by
expert judges. In this article, we refer to these sets of representations that will be ranked as
“comparison sets” (or just “sets”). In Bramley (2005) and elsewhere these sets of scripts are referred to
as “packs.” Each comparison set contains representations from both test versions. In a pairwise
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comparison study, each set would consist of just two
representations—one from each test version. For efficiency
(particularly in paper-based studies) representations might be
arranged into sets of up to 10 each with five representations from
version 1 and five from version 2. This process is repeated
multiple times (in a paper-based study this involves making
multiple physical copies of scripts) so that representations are
included in several sets and the precise combination of
representations in any set is, as far as possible, never repeated.

When we fit a Bradley-Terry model we are attempting to place
all of the representations in the model on a single scale. This
process will only work if we have some way of linking every pair
of objects in the model to one another by a series of comparisons.
For example, representation A may never have been compared to
representation B directly. However, if both representation A and
representation B have been compared to representations C, D, E
and F, then we should be able to infer something about the
comparison between representations A and B. The technical term
for this requirement is that all objects are connected. If our aim is
to fit a Bradley-Terry model, then ensuring that all objects are
connected to one another is an important part of the design—by
which we mean the way in which different representations are
assigned to sets (possibly pairs) that will directly compared by
judges. Two representations are directly connected if they are ever
in the same comparison set. Alternatively, two representations
may be indirectly connected if we can find a sequence of direct
connections linking one to the other. For example,
representations A and D would be indirectly connected if
representation A was included in a comparison set with
representation B, representation B in a (different) comparison
set with representation C, and representation C in (yet another)
comparison set with representation D. A design is connected if all
possible pairs of representations are connected either directly or
indirectly.

Having allocated representations to comparison sets, each set
is assigned to one of a panel of expert judges who ranks all of the
representations in the set based on their judgements of the
relative quality of the performances. In the case of pairwise
comparison, where each set consists of only two
representations, this simply amounts to the judge choosing
which of the two representations they feel demonstrates
superior performance.

Once all the representations in each set have been ranked,
these rankings are analyzed using a statistical model. For ranking
data, the correct approach is to use the Plackett-Luce model
(Plackett, 1975), which is equivalent to the rank ordered logit
model or exploded logit model described in Allison and
Christakis (1994). In the case of pairwise comparisons,
analysis is completed using the equivalent, but simpler,
Bradley-Terry model (Bradley and Terry, 1952). Whichever
model is used, the resulting analysis produces a measure of
the holistic quality of each representation depending upon
which representations it was deemed superior to, which it was
deemed inferior to, and the number of such judgements. These
measures of holistic quality (henceforth just “measures”) are on a
logit scale. This means that, by the definition of the Bradley-Terry
model, if representations A and B have estimated CJ measures of

θA and θB, then the probability that a randomly selected judge will
deem representation A to display superior performance to
representation B (PAB) is given by the equation:

PAB � exp(θA − θB)
1 + exp(θA − θB)

Having fitted a Bradley-Terry model, the performances of all
representations are now quantified on a single scale across both
test versions. That is, although the test versions are different and
the raw scores cannot be assumed to be equivalent, the process of
comparative judgement has yielded a single calibrated scale of
measures that works across both tests. This can now be used to
calibrate the original score scales against one another. The
purpose of the final calibration step is that, once it is
completed, we can make some inferences about the relative
performances of all students that took either of the test
versions—not just the sample of students included in the
CJ study.

The usual way calibration is completed is illustrated in
Figure 1. Regression analysis is used to estimate the
relationship between scores and measures within each test.
Then, the vertical gap between these estimated lines is used to
identify the scores on version 2 of the test equivalent to each score
on version 1.

Traditionally, the regression lines are not defined to be
parallel. However, in most published studies, the differences in
the slopes of the two lines are self-evidently small and, on further
inspection, usually not statistically significantly different. As a
result, in most cases it would make sense to identify a single
adjustment figure. That is, how many score points easier or
harder is version 2 than version 1? The regression method for
this approach would be to identify the most accurate linear
predictions of the raw original scores of each representation
(denoted xi for the ith representation) of the form:

x̂i � β0 + β1θi + β2vi

Where x̂i is the predicted raw score of the ith representation, θi is
the CJ measure of the representation, and vi is a version indicator
equal to 1 if the ith representation is from version 2 and equal to 0
otherwise. The coefficients of the regression model are β0, β1, and
β2. In this formulation, our particular interest is in the coefficient
β2 which gives a direct estimate of how much easier version 2 is
compared to version 1.

The method suggested by Bramley (2005) has been trialed
numerous times (e.g., Black and Bramley, 2008; Curcin et al.,
2019) and, in general, these trials have produced plausible results
regarding the relative difficulty of different test versions.

The regression method above might be labelled score-on-
measure as the traditional test scores are the dependent
variables and the CJ measures of the quality of each
representation are the predictors. However, as described by
Bramley and Gill (2010), the regression need not be done this
way around. That is, we could perform (measure-on-score)
regression with the CJ measures as the dependent variable and
the scores as the predictors. Specifically, the regression formula
would be:
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θ̂i � c0 + c1xi + c2vi

Where θ̂i is the predicted CJmeasure of the ith representation and
c0, c1, and c2 are the regression parameters of this alternative
formulation. The relative difficulty of version 2 relative to version
1 is then estimated by (−c2c1

). In other words, this estimates how
much higher a score on version 2 needs to be to predict the same
fitted measure as would be predicted by a given score on
version 1.

In many practical examples, the differences between the two
methods are small (see an investigation by Bramley and Gill,
2010, for one such example). However, during the current
research it became clear that large differences between the two
methods can occur under certain circumstances. The reasons for
this will be explored later in the report. For now, it is sufficient to
note that, if the derived CJ measures are reliable and are highly
correlated with the original scores then the difference between the
two regression approaches should be small. However, knowing
that different approaches are possible will be helpful for
explaining the results of the simulations later in the report.
Other methods of analyzing the same kind of data are also
possible (for example, the “standardized major axis,” see
Bramley and Gill, 2010). However, the two methods
mentioned above, along with the new method to be
introduced next, are sufficient for the purposes of this paper.

The focus of this paper is to show how a slightly different
methodological approach can make the use of CJ for test linking
more accurate. In particular, as can be seen from the above
description, current approaches to the use of CJ to link existing
score scales tend to rely on relatively small samples of
representations (around 50) from each test version. Relying on
small samples of representations is undesirable as it may lead to
high standard errors in the estimates. Since each representation
needs to be judged many times by expert judges, under existing
approaches, the number of representations included in the study

cannot be increased without incurring a significant additional
cost. The goal of the newly proposed approach is to allow us to
include a greater number of representations in a CJ study to link
two existing scales without increasing the amount of time and
resource needed from expert judges.

Note that the proposed approach is limited to CJ studies where
out goal is to calibrate two existing score scales against one
another. As such, the key change in the revised methodology
is that it bypasses the need for the Bradley-Terry model in the
process. That is, in the newly proposed approach there is no need
to conduct a full CJ assessment and produce estimated measures
for each representation in the study.

The newly suggested method works as follows.
Representations are arranged into pairs of one representation
from version 1 of the test and one representation from version 2
of the test. For each pair of representations, an expert judge
decides which of the two representations is superior. Next, the
difference in scores between the two representations is plotted
against whether the representation from version 2 of the test was
judged to be superior. An example of such a chart is given in
Figure 2. The x-axis of this chart denotes the difference in scores.
Each judgement is represented by a dot that is close to 1.0 on the
y-axis if the version 2 representation is judged superior and is
close to 0.0 if it is judged to be inferior (a little jitter has been
added to the points to allow them to be seen more easily). As can
be seen, in this illustration, where the score awarded to version 2
greatly exceeds the score awarded to version 1, the version 2
representation is nearly always deemed superior. Where the score
on version 2 is lower than that on version 1, the version 2
representation is less likely to be judged superior.

The relationship between the score difference and the
probability that the version 2 representation is deemed
superior is modelled statistically using logistic regression. This
is illustrated by the solid blue line in Figure 2. To determine how
much easier (or harder) version 2 is compared to version 1, the

FIGURE 1 | Illustrating the method of linking using CJ suggested by Bramley (2005).
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aim is to identify the point at which this line crosses 0.5; that is,
where the version 2 representation is as likely to be judged
superior as it is to be judged inferior. In the case of Figure 2,
the data would indicate that version 2 appears to be roughly 4
score points easier than version 1.

We denote the outcome of the ith paired comparison as yi

with a value equal to 1 if the judge deems the representation from
test version 2 as superior and equal to zero if the representation
from test version 1 is deemed superior. We denote the original
score of the representation from test version 2 within the ith
paired comparison as x2i and the score of the representation from
test version 1 as x1i. The equation for the logistic regression
model is as follows.

P(yi � 1) � exp(δ0 + δ1(x2i − x1i))
1 + exp(δ0 + δ1(x2i − x1i))

The δ coefficients in this equation are just the usual logistic
regression parameters. The number of score points by which
version 2 is easier than version 1 is estimated by (−δ0δ1

).
The newly proposed method, and the avoidance of using a

Bradley-Terry model in particular1, has several advantages:

• There is no need for the same representations to be judged
many times. If we were intending to create a reliable set of CJ
measures, then it would be necessary for every
representation to be judged multiple times. According
Verhavert et al. (2019), each representation should be

included within between 10 and 14 paired comparisons
in order to for CJ measures to have a reliability of at least 0.7.
In contrast, the new procedure described above will work
even if each representation is only included in a single
paired comparison.

• Similarly, because we are not intending to estimate CJ
measures for all representations using a Bradley-Terry
model, there is no need for the data collection design to
be connected.

• As a consequence of the above two advantages, we can
include far more representations within data collection
without requiring any more time from expert judges.
Including a greater number of representations should
reduce sampling errors leading to improved accuracy.
Whilst in the past, exam scripts were stored physically,
they are now usually stored electronically as scanned
images. As such, accessing script images is
straightforward meaning that the inclusion of greater
numbers of representations in a CJ study need not incur
any significant additional cost.

Note that, all of the formulae for the new approach can be
applied regardless of whether the data collection design collects
multiple judgements for each representation, or whether each
representation is only included in a single pair. However, we
would not expect applying the formulae from the new approach
to data that was collected with the intention of fitting a Bradley-
Terry model to make estimates any more accurate. The potential
for improved accuracy only comes from the fact that the new
approach allows us to incorporate greater numbers of
representations in a study (at virtually no cost).

We call our new approach to the use of CJ for test linking
“simplified pairs.” This approach has been described and
demonstrated previously in Benton et al. (2020). This current
paper will show via simulation, why we expect “simplified pairs”

FIGURE 2 | Illustrating the newly proposed method of linking using CJ.

1Of course, we are still using logistic regression and a Bradley-Terry model is itself a
form of logistic regression. However, although they can be thought of in this way,
Bradley-Terry models usually make use of bespoke algorithms to address issues
that can occur in fitting (e.g., see Hunter, 2004). They also have particular
requirements in terms of the data collection design (such as connectivity). All
of this is avoided.
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to provide greater accuracy than previously suggested
approaches.

METHODS

A simulation study was used to investigate the potential accuracy
of the different approaches to using comparative judgement for
linking tests. The parameters for the simulation, such as the
specified standard deviation of true CJ measures of the
representations and how these are associated with scores, were
chosen to give a good match to previous real empirical studies of
the use of CJ in awarding. Evidence that this was achieved will be
shown as part of the results section.

The process for the simulation study was as follows:

1. Simulate true CJ measures for 20,000 representations from
each of test version 1 and test version 2. We denote the true CJ
measure of the ith representation from test version 1 as θi and
the true CJ measure of the jth representation from test version
2 as θj. In both cases these are simulated to follow a normal
distribution with a mean of 0 and a standard deviation of 2.

2. Simulate raw scores for the 20,000 representations from each
test version. We denote the score of the ith representation
from test version 1 as xi and the score of the jth representation
from test version 2 as xj. The scores were initially simulated
from normal distributions according to

xi � 50 + 8θi + 6εi
xj � 54 + 8θj + 6εj

Where εi and εj were simulated from standard normal
distributions with a mean of 0 and a standard deviation of 1.
These initially simulated scores were rounded to whole numbers
and truncated to be between 0 and 100. The resulting simulated
scores had means of 50 and 54 for test version 1 and test version 2
respectively. For both test versions, the standard deviation of the
resulting scores was approximately 17.

3. Sample 50 representations from version 1 and 50
representations from version 2. Within each test version,
sampling was done so that the scores of selected
representations were evenly spaced out between 20 and 90.2

4. Create the design of a pairwise CJ study that might provide the
data for fitting a Bradley-Terry model. This design should
ensure that:
a. Every pair compares a representation from test version 1 to

a representation from test version 2.
b. Each representation is included inNCR pairs (whereNCR is

a key variable for the study between 2 and 30).
c. Only representations whose raw scores differ by 20 or less

should be paired.

d. As far as possible, exact pairs of representations are never
repeated.

We define T as the total number of pairs in the study. Since we
have sample 50 representations from each test
version T � 50pNCR.

5. Simulate the results of the paired comparisons defined in step
4. We imagine that an expert judge has to determine which of
the two representations in each pair is superior. The
probability that the jth representation from version 2 is
deemed to display superior performance to the ith
representation from version 1 is given by the formula:

Pji �
exp(θj − θi)

1 + exp(θj − θi)
6. Now use the results of this simulated paired comparison study

to estimate the difference in difficulty between the two test
versions using each of the three methods described earlier.
Specifically:
a. Fit a Bradley-Terry model to the data to generate measures

and use a regression of scores on measures.
b. Based on the CJ estimates from the same Bradley-Terry

model, use a regression of measures on scores.
c. Directly estimate the difference in difficulty between test

versions using the logistic regression method described
earlier. This represents using the analysis methodology
from our newly suggested approach but without taking
advantage of the potential improvements to the data
collection design.

7. Now, using the same set of 20,000 representations from each
version (from steps 1 and 2), simulate a full simplified pairs
study. The aim is that the study will include the same number
of pairs as the other methods (i.e., T), but that we will sample
more representations and only include each of them in a single
pair. To begin with, we sample T representations from version
1 and T representations from version 2. Within each test
version, representations were again selected so that their scores
were evenly spaced out between 20 and 90.

8. Using these freshly selected representations, create the design
of a simplified pairs study (i.e., assign representations to pairs).
This design should ensure that:
a. Every pair compares a representation from test version 1 to

a representation from test version 2.
b. Each representation is included in exactly 1 pair.
c. Only representations whose raw scores differ by 20 or less

should be paired.

Since each representation is included in a single pair this will
result in T pairs.

9. Simulate the results of these fresh paired comparisons using
the same formula as in step 5.

10. Using the data from these fresh paired comparisons, apply
logistic regression to generate an estimate of the relative
difficulty of version 1 and version 2. This is the simplified

2An even spread of 50 values between 20 and 90 is first defined by the sequence of
number 20.00, 21.43, 22.86, 24.29,. . ., 88.57, 90.00. For each of these values in turn,
we randomly select one script from those with raw scores as close as possible to
these values. That is, from those with raw scores of 20, 21, 23, 24,. . .,89, 90.
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pairs estimate of the difference in the difficulty of the
two tests.

11. Repeat the entire process (steps 1–10) 2,000 times.

All analysis was done using R version 4.0.0 and the Bradley-
Terry models were fitted using the R package sirt (Robitzsch,
2019).

The above procedure was repeated with the total number of
pairs in each study (T) taking each of the values 100, 200, 300,
400, 500, 750, 1000, and 1500. For every method other than the
full simplified pairs approach, where each representation is only
included in a single paired comparison, these values correspond
to the number of paired comparisons for each of the 50
representations for each test version (NCR) being 2, 4, 6, 8,
10, 15, 20, and 30.

Note that the first 2 steps of the simulation process produce
realistic means and standard deviations of the simulated scores.
That is, the means (50 and 54 for the two respective test versions)
and the standard deviations (approximately 17 for each test
version) are typical of the values we tend to find in real tests
of this length.

As can be seen from the above description, test version 2 is
simulated to be exactly 4 score points easier than version 1. This
size of difference in difficulty was chosen as it reflects the typical
absolute amount (as the percentage of maximum available score)
by which GCSE component grade boundaries changed between
2015 and 20163. As such, it is typical of the kind of difference we’d
need our methods to handle in practice.

As mentioned above, the way in which representations were
sampled to be evenly spread across the score range from 20 to 90
per cent (steps 3 and 7) reflects the way previous CJ studies for
linking tests have been done in practice. Representations with
very high scores are usually excluded as, if two candidates have
answered nearly perfectly, it can be extremely difficult to choose
between them. Representations with scores below 20 per cent of
the maximum available are also typically excluded as, in practice,
they often have many omitted responses meaning that judges
would have very little evidence to base their decisions on.

Further evidence of how the simulation design produces
results that are representative of real studies of this type will
be provided later.

The aim of analysis was to explore the accuracy with which
each of the different methods correctly identified the true
difference in difficulty between the two test versions (4 score
points). This was explored both in terms of the bias of each
method (i.e., the mean estimated difference across simulations

compared to the true difference of 4), and the stability of
estimated differences across simulations.

In addition to recording the estimated differences in difficulty
using each method within each simulation, we also recorded the
standard errors of the estimates that would be calculated for each
method. This helps to understand how accurately each method
would allow users to evaluate the precision of their estimates.
Specifically:

• For the score-on-measure regression approach the standard
error of the estimated difference in difficulty is simply given
by the standard error of β2 in the regression. Note that the
use of this standard error requires that the assumptions
underpinning the regression itself are correct. However, the
usual assumption that the observations in the regression are
independent (e.g., in Figure 1) is, in fact, incorrect. Since all
CJ measures were estimated simultaneously, the CJ
measures of different representations are, in fact,
correlated with larger (positive) correlations between
representations that were directly compared. Despite this
concern, these kind of estimates of uncertainty have been
used in previous research (e.g., Curcin et al., 2019) and it
was of interest to examine their accuracy.

• For the measures on scores approach the standard error of
any estimate is derived using the delta method. Specifically,
if we label the parameter covariance matrix from the
regression model as C(γ), then the standard error of the
estimated difference in difficulty is given by:

Standard Error �
��������
GTC(γ)G√

,whereG �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

(c2
c21
)

(−1
c1
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Once again, these standard errors rely on the assumptions of

the regression being correct and, as such, may suffer from the
same issues as those based on scores on measures regression.

• For the simplified pairs method, we can also use the delta
method to create standard errors. Specifically, if we denote
the parameter covariance matrix from the logistic regression
as V(δ) then the standard error of the estimated difference
in difficulty is given by:

Standard Error � ���������
HTV(δ)H√

,WhereH �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1
δ1
)

(δ0
δ21
)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

These standard errors rely on the assumptions underpinning
the logistic regression being correct. Within our simulation these
assumptions are plausible for the full simplified pairs approach.
In particular, if each representation is only used once,

3GCSE stands for General Certificate of Education. GCSEs are high-stakes
examinations taken each summer by (nearly) all 16-year-olds in England and
OCR is one provider of these examinations. The years 2015 and 2016 were chosen
as they were comfortably after the previous set of GCSE reforms and the last year
before the next set of GCSE reforms began. As such, they represented the most
stable possible pair of years for analysis. Only grades A and C were explored and
only examinations that were taken by at least 500 candidates in each year. At grade
A the median absolute change in boundaries was 3.8 per cent of marks. At grade C
the median absolute change in boundaries was 3.3 per cent of marks.
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observations in the logistic regression are independent. For the
use of the logistic regression approach based on the simulated
data where the same representations are used multiple times the
assumption of the independence of observations is quite clearly
incorrect and so these standard errors were not retained4.

To help verify the realistic nature of the simulation study, for
all methods using a Bradley-Terry model, the reliability of the CJ
measures was recorded within each simulation. This was
calculated both in terms of an estimated scale separation
reliability (SSR, see Bramley, 2015) and also in terms of the
true reliability calculated as the squared correlation between
estimated CJ measures and the true simulated values.
Correlations between estimated CJ measures and raw scores
on each test version were also calculated and recorded from
each simulation.

RESULTS

A Digression on the Realistic Nature of the
Simulation
To begin with it is worth noting that, by design, the simulation
produced results regarding the reliability of CJmeasures that were
very consistent with those typically seen in empirical studies. For
example, for the simulations involving 750 comparisons in total
and 15 per representation (a typical number of comparisons per
representation in previous studies of this type), across
simulations, the median SSR was 0.93 (the median true
reliability5 was also 0.93), and the median correlation between
CJ measures and raw scores was 0.92 (for both test versions).
These values match the median reliabilities and correlations
between raw scores and estimated CJ measures across 10 real
studies based on using pairwise comparative judgement to link
score scales published by Curcin et al. (2019, page 41, Table 7).

The average level of reliability from 15 comparisons per
representation (0.93), which matches the average values from
real empirical studies of this type (Curcin et al., 2019), is
somewhat higher than research on the use of CJ in other
contexts suggests is typical (for example, see Verhavert et al.,
2019). Although this is not the main focus of the article, we will
briefly digress to explain why the discrepancy occurs. In short, we
believe it is largely because, in studies concerned with linking two
existing scales, all representations have already been scored in a
non-CJ way to begin with. The analysis can capitalize on this
additional data from the original scores in ways that are not
possible if CJ if the sole method by which representations are
being assessed. Of course, there is a cost to scoring all
representations before beginning a CJ study, so this should not
be taken as a recommendation that this should be done in general.

Part of the reason for the higher reliability coefficients in
empirical CJ studies concerned with linking existing scales (e.g.,
Curcin et al., 2019) is the way in which representations are
selected. Unlike the studies by Verhavert et al. (2019), only a
sample of the possible representations are included in the CJ
study and this sample is not selected at random. Rather,
representations are deliberately selected with scores that are
evenly spread across the available range between 20 and 90
per cent of the paper total. This ensures that a wider range of
performances is included in each study than would be the case by
selecting representations purely at random. We would expect this
to mean that the standard deviation of the true CJ measures
included in such a study is higher than in the population in
general and, as a result, reliability coefficients are expected to be
higher.

In addition, because, by design, representations are only
compared to those with relatively similar scores, some of the
advantages usually associated with adaptive comparative
judgement (ACJ, see Pollitt, 2012) are built into the method.
This allows higher reliabilities to be achieved with smaller
numbers of comparisons. Note that, although the method has
some of the advantages of ACJ, it is not actually adaptive. Which
representations are compared to one another is not amended
adaptively dependent upon the results of previous comparisons.
As such, concerns about the inflation of reliability coefficients in
an adaptive setting (Bramley and Vitello, 2019) do not apply.

Understanding the reasons for these high reliability
coefficients, and that these reflect the values that we see on
average in real empirical studies of this type is important as it
allows us to have confidence in the remainder of the results
presented in this paper.

Before returning to the main subject of this paper we note that,
as expected, within our own simulation study, the reliability of the
CJ measures increased with the number of comparisons per
representation. The median reliability was just 0.2 if only 2
comparisons per representation were used, rose to above 0.7
for 4 comparisons per representation, and was 0.96 for 30
comparisons per representation6.

Biases and Standard Errors of Different
Methods
Our main interest is in the bias and variance (i.e., stability) of the
various methods for estimating the relative difficulty of two tests.
Figure 3 shows the results of the analysis in terms of the mean
estimated difference in the difficulty of the two tests from each
method. The mean estimated difference from each method is
compared to the known true difference (4 score points)
represented by the thick grey line. The mean difference
between the estimated and actual differences in test difficulty
provides an estimate of bias and this is shown by the secondary
y-axis on the right-hand side. Note that the method labelled

4It is possible to address this issue via the application of multilevel modelling (see
Benton et al., 2020, for details). However, this changes the estimates themselves and
is beyond the scope of this article so was not considered here.
5True reliabilities are calculated as the squared correlation between estimated CJ
measures and the true values of CJ measures (i.e., simulated values).

6Based on true reliabilities. Note that true reliabilities and scale separation
reliabilities were always very close to one another except where the number of
comparisons per script was below 5.
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“direct logistic method” (the purple dashed line) relates to results
from applying the newly proposed analysis methodology but with
the same data as other methods. In contrast the method labelled
“simplified pairs” relates to using our method from a data
collection design with each representation being included in
just 1 comparison. As long as the total number of pairs in the
study is at least 200, 3 of the methods have levels of bias very close
to zero. The two approaches based on logistic regression are
essentially unbiased across all sample sizes. However, the most
interesting result from Figure 3 is the evident bias of using the
Bradley-Terry model in combination with a regression of scores
on measures—that is, the dominant method of using comparative
judgement in standard maintaining in studies of this type to date.

The score-on-measure regression method has a negative bias.
That is, on average it underestimates the scale of the difference in
difficulty between the two test versions. The reason for this is to
do with the way in which representations are selected for most
studies of this type. To understand why this is, imagine a situation
where, perhaps due to having a very small number of
comparisons per representation, the CJ measure was utterly
unreliable and had zero correlation with the scores awarded to
representations. In this instance, the score-on-measure regression
(e.g., Figure 1) would yield two horizontal lines. The vertical
distance between these lines would actually be pre-determined by
the difference in the mean scores of the representations we had
selected from each version. In our study, since we have
deliberately selected the same range of scores for each test
version, this difference is equal to zero.

As the number of comparisons per representation increases,
the size of the bias reduces but does not immediately disappear.
With low, but non-zero, correlations between scores and
measures the estimated difference between test versions will
hardly be adjusted from the (predetermined) mean difference
between the selected representations. As such, the bias in the
method would persist. As the number of comparisons per

representation increases, this bias becomes much smaller.
However, due to the fact that, in this simulation, even the true
CJ measures are not perfectly correlated with scores (correlation
of 0.95) this bias never completely disappears.

Aside from bias, we are also interested in the stability of
estimates from different methods—that is, their standard errors.
According to the Cambridge Dictionary of Statistics (Everitt and
Skrondal, 2010) a standard error (SE) is “the standard deviation
of the sampling distribution of a statistic” (page 409). In our case,
the “statistic” we are interested in is the estimated difference in
the difficulty of two tests by some method and the “sampling
distribution” is observable from the simulations we have run. As
such, we can calculate the true standard error of each method by
calculating the standard deviation of estimated differences in
difficulty across simulations. Figure 4 shows how the standard
errors of the estimates of differences in difficulty change
depending upon the total number of pairs in the study.
Somewhat counterintuitively, Figure 4 shows that the score-
on-measure approach becomes less stable (i.e., has higher
standard errors) as the number of comparisons per
representation increases. In other words, increasing the
amount of data we collect makes the results from this method
more variable. This result is due to the fact that, as described
above, where the correlation between original raw scores and
measures is low, the method will hardly adjust the estimated
difference in the difficulty of test versions from the predetermined
mean score difference of zero. As such, across multiple
replications of the simulations with low numbers of
comparisons per representation, the score-on-measure method
will reliably give an (incorrect) estimate close to zero. As the
number of comparisons per representation increases, and the
correlation between scores and measures becomes stronger, so
the method will actually begin making substantive adjustments to
account for differences in the holistic quality of responses and so
the results become more variable across simulations.

FIGURE 3 |Mean estimated difference in difficulty between test versions across simulations for different methods by total number of pairs per study. Note that the
true level of difference in difficulty is 4 (the solid grey line). For the three methods in which representations were included in multiple pairs, the number of pairs per
representation is noted just above the relevant line.
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Figure 4 shows that if we only allow 2 comparisons per script
then the measure-on-score regression approach is extremely
unstable. However, for larger numbers of comparisons per
script, the standard errors of the measure-on-score and the
direct logistic methods using the same set of data are very
similar. This is, perhaps, unsurprising as, in essence, both
methods are doing the same thing, although the score-on-
measure regression uses one more step in the calculation. That
is, both methods attempt to find the score difference where
representations from either test version are equally likely to be
deemed superior by a judge.

Of most interest are the simplified pairs results based on using
the same total number of paired comparisons but only using each
representation once. For any given number of total pairs, this
approach is more stable than either of the two alternative

unbiased methods (measure-on-score regression or direct
logistic). Furthermore, the simplified pairs approach yields
roughly the same standard errors with 300 comparisons in
total as can be achieved with five times as many comparisons
(30 per representation or 1500 in total) for either of the other two
approaches. This suggests that avoiding the use of the Bradley-
Terry model, including as many different representations as
possible in the exercise, and using logistic regression to
estimate the difference in the difficulty of two test versions can
lead to huge improvements in efficiency in terms of the amount of
time required from expert judges. This also suggests that
including 300 comparisons in a simplified pairs study should
provide an acceptable level of reliability.

Figure 4 concerns the true standard errors of each method –
that is, the actual standard deviations of estimates across

FIGURE 4 | Standard deviation of estimated difference in difficulty between test versions across simulations for different methods by total number of pairs per
study. For the three methods in which representations were included in multiple pairs, the number of pairs per representation is noted just above the relevant line.

FIGURE 5 | Plot of median estimated standard errors of each method and actual standard deviations of estimated difference in difficulty for different total
study sizes.
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simulations. However, true standard errors are not generally
observable outside of simulation studies and we need an
alternative way of estimating standard errors in practice. How
this might be done within each approach was described earlier
and some formulae were provided. Figure 5 compares the
median estimated standard errors of each method, based on
the formulae provided earlier, to actual standard errors within
each size of study. As can be seen, estimated standard errors for
both score-on-measure and measure-on-score regression tend to
be too high. The reasons for this as regards score-on-measure
regression have largely already been discussed. For measure-on-
score regression the issue relates to the assumptions of the
regression model.

The estimated standard errors come from the regression of CJ
measures on scores using data of the type shown in Figure 1.
Estimating standard errors essentially involves asking how much
we’d expect the gap between two regression lines to change if we
were to rerun the study with a fresh sample of representations. In
some studies, though not here, this is estimated using
bootstrapping (e.g., Curcin et al., 2019) which involves literally
resampling from the points in charts like Figure 1 (with
replacement) many times and measuring the amount by which
the gap between lines varies.

The fact that the assumption of independent errors does not
hold, explains the discrepancy between the actual and estimated
standard errors of measure-on-score regression. Specifically,
because every comparison is between a version 1
representation and a version 2 representation, the gap between
regression lines will be less variable across samples than would be
expected by imagining every point in the regression as being
independent. In short, ensuring that every comparison in a
pairwise design is between versions is a good thing because it
reduces the instability of the gap between regression lines.
However, it is a bad thing for accurately estimating standard
errors as it leads to a violation of the regression assumptions.

In the simulations described here, estimated confidence
intervals based purely on the regression chart tend to be wider
than necessary. In other situations, we would expect the error in
estimation to work the other way. For example, imagine that the
design of a CJ study included large numbers of comparisons within
test versions but only a handful of comparisons between version 1
and version 2. Instinctively, we can tell that such a design would
provide a very poor idea of the relative difficulty of the two test
versions. However, with sufficient comparisons within versions, we

could generate high reliability statistics, and high correlations
between scores and measures within versions. As such, we
could produce a regression chart like Figure 1 that appeared
reassuring. In this case, confidence intervals based on the data
in the regression alone would be far too narrow and would not
reflect the true uncertainty in estimates.

Regardless of the reasons, the importance of the findings here
is to show that not only is the simplified pairs method unbiased
and more stable than alternative approaches, it is also the only
method where we can produce trustworthy estimates of accuracy
through standard errors. This is further shown by Table 1. This
table shows the coverage probabilities of the 95% confidence
intervals for each method. These confidence intervals are simply
calculated to be each method’s estimate of the difference in
difficulty between test versions plus or minus 1.96 times the
estimated standard error. Table 1 shows the proportion of
simulations of each size (out of 2000) where the confidence
interval contains the true difference in difficulty (4 score
points). For both regression-based approaches, the coverage
probabilities are substantially higher than the nominal levels
confirming that the estimated standard errors tend to be too
high. However, for simplified pairs the coverage probabilities are
close to the intended nominal level.

Unlike the other CJ approaches, in the simplified pairs method,
we are not attempting to assign CJ measures to representations. As
such, we do not calculate any reliability coefficients analogous to the
SSR. Rather, the chief way in which we assess the reliability of a
simplified pairs study in practice is by looking at the estimated
standard errors. With this in mind, it is reassuring that the analysis
here suggests we can estimate these accurately.

CONCLUSION

This paper has reviewed some possible approaches to using expert
judgement to equate test versions. In particular, the research has
evaluated a new approach (simplified pairs) to this problem and
shown via simulation that we expect it to be more efficient than
existing alternatives, such as that suggested by Bramley (2005),
that rely upon the Bradley-Terry model. Improved efficiency is
possible because, by changing the way results are analyzed, we can
include a far higher number of representations within data
collection without increasing the workload for judges. The
simplified pairs approach is also the only approach where we

TABLE 1 | Coverage probabilities for three methods dependent upon the total number of pairs in the study.

Total pairs in study Coverage probability for
score-on-measure regression (%)

Coverage probability for
measure-on-score regression (%)

Coverage probability for
simplified pairs (%)

100 100.0 100.0 95.8
200 99.0 99.2 96.0
300 98.0 98.9 95.6
400 98.2 98.6 95.5
500 97.3 97.9 95.1
750 97.1 97.6 95.2
1000 97.1 96.7 94.3
1500 97.3 97.0 95.8
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can produce trustworthy confidence intervals for the estimated
relative difficulty of two tests.

The analysis has also revealed some weaknesses in the
traditional approach based on regression of the scores awarded
to representations onmeasures of holistic quality from a CJ study.
In particular, the results indicate that this method is biased
towards the difference in the mean scores of the
representations selected for the study. Given that the whole
point of analysis is to provide fully independent evidence of
the relative difficulty of two tests, such biases are undesirable.

The results in this paper suggest that, using a simplified pairs
approach, a CJ study based on no more than 300 paired
comparisons in total may be sufficient to link scores scales
across test versions reasonably accurately. It is worth
considering how this workload compares to a more traditional
awarding meeting (not based on CJ) where expert judges would
attempt to set grade boundaries on 1 year’s exam that maintain
standards from previous years. According to Robinson (2007), in
the past, traditional awarding meetings in England would generally
involve at least eight examiners. In these meetings, each examiner
would be expected to review at least seven exam scripts within a
range of plus or minus three from a preliminary grade boundary.
This process might be repeated for up to three separate grade
boundaries (for example, grades A, C and F in England’s GCSE
examinations). Thus, a total of 168 (�8 judges*7 scripts per grade*3
grades) script reviews might have taken place within an awarding
meeting.With this in mind, it is clear that the current suggestion of
a CJ-based process requiring 300 paired comparisons would
require more resources than traditional awarding—although not
of a vastly increased order of magnitude.

It is worth noting that the suggested method, based on logistic
regression, does require a few assumptions. In particular, the
suggested logistic regression method assumes a linear
relationship between the difference in the raw scores of the
representations being compared and the log odds of the
representation from a particular test version being judged
superior. In addition, the method assumes that the
relationship between score differences and judged
representation superiority is constant across all of the judges
in a study. In practice, both of these assumptions could be tested
using the grouping method described in chapter 5 of Hosmer and
Lemeshow (2000). If there was any sign of lack of fit then it is
fairly straightforward to adjust the model accordingly, for
example, by adding additional (non-linear) terms to the
logistic regression equation. If there were evidence that results
varied between different judges, then it would be possible to use
multilevel logistic regression as an alternative with judgements
nested within judges to account for this.

This paper has only provided detailed results from one
simulation study. However, it is fairly easy to generalize the
results to simulations with different parameters. For example:

• We know that the score-on-measure regression method is
biased towards the difference in the mean scores of sampled
representations from different test versions (zero in our study).
As a result, the greater the true difference in difficulty between
test versions, the greater the level of bias we’d expect to see.

• By the same logic, if representations were randomly
sampled rather than selected to be evenly spaced over the
range of available scores, then the mark-on-measure
regression method would be biased towards the
difference in population means rather than towards zero.
In our simulated example this would be an advantage.
However, in practice, due to the changing nature of
students entering exams in different years the difference
in populationmeansmay ormay not reflect the difference in
the difficulty of the two tests. One change from the earlier
results would be that, due to random sampling, the standard
deviation of estimated differences via score-on-measure
regression (e.g., Figure 4) would decrease rather increase
with the number of pairs in the study.

• It is also fairly easy to predict the impact on results of
reducing the spread of true CJ measures in the simulation.
This naturally leads to the estimated CJ measures being less
reliable. With estimated CJ measures being less reliable, the
bias of the score-on-measure regression method would
increase. Aside from this, the reduced reliability of all CJ
measures would reduce the stability of all othermethods. This
includes simplified pairs where the reduced spread of true CJ
measures would lead to a weakening of the relationship
between score differences and the decisions made by
judges – in turn leading to reduced stability in estimates.

Although, for brevity, results are not included in this paper, the
suggestions in the above bullets have all been confirmed by further
simulations. Whilst it is possible to rerun our simulation with
different parameters it is worth noting that the parameters of the
simulation presented in this paper have been very carefully chosen
to reflect a typical situation that is likely to be encountered in
practice. As such, the results that have been presented provide a
reasonable picture of the level of accuracy that can be achieved via
the use of CJ for linking or equating.

Aside from simulation, demonstrations of the simplified
pairs technique in practice can be found in Benton et al.
(2020). This includes details on how the method can be
extended to allow the difference in the difficulty of two tests
to vary across the score range. The combination of theoretical
work based on simulation (this current paper) and previous
empirical experimental work indicate that simplified pairs
provides a promising mechanism by which CJ can inform
linking and equating.
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