
feduc-07-908712 August 20, 2022 Time: 7:20 # 1

TYPE Perspective
PUBLISHED 17 August 2022
DOI 10.3389/feduc.2022.908712

OPEN ACCESS

EDITED BY

Xiaofeng Wang,
Free University of Bozen-Bolzano, Italy

REVIEWED BY

Erika Osztián,
Sapientia Hungarian University
of Transylvania, Romania

*CORRESPONDENCE

B. Katalin Szabó
szabo.katalin@ek-cer.hu

SPECIALTY SECTION

This article was submitted to
Digital Learning Innovations,
a section of the journal
Frontiers in Education

RECEIVED 30 March 2022
ACCEPTED 11 July 2022
PUBLISHED 17 August 2022

CITATION

Szabó BK (2022) Web search
of software developers—
Characteristics and tips.
Front. Educ. 7:908712.
doi: 10.3389/feduc.2022.908712

COPYRIGHT

© 2022 Szabó. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Web search of software
developers—Characteristics and
tips
B. Katalin Szabó1,2*
1Reactor Monitoring and Simulator Laboratory, Centre for Energy Research, Budapest, Hungary,
2Doctoral School of Informatics, University of Debrecen, Debrecen, Hungary

There is more and more software in the world and this software has to

be developed. All the people who develop software can be regarded as

software developers, not just the professionals. Naturally, they often perform

web searches to support their development activity. The article, based on

the pertinent literature and also on the author’s own experiences as a

longtime software developer, discusses characteristics of software developers’

web searches and gives some recommendations and tips to increase the

efficiency of their searches, especially complex, exploratory searches. To the

author’s knowledge, no such summary combined with tips, aimed at software

developers, has been published before. It has been written in the hope that

software developers, such students and their teachers would find it useful.

KEYWORDS

web search, online search, exploratory search, software developers, software
development, tips, recommendations

Introduction

Software developers (people who develop software) often perform web searches in
their development activity. The efficiency and the outcome of these searches—such as
finding a suitable software library or the right documentation or good example code—
may fundamentally affect the success of their development work.

There exist several useful resources on how to search on the web in general: books
(Dornfest et al., 2006; Russell-Rose and Tate, 2013; Russell, 2019), articles (Blakeman,
2013), and online resources.1

However, as the literature reveals, software developers’ web searches have some
specificities. Being aware of how their peers search, and knowing some tips can make
developers perform their own web searches more consciously and efficiently.

(By searches of software developers I mean their searches performed in the capacity
of software developers.)

1 http://www.rba.co.uk/search,
http://searchresearch1.blogspot.com/,
https://docs.google.com/document/d/1ydVaJJeL1EYbWtlfj9TPfBTE5IBADkQfZrQaBZxqXGs,
https://sites.google.com/site/resourcesandsearchstrategies/,
https://www.google.com/insidesearch/searcheducation/index.html

Frontiers in Education 01 frontiersin.org

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2022.908712
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2022.908712&domain=pdf&date_stamp=2022-08-17
https://doi.org/10.3389/feduc.2022.908712
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2022.908712/full
http://www.rba.co.uk/search
http://searchresearch1.blogspot.com/
https://docs.google.com/document/d/1ydVaJJeL1EYbWtlfj9TPfBTE5IBADkQfZrQaBZxqXGs
https://sites.google.com/site/resourcesandsearchstrategies/
https://www.google.com/insidesearch/searcheducation/index.html
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-908712 August 20, 2022 Time: 7:20 # 2

Szabó 10.3389/feduc.2022.908712

Characteristics of software
developers’ web searches

This section summarizes the most important findings
in the literature.

Xia et al. (2017) studied professional developers’ web
searches, with various methods (analyzing search logs,
interviewing developers, performing surveys). They identified
the most common search tasks as searching for explanations
for unknown terminologies, explanations for exceptions/error
messages, reusable code snippets, solutions to common
programming bugs, and suitable third-party libraries/services.
According to the developers, the most difficult search
tasks were searching for solutions to performance bugs,
solutions to multi-threading bugs, public datasets to test
newly developed algorithms or systems, reusable code
snippets, best industrial practices, database optimization
solutions, solutions to security bugs, and solutions to software
configuration bugs.

Bansal et al. (2019) analyzed the search log of a major general
purpose search engine and identified software engineering
related queries with the aid of a machine learning based
classifier. 2.61% of all the web search sessions were software
engineering related. (While the term “software engineering
related queries” perhaps does not absolutely correspond to
“developer queries,” we can disregard the difference for our
purposes.) Software engineering search sessions were shorter
than other sessions, had a higher word count, and had a higher
rate of term additions and removals in query reformulations.

Software engineering search queries had a lower click rate (i.e.,
the rate of clicking to a web page after the query) than other
search queries. (The authors opine that this can be attributed
to software engineering related search tasks being more difficult
than other search tasks. I must remark, however, that we do not
know the proportion of cases when the result preview already
gave the answer and there was no need for clicking.) Dwell time,
the amount of time spent by users on the clicked documents
(calculated as the time between the click and the next seen
click or query on the search engine) was lower than with other

queries. [The authors, on the basis of search literature, state
that longer dwell time correlates with success in finding the
required information and they come to the conclusion that
therefore software engineering queries are less effective than
other queries. I think that this may be a hasty conclusion,
as people issuing software engineering queries may be more
effective and thus faster in evaluating search results than the
average population, and software engineering related web pages
may be more to the point, more easily digestible etc. than
other web pages. Also, the methodological issue arises that
the calculation of dwell time may be questionable if software
engineering people tend more to click multiple candidate results

in browser tabs in rapid succession and evaluate them one-by-
one, such behavior has been described (e.g., in Brandt et al.,
2009, p. 3).]

The most researched search type among developers’ web
searches is search for code, i.e., software. They look for ready-to-
use software, linkable/includable code libraries, code examples,
code samples, coding tips, bug fixing tips, also algorithms from
which code can be written.

The most relevant findings on code search:
Developers prefer general-purpose search engines over any

other information gathering means, specialized code search
engines are not used too often (Kakarontzas et al., 2010; Sim
et al., 2011; Hucka and Graham, 2018). Sim et al. (2013)
found that subjects using Google (vs. other search engines)
in a code search experiment employed a higher average
number of terms per query, a higher average clickthrough rate,
and more time overall, and received more hits which were
perceived relevant. The researchers opined that the success
of Google was probably due to the high number and variety
of pages that it indexed, and also because participants in
the experiment were more familiar with Google than with
the other engines.

A study analyzing the log of a code search engine has come
to the conclusion that “users who find code search engines
usable are those who already know to a high level of specificity
what to look for” (Bajracharya and Lopes, 2009, p. 1).

Sometimes code searches are also performed in code
repositories (Kakarontzas et al., 2010; Sim et al., 2011, 2013).

As far as source code search is concerned, Sim et al.
(2011) state that, by motivation of such searches, there are
two major search archetypes. At one end of the spectrum is
the search for source code for reuse as-is, when the developer
does not want to modify the code at all. The other archetype
is search for code as a reference example, when the developer
only wants to use the knowledge behind the code. Between
these archetypes are the searches which are some mixes of
the two. A search process may even start at one end of the
spectrum and may move toward the other end. A minor
archetype has also been identified: search for information
about bugs or defects, which is characterized by long queries
(Rahman et al., 2018, p. 8), as full error messages are often
submitted as queries.

(Bai et al., 2020) is about a lab study where graduate
students searched for code to resolve programming tasks in
an unfamiliar programming language. Emphasis was put on
investigating search success. Taking only clicking to a search
result into account as proof of search success is inadequate,
as inspecting a result is not a guarantee for success yet,
and also the correct answer to a search query may appear
in the preview in the hit list, not necessitating clicking.
Therefore, participants were surveyed during their search
activity (when a search tab was closed and when there were

Frontiers in Education 02 frontiersin.org

https://doi.org/10.3389/feduc.2022.908712
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-908712 August 20, 2022 Time: 7:20 # 3

Szabó 10.3389/feduc.2022.908712

signs that a query was reformulated) about their success. A few
findings:

Participants most frequently searched for example code
and ways to resolve bugs or errors. Learners formulated
much more verbose queries than professionals did. Most
participants borrowed terms from programming languages
which were familiar to them, these queries were more
successful than the average query. Successful searches used
natural language phrases. [As to the possible reason: Gallardo-
Valencia and Sim (2009) opined earlier that web pages
with code snippets, examples, usually contain a lot of
explanations in natural language, and the general purpose
search engines pick up these.] The majority of “How to”
queries were successful, and “(. . .) the most successful searches
are those that consult resources with examples, such as
documentation and official/third-party tutorials.” (Bai et al.,
2020, p. 2,5,7,10).

Li et al. (2022) conducted an experiment with subjects
having to correct buggy Python codes with the aid of searching
Stack Overflow through Google. Subjects were categorized
as Novices, Non-Python-familiar-experts and Python-familiar-
experts. Experts tended to click more search results than novices
and had higher success rate. Python experts (the most successful
of the three categories) clicked on more links that were further
down the result list.

Rahman et al. (2018) compared code search and other
search activities of the same developers. In comparison to
other searches, code searches contained more words, the
number of queries per search session was much higher, query
modifications occurred more often, more websites were visited
in a session, more time was spent on the search. This implies
that searching for code is harder, and also that developers do not
give it up easily.

Exploratory searches

Martie (2017), writing about code search, emphasizes the
iterative nature of search, especially when the search is not for
one specific piece of code, the developer is not entirely sure at
the beginning what he/she is searching for.

“In such cases, search is more of an exploratory process
where multiple queries are issued by the programmer so that
they can discover results to learn and gain ideas from or to learn
more about what code they might want in the search engine.”
(Martie, 2017, p. 61).

Exploratory searches may take a long time, even months
(White and Roth, 2009, p. 6) and they are hard to study.
In my own practice as a developer, the longest and toughest
search for code took months indeed. I wanted a detailed,
realistic virtual hand model in a particular game engine, driven
with input data from a hand movement detector, for a virtual

reality project. After a while it became clear that no ready-
made solution existed, I had to create the hand model myself.
Luckily, I found a hand mesh (geometric model of a hand)
which looked suitable, so I “only” had to integrate it with
an armature (a skeleton representation of the bones of the
hand in the game engine) and drive the armature’s bones
with bone position and orientation data from the detector.
Apparently, no one had done this before for that particular
game engine, so I had to learn a lot about the extremely
complicated armature mechanism of the game engine. Certain
features worked correctly only under special and undocumented
circumstances. My search process was heavily intertwined
with development efforts. After each failure I searched further
and tried out the new findings. I maintained a search and
development diary. The subsequent mining of this diary has
revealed that I recorded 853 distinct URLs worthy of noting and
these belonged to 174 different websites. 26% of the recorded
hits contained code (mostly code snippets) which I thought
worthy of copying or downloading. At the time of writing
the diary I had no intention to make any kind of statistics
from it, so the data presented here contain no such bias.
Table 1 shows how the top 4 websites were represented among
the URLs. blenderartists.org is an independent user site (with
forums) dedicated to the Blender (RRID:SCR_008606) suite
which includes the game engine, blender.org is the official site
of Blender, stackexchange.com is a network of Q&A (question-
and-answer) sites on diverse topics, leapmotion.com is the
official site of the hand movement detector. The two official
sites both contain forums as well. 8 further websites held 1–
2% of the URLs each. All other sites were below 1%. 119
sites were represented with only one URL. These results show
how important the forums have become, and how diverse
the URLs can be.

One day, after I applied a trick found in the blog of a small
company, the hand model started working correctly. It was
published in Szabó (2019).2

I mostly used Google for search (Bing and Yandex did not
yield additional results), set the number of hits to be displayed

2 See demo at https://youtu.be/uEhEZ1MIul4

TABLE 1 How the top 4 websites were represented among
the recorded URLs.

Website Among all URLs
(847 total)

Among important
URLs (134 total)

Among
code-containing
URLs (218 total)

Blenderartists.org 30% 33% 33%

Blender.org 16% 12% 5%

Stackexchange.com 9% 15% 14%

Leapmotion.com 4% 6% 6%

All 4 sites together 59% 66% 58%

Frontiers in Education 03 frontiersin.org

https://doi.org/10.3389/feduc.2022.908712
blenderartists.org
https://scicrunch.org/resolver/RRID:SCR_008606
blender.org
stackexchange.com
leapmotion.com
https://youtu.be/uEhEZ1MIul4
http://Blenderartists.org
http://Blender.org
http://Stackexchange.com
http://Leapmotion.com
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-908712 August 20, 2022 Time: 7:20 # 4

Szabó 10.3389/feduc.2022.908712

on one page to the maximum (to speed up evaluation). When
I thought necessary, I scanned several hundred hits in the
hit list. When there were several promising hits, I opened
them in new tabs one-by-one, then evaluated them one-by-one,
relatively quickly.

I often found useful tips in forums and blogs, and it
sometimes paid off searching for other posts of authors whose
posts I found informative.

My search diary was in Word format, I copied into it
relevant URLs, explanatory texts, interesting pieces of code
which I sometimes annotated, figures, and even screenshots
of my program runs as well. I put exclamation marks before
the recorded address of web pages I thought important, I also
used font properties (size, color, style) to mark different types
of information. When a part of the text (and the idea behind
it) proved to be a dead-end street, I changed its font to a
smaller one and crossed it out, thus invalidated it but still left
it in the diary.

I believe that documenting the searches in the way described
above highly contributed to the successful outcome of the
search. Also, that I was persistent, did not necessarily stop at 10,
20 or even 100 hits, and assessed the promising hits fast.

Why could the examination of many hits prove useful,
especially with exploratory searches? According to White and
Roth (2009, p. 15):

“Exploratory searches may be more concerned with recall
(maximizing the number of possibly relevant objects that are
retrieved) than precision (minimizing the number of possibly
irrelevant objects that are retrieved). Thus, they are not well
supported by today’s Web search engines that are highly tuned
toward precision in the first page of results.”

Pariser (2011, p. 59) has put this in a simpler way:
“Google is great at helping us find what we know we want,

but not at finding what we don’t know we want.”
However, it can happen that the lack of relevant results

among the first hits simply means that the query is misguided,
it is better to abandon or at least modify the query. This
is always up to the searcher’s judgment (which usually
develops with practice).

Also, we should not forget that Google does not display more
than 1,000 results for any query (Hummel, 2008, p. 75; Russell-
Rose and Tate, 2013, p. 151).

To help users in their searches (and to profit from offering
products to users), search engines often create profiles of
users. For this, they use their search history, geographical
location and other data such as what commercial products
they bought in the past, what information they have given
about themselves. Thus search engines are able to provide
search results more specific and relevant to the user, but,
with this, they put the user into a sort of “bubble.” This
feature (and also that the hits frequently clicked by other
users will probably be ranked higher, with which they will
get even more clicks) can be counterproductive in exploratory

search, when the solution often does not lie along the well-
trodden paths.

One, time-consuming, strategy to counteract this effect is
the above mentioned examination of a high number of search
hits. We can also try countermeasures to depersonalize, to
“debubble” the search.3

A few more web search tips for
developers

If you want to use search engines efficiently, you should
know their advanced search options and characteristics. Not
only Boolean operators can be put to use. For software
component search, the filetype operator (Google, Bing, Yandex)
can be of help (it recognizes the file types of several
programming languages) and also Google’s and Bing’s wildcard
(∗) (e.g., when looking for functions/methods with known
parameter types, wildcards can serve as substitutes for the
unknown parameter names) (Hummel, 2008, p. 76). With
the verbatim option Google will not look for synonyms
and variations of the search terms, this can be useful
e.g., when looking for specific function/method names in
source code search.

You can learn a lot about the capabilities and characteristics
of search engines from search experts.4

It can pay off to use search engines other than Google, you
may get different results.5

A potentially useful type of information source is scholarly
literature, both in the application domain for which you develop
your software, and in the software engineering field. Scholarly
articles, books, studies, research reports, dissertations may
contain code snippets, algorithms, coding tips, references to
ready-to-use programs and to components. Sometimes authors
make their own software available to the public. Many scholarly
sources can be found through general purpose search engines,
but search engines specializing in scholarly literature can also
be of great help. Of these scholarly search engines, Google
Scholar can be recommended in the first place, because it has the
widest coverage of sources. There are also topical search sites for
various domains, and the sites of publishers of scholarly journals
and books are also valuable resources. Publications usually
contain references, some of these may be worth to inspect, also, a
publication of interest may be cited in other sources which could
in turn contain further useful information for us. Such citation
searching is supported e.g., by Google Scholar.

3 Depersonalization tips for Google: https://nostop.net/
depersonalize-google-search.html

4 See the Introduction for such resources.

5 For alternative search engines, see e.g., https://www.
searchenginejournal.com/alternative-search-engines/271409/

Frontiers in Education 04 frontiersin.org

https://doi.org/10.3389/feduc.2022.908712
https://nostop.net/depersonalize-google-search.html
https://nostop.net/depersonalize-google-search.html
https://www.searchenginejournal.com/alternative-search-engines/271409/
https://www.searchenginejournal.com/alternative-search-engines/271409/
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-908712 August 20, 2022 Time: 7:20 # 5

Szabó 10.3389/feduc.2022.908712

Social media, such as Q&A sites (notably, Stack Overflow),
forums, blogs, microblogs (Twitter) collaboratory code
repositories (SourceForge, GitHub etc.) can also be great
sources of information. In code search, these can also help
with the evaluation of code candidates, as they often show the
community’s opinion of the code.

Discussion

On the basis of the available literature, I have listed some
features of developers’ web searches, and a few tips for making
searches more efficient, derived from the literature and my
own experiences.

Where are we headed? This greatly depends on the evolution
of search engines. The current practice is to use mostly general-
purpose search engines even for code search. The formerly
popular Google Code Search was shut down years ago6 and
several other code search engines have become obsolete, too.7

Perhaps the ever-increasing quantity of available code has
become too much for them. It is in principle possible that a
search tool specializing in code search emerges and becomes
dominant, but it has not happened so far.

Possibly, general-purpose search engines might evolve into
more efficient tools through addition of software-developer-
friendly features. However, as mentioned above, only less than
3% of web search sessions are software engineering related,
so this is probably not high on the priority list of search
engine companies. Until then (and even after, in the case of
exploratory searches), we must resort to search tricks to make
our search efficient.

6 http://googleblog.blogspot.com/2011/10/fall-sweep.html
7 In 2018, Code Sample Answer (https://blogs.bing.com/search-
quality-insights/2018-07/Intelligent-search-Coding-answers-at-your-
fingertips/) was introduced in Bing, but now (2022) the code samples
are no longer available in the search results.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Some slight statistical data (number and
proportion of recorded URLs) were derived from the search
and development diary of the author. (If such a diary can
be regarded as a dataset.) The diary is of several hundred
pages and contains know-how which is irrelevant from the
point of view of this article and is the property of the author’s
employer. Requests to access these datasets should be directed
to corresponding author.

Author contributions

The author confirms being the sole contributor of this work
and has approved it for publication.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Bai, G. R., Kayani, J., and Stolee, K. T. (2020). “How graduate computing
students search when using an unfamiliar programming language,” in Proceedings
of the IEEE/ACM International Conference on Program Comprehension (ICPC’20),
(New York, NY: ACM), 160–171. doi: 10.1145/3387904.3389274

Bajracharya, S., and Lopes, C. (2009). “Mining search topics from a code
search engine usage log,” in Working Conference on Mining Software Repositories,
(Vancouver, BC: IEEE), 111–120. doi: 10.1109/MSR.2009.5069489

Bansal, C., Zimmermann, T., Awadallah, A. H., and Nagappan, N. (2019). The
Usage of Web Search for Software Engineering. arXiv 1912.09519 [Preprint].

Blakeman, K. (2013). Finding research information on the web: how to make
the most of Google and other free search tools. Sci. Prog. 96, 61–84. doi: 10.3184/
003685013X13617253047438

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., and Klemmer, S. R. (2009).
“Two studies of opportunistic programming: Interleaving web foraging, learning,
and writing code,” in Proceedings of the 27th International Conference on Human

Factors in Computing Systems, (New York, NY: ACM), 1589–1598. doi: 10.1145/
1518701.1518944

Dornfest, R., Bausch, P., and Calishain, T. (2006). Google Hacks, 3rd Edn.
Sebastopol, CA: O’Reilly Media, Inc.

Gallardo-Valencia, R. E., and Sim, S. E. (2009). “Internet-scale code
search,” in Proceedings of the 2009 ICSE Workshop on Search-Driven
Development – Users, Infrastructure, Tools and Evaluation, (Washington,
DC: IEEE Computer Society), 49–52. doi: 10.1109/SUITE.2009.507
0022

Hucka, M., and Graham, M. (2018). Software search is not a science,
even among scientists: a survey of how scientists and engineers
find software. J. Syst. Softw. 141, 171–191. doi: 10.1016/j.jss.2018.0
3.047

Hummel, O. (2008). Semantic Component Retrieval in Software Engineering.
Ph.D. thesis. Mannheim: Universität Mannheim.

Frontiers in Education 05 frontiersin.org

https://doi.org/10.3389/feduc.2022.908712
http://googleblog.blogspot.com/2011/10/fall-sweep.html
https://blogs.bing.com/search-quality-insights/2018-07/Intelligent-search-Coding-answers-at-your-fingertips/
https://blogs.bing.com/search-quality-insights/2018-07/Intelligent-search-Coding-answers-at-your-fingertips/
https://blogs.bing.com/search-quality-insights/2018-07/Intelligent-search-Coding-answers-at-your-fingertips/
https://doi.org/10.1145/3387904.3389274
https://doi.org/10.1109/MSR.2009.5069489
https://doi.org/10.3184/003685013X13617253047438
https://doi.org/10.3184/003685013X13617253047438
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1109/SUITE.2009.5070022
https://doi.org/10.1109/SUITE.2009.5070022
https://doi.org/10.1016/j.jss.2018.03.047
https://doi.org/10.1016/j.jss.2018.03.047
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-908712 August 20, 2022 Time: 7:20 # 6

Szabó 10.3389/feduc.2022.908712

Kakarontzas, G., Katsaros, P., and Stamelos, I. (2010). Component Certification
as a Prerequisite for Widespread OSS Reuse. Electron. Commun. EASST 33, 1–20.
doi: 10.14279/tuj.eceasst.33.449

Li, A., Endres, M., and Weimer, W. (2022). “Debugging with stack overflow:
web search behavior in novice and expert programmers,” in Proceedings of
the International Conference on Software Engineering – Software Engineering
Education and Training (ICSE-SEET), 69–81. doi: 10.1109/ICSE-SEET55299.2022.
9794240

Martie, L. (2017). Understanding the Impact of Support for Iteration on Code
Search. Ph.D. thesis. Irvine: University of California.

Pariser, E. (2011). The Filter Bubble: What the Internet is Hiding from You.
London, UK: Penguin.

Rahman, M. M., Barson, J., Paul, S., Kayani, J., Lois, F. A., Quezada, S. F.,
et al. (2018). “Evaluating how developers use general-purpose web-search for
code retrieval,” in Proceedings of the 15th International Conference on Mining
Software Repositories (MSR), (New York, NY: ACM), 465–475. doi: 10.1145/
3196398.3196425

Russell, D. M. (2019). The Joy of Search: A Google Insider’s Guide to Going
Beyond the Basics. Cambridge, MA: MIT Press.doi: 10.7551/mitpress/11920.001.
0001

Russell-Rose, T., and Tate, T. (2013). Designing the Search Experience: The
Information Architecture of Discovery. San Francisco, CA: Morgan Kaufmann
Publishers Inc.

Sim, S. E., Agarwala, M., and Umarji, M. (2013). “A Controlled Experiment
on the Process Used by Developers During Internet-Scale Code Search,” in
Finding Source Code on the Web for Remix and Reuse, eds S. E. Sim and R. E.
Gallardo-Valencia (New York, NY: Springer), 53–77. doi: 10.1007/978-1-4614-65
96-6_4

Sim, S. E., Umarji, M., Ratanotayanon, S., and Lopes, C. V. (2011). How Well
Do Search Engines Support Code Retrieval on the Web? ACM Trans. Softw. Eng.
Methodol. 21:1–25. doi: 10.1145/2063239.2063243

Szabó, B. K. (2019). Rigged hand model for the Blender Game Engine. Recent
Innov. Mechatron. 6, 1–7. doi: 10.17667/riim.2019.1/5

White, R. W., and Roth, R. A. (2009). Exploratory Search: Beyond the
Query-Response Paradigm. Synthesis Lectures on Information Concepts, Retrieval,
and Services. San Rafael, CA: Morgan & Claypool, 1–98. doi: 10.2200/
S00174ED1V01Y200901ICR003

Xia, X., Bao, L., Lo, D., Kochhar, P. S., Hassan, A. E., and Xing, Z. (2017).
What do developers search for on the web? Empir. Softw. Eng. 22, 3149–3185.
doi: 10.1007/s10664-017-9514-4

Frontiers in Education 06 frontiersin.org

https://doi.org/10.3389/feduc.2022.908712
https://doi.org/10.14279/tuj.eceasst.33.449
https://doi.org/10.1109/ICSE-SEET55299.2022.9794240
https://doi.org/10.1109/ICSE-SEET55299.2022.9794240
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1145/3196398.3196425
https://doi.org/10.7551/mitpress/11920.001.0001
https://doi.org/10.7551/mitpress/11920.001.0001
https://doi.org/10.1007/978-1-4614-6596-6_4
https://doi.org/10.1007/978-1-4614-6596-6_4
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.17667/riim.2019.1/5
https://doi.org/10.2200/S00174ED1V01Y200901ICR003
https://doi.org/10.2200/S00174ED1V01Y200901ICR003
https://doi.org/10.1007/s10664-017-9514-4
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/

	Web search of software developers—Characteristics and tips
	Introduction
	Characteristics of software developers' web searches
	Exploratory searches
	A few more web search tips for developers
	Discussion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


