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Computational thinking (CT) and diagrammatic reasoning (DR) are important

competencies from the perspective of both Computer Science and

Engineering education. CT is often described as a critically important

attitude or skill set for all students regardless of the educational program in

which they are enrolled. Diagrammatic reasoning is commonly referred to as

a student’s ability to think logically and solve complex problems. Accordingly,

these two competencies are closely related and both skills are parallelly

linked to several curriculum subjects (with preponderance in the case of

STEM disciplines) during the educational process. Consequently, one might

conclude that even without an explicit focus on them, students might develop

these abilities latently as they advance with the K-12 current curriculum.

We have proposed to test this assumption. In the experiment, 137 first-year

students were involved in six di�erent Computer Science and Engineering

educational programs. Students were invited to participate in a CT and a DR

test. We were particularly interested in possible correlations between the

results of the two tests. Our results confirmed that computational thinking

and diagrammatic reasoning are closely related abilities. We also found that

CT, DR, and students’ prior programming experience positively correlate with

their first course exam results in Computer Science.

KEYWORDS

computational thinking, diagrammatic reasoning, STEM education, K-12 education,

computing

1. Introduction

The importance of STEAM (Science, Technology, Engineering, Art, and

Mathematics) education has become increasingly emphasized in recent decades.

Since the 1990s, there has been a STEM movement (Martín-Páez et al., 2019) that has

had an impact on both K-12 education (Holmlund et al., 2018) and higher education

(National Academies of Sciences and Medicine, 2018). Although most previous research

has focused on either K-12 or higher education (HE), these two main (and consecutive)

stages of the educational process are strongly interconnected. Since the STEM concept is

particularly prominent in Computer Science and Engineering Education (CSE, ED), we

concentrated on these branches of higher education.
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One way to address the K-12—HE connection in the context

of STEM education is to focus on key competencies. Two such

competencies that are critically important from the perspective

of both CSE and ED are computational thinking (CT) and

diagrammatic reasoning (DR). For example, Lyon and J. Magana

(2020) in their review of literature conclude that CT is of

growing interest to the STEM education research community. In

addition, Kiernan et al. (2021) describe DR as a learning strategy

central to STEM disciplines. In this research, we examined the

CT and DR of first-year CS and Engineering students with

a particular focus on possible correlations between these two

competencies.

2. Connecting CT and DR to STEM

STEM education has a decisive role in our modern society

because of the unique nature of the referred four fields (Xie

et al., 2015). While it is widely admitted that the acronym

STEM is related to a set of science-oriented domains or subjects,

there is no consensus on the definition of this set (Gonzalez

and Kuenzi, 2012). In this study, we focus on those disciplines

(or subjects) that have been included in the Romanian K-

12 educational program. In addition to this subject-oriented

approach, STEM education can also be addressed from the

perspective of impacted abilities. Two key abilities in this sense

are computational thinking and diagrammatic reasoning.

Although the expression CT was introduced by Papert

(1980), the modern wave of this expression was generated

by Wing (2006) who defined it as a “universally applicable

attitude and skill set everyone, not just computer scientists,

would be eager to learn and use.” According to Lodi and

Martini (2021), a common idea suggested by both Papert and

Wing is that the competencies acquired as CT can easily be

transferred to other disciplines. More recent definitions of

CT are also in line with this conclusion. For example, Aho

(2012) explained CT as “the thought processes involved in

formulating problems so that their solutions can be represented

as computational steps and algorithms.” Shute et al. (2017)

describe CT as “the conceptual foundation required to solve

problems effectively and efficiently (i.e., algorithmically, with

or without the assistance of computers) with solutions that are

reusable in different contexts.” With respect to K-12 education,

Csizmadia et al. (2015) emphasized the following five key

computational skills: abstraction, decomposition, algorithmic

thinking, evaluation, and generalization. These related skills can

be witnessed in many domains with preponderance in STEM

disciplines. In line with this, some authors suggest that since

CT is a combined skill with cross-disciplinary implications,

students’ CT might develop latently (without an explicit focus

on CS) as they advance with their K-12 curriculum (Katai et al.,

2021).

The roots of DR go way back to Venn diagrams, which

are referred to as “a graphical alternative to sentential and

algebraic forms to represent logical relations” (Hoffmann, 2011).

Moreover, some authors trace the concept back to Euclid, which

inspired both Peirce and Polya. Sowa (2020) stresses the value

of combining the diagrams proposed by Euclid, the graph logic

introduced by Peirce, and the heuristics suggested by Polya.

According to Peirce (1868), there is a duality in DR due to the

fact that it can be considered as a tool to generate knowledge

but also as a “solution of problems of Logic” (Hoffmann, 2011).

In addition, Hoffmann emphasizes the importance of interplay

between diagrams and reasoning with the goal of promoting

human creativity and learning. Based on Stieff et al. (2010),

Stieff (2011), and Kiernan et al. (2021), DR can be seen as

“the application of heuristics or algorithms to domain-specific

diagrams which enable students to deduce complex spatial

transformations without necessarily invoking mental images.”

With all this in mind, it is not surprising that researchers often

link diagrammatic thinking to STEM education (Kiernan et al.,

2021). For example, STEM instructors regularly induce DR by

creating sketches that model, characterize and communicate the

essence of the studied scientific phenomenon (Latour, 1990).

2.1. The impact of K-12 STEM subjects on
CT and DR

According to Baran et al. (2016), STEM education is

an interdisciplinary teaching-learning strategy that integrates

science, technology, engineering, mathematics, and other

knowledge, skills, and beliefs particular to these disciplines. In

line with this, and based on the European recommendations,

the Romanian K-12 framework curriculum highlights the

importance of supporting all students in developing such

abilities as mathematical and digital competencies and basic

competencies in sciences and technology. In Romania, the

curriculum includes some focused STEM disciplines that are

introduced at different age levels. For example Mathematics

(grade 1), Information and communication technology (grade

5), Introduction to computer algorithms (grade 5), Science

(chemistry and physics; grade 6), Technology (to prepare

students from specific classes for engineering education; grade

9), and Computer Science (focused computer programming for

informatics classes; grade 9).

Prior research explicitly links CT and DR to these subjects.

For example, the Next Generation Science Standards (Next

Generation Science Standards, 2013) describe CT as a core

scientific practice. Wing (2016), ten years after publishing

the above referred defining article on CT, emphasizes that

computation can be seen as the third pillar of modern

science and engineering disciplines, supplementing theory

and experimentation. Weintrop et al. (2016) proposed a
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taxonomy-based definition of CT, particularly for mathematics

and science. These authors addressed four main areas: data

practices, modeling and simulation practices, computational

problem-solving practices, and systems thinking practices.

According to these trends, there is a growing number

of initiatives for infusing CT in STEM disciplines [e.g.,

mathematics: (Wilkerson and Fenwick, 2017); physics:

(Hutchins et al., 2020); chemistry: (Chongo et al., 2021), etc.].

Computational thinking can be linked to CSE even more

directly. In recent decades, authors have reported on several

plugged-in and unplugged methods that promote students’

CT in this context at all levels (Brackmann et al., 2017).

Obviously, teaching-learning programming remains a distinct

method in this sense (Mannila et al., 2014), being considered

the mainstream approach. Of course, by programming,

we mean more than just coding. Relevant programming

practice exposes students to the three main dimensions of

CT: computational concepts, computational practices, and

computational perspectives. Lye and Koh (2014), after reviewing

27 intervention studies, concluded that programming has the

potential to foster CT. More recently, Tikva and Tambouris

(2021) stated that CT through programming is considered “an

ideal medium for the development of twenty-first century skills.”

Understandably, DR is intertwined with the teaching of

STEM subjects earlier than CT. For example, diagrams, as a type

of representation of mathematical objects, are long-established

tools in mathematics education. Interestingly, according to

Sochański (2018), despite all the criticisms that DR could

be at most a secondary tool for mathematics education, in

recent years we are witnessing a revival of interest in the

role of visualization in mathematical practice. Novak (1977)

developed a DR-oriented system (ISAAC) for solving physics

problems more than 50 years ago. A defining particularity of

the work was that diagrams were considered as an integrated

part of understanding and solving the addressed problems.

With respect to chemistry education, Kiernan et al. (2021)

reported on research that investigated visuospatial thinking

through students’ use of imagistic, analytical, and diagrammatic

reasoning when predicting molecular geometry. According

to these authors, DR has the potential to reduce learners’

visuospatial load by providing an analytical route. In the context

of CS education, perhaps the most commonly used diagrams

are the logical schemes for representing algorithms. Creating

and analyzing such representations are an integral part of

programming education and clearly assume DR.

3. Research questions

Based on the above literature review, it can be assumed

that first-year CS and Engineering students possess a certain

level of CT and DR because of the implicit contribution of

their K-12 education. In general, these students had placed an

emphasis on STEM disciplines. In Romania, usually, students

are admitted to science-oriented Higher Education programs

mostly based on their high school graduation exam scores in

STEM subjects. In addition, it can also be assumed that students’

prior programming experience is reflected in their CT level. We

have proposed to test these assumptions. Furthermore, we were

also interested in the extent to which students’ CT and DR scores

at the beginning of the first semester predict their first course in

Computer Science (CS1) exam results.

Accordingly, we addressed the following

research questions:

RQ1: Is there a correlation between CT and DR test results?

RQ2: To what extent does prior programming experience

benefits students’ results?

RQ3: To what extent do CT and DR results predict students’

performance on their CS1 exam?

4. Methods

4.1. Participants and procedure

The experiment took place at an Eastern European

University during the registration week of the academic year

(just before the first semester begins). A total of 137 (17%

females) first-year students were invited to participate in

the study. Subjects were from different majors: Informatics

(34%), Computer Science (22%), Automation and applied

informatics (10%), Mechatronics (15%), Telecommunications

(8%), and Mechanical Engineering (11%). Subjects also

showed considerable diversity in terms of their high

school academic profiles: Theoretical (Natural Sciences—

21.2%, Mathematics and Computer programming—51.8%),

Technical (16.8%), Services and Economics (5.8%), and

others (4.4%).

According to the participants’ previous academic profiles,

their prior programming experience in years (PPY) differed.

The reason for having different PPY is that programming is not

compulsory in Romania and each high school is free to offer

one or more academic programs. One of the most demanding

academic programs is the Science profile where students have

the opportunity to get STEM-related degrees. During the four

academic years, students have 4–7 h/week of math classes.

Furthermore, students from natural sciences classes learn

computer programming for 2 h/week for 2 years (2 PPY), while

students from mathematics and computer programming classes

can have computer programming classes up to 5–7 h/week

for 4 years (4 PPY). Besides the above-mentioned academic

programs, none of the other academic profiles include computer

programming classes. Consequently, students who come from

these profiles have no prior programming experience (0 PPY;

Table 1).
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TABLE 1 Distribution of participants by prior programming

experience.

0 PPY 1–3 PPY 4 PPY

36 (26%) 38 (28%) 63 (46%)

4.2. Design

In order to investigate the correlation between students’ CT,

DR, and CS1 results a positive correlational research design was

used. The aim of this study was to ensure an overall picture

based on students’ abilities in relation to their CS1 scores. More

precisely, we intended to perform the CT andDR tests in the case

of all participants in the same way. Therefore, assigning students

to different groups was not required.

4.3. Materials

The study took place in one of the lecture halls of the

university where subjects were requested to complete two types

of paper-based tests:

1. DR test: to assess students’ diagrammatic reasoning ability.

2. CT test: to assess students’ computational thinking ability.

The testing session lasted a total of 1 h where we used

questions shown in Table 2. Time was divided into 10 min

for the DR test and ca. 50 min for the CT test. Both DR

and CT tests were paper-based face-to-face tests that students

completed all at once. First, students were asked to answer

four introductory questions about their school experience details

(Q1–Q3: university major, high school academic program,

gender), their prior programming experience—PPY (Q4), and

one privacy policy related question (Q5). Furthermore, the DR

test included 10 multiple-choice questions (Q6–Q15), while the

CT test consisted of three problems with different subtasks

(Q16–Q25) (Table 2).

4.3.1. Diagrammatic reasoning test

The DR test consisted of 10 different questions collected

from the1 online platform which provides a variety of free

psychometric aptitude tests such as diagrammatic reasoning.

Psychometric Success tests are widely used to assess the aptitudes

of different category people during recruitment processes and

educational contexts as well (Fernandés, 2011; Bressler, 2014;

Mirabueno and Boyon, 2020).

According to Newton and Bristol (2011), DR tests can be

closely related to abstract reasoning tests whose aim is to process

1 https://psychometric-success.com/

flow charts and diagrams and to predict the output by following

a series of logical instructions or inferring rules. Based on Tóth

et al. (2021), DR tests are excellent tools in order to measure

the skill set of a person, more precisely the extent to which the

person is able to follow a specific set of instructions. These kinds

of tests are also well-suited for information technology-related

jobs because they can reflect the software design of a project.

In our study, participants were from six different university

programs all of which pay close attention to software design and

architecture. This justifies the importance of examining DR tests

during university courses as well. In order to measure students’

DR, we defined two main categories: recognition of regularities

with unknown operations (Q6–Q10) in cases in which students

were required to specify the output for a given input; and

recognition of regularities with known operations (Q11–Q15)

where students needed to follow a set of instructions in order

to find the solution. Researchers emphasized that mechanical

engineering, electrical engineering, and engineering IT students

achieved significantly better results. This underlines the decisive

role of improving DR ability which can closely reflect inductive

cognition. In our study, we used the previously mentioned DR

test questions in their original form which can be found2. This

test was also used by many other authors such as Tóth et al.

(2021) who have achieved outstanding results.

4.3.2. Computational thinking test

As a further step, students were asked to complete the CT

test questionnaire. Questions for this assessment were collected

from the webpage of the3 contest. The Bebras contest ensures

a variety of questions divided into five different categories such

as abstraction, algorithmic thinking, decomposition, evaluation,

and generalization. These tasks are snatched from real-life

problems (Dagienė and Sentance, 2016) which provide a realistic

visualization, ensuring curiosity and motivation even for the

younger generation. They also emphasized that including Bebras

tasks in the curriculum can promote students’ CT skills to

improve even better. Further studies (Hubwieser and Mühling,

2015; Csapó, 2019) also underlined the inherent potential of

these problems with the help of which computer science can

become an interesting and attractive field of science.

The Bebras challenge consists of tasks that require CT

and a set of problem-solving skills. Consequently, for the CT

assessment presented in this study, we decided to inspire and

collect tasks from the4 webpage which is maintained by the

Hungarian partner of the Bebras initiative. Bebras contest items

have been frequently used to measure CT. For example, based

on a validation study of selective Bebras items, Tang et al. (2018)

2 https://psychometric-success.com/test-pdfs/

PsychometricSuccessDiagrammaticReasoning-PracticeTest1.pdf

3 https://www.bebras.org/

4 http://e-hod.elte.hu/
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TABLE 2 Assessment questions.

Metacode Item

Questions 1–5 Gender, high school academic profile, university major, PPY, privacy policy

Task 1 Participants were asked to complete the DR test.

Questions 6–10 Unknown operations: Determine the effect of the “operators” in order to produce the “output” for a given “input.”

Questions 11–15 Known operations: Work from top to bottom. In order to produce the “output” apply the given rules for “operators.”

Task 2 Participants were asked to complete the CT test.

Task 2.1 Math Machine task: Given the algorithm used by a calculator,

determine the correct output for each input value: calculate(n),

where n is input, and the output is the result for function calculate(n).

Question 16 Calculate(4): What is the output for input 4?

Question 17 Calculate(7): What is the output for input 7?

Question 18 Combining partial results into one: What is the output of the following sequence of operations: calculate(2) * calculate(6) - calculate(3) * calculate(4)

Question 19 Generalization formula for calculate(n): What is the output for input n?

Task 2.2 Heat Maps task: A letter machine can recognize five images,

which represent the letters I, T, O, C, and L.

The letter machine uses heat maps in the recognition process.

The heat map can be defined as the following: we assign a value to each of the pictures’ pixels.

The value shows how many of the other images have the same pixel in that location.

Question 20 Pattern recognition: Which letter is illustrated by the following 3× 3 dimensional heat map: {3, 3, 2 / 2, 2, 0 / 2, 4, 2}?

Question 21 Pattern recognition: Which letter is illustrated by the following 3× 3 dimensional heat map: {3, 0, 1 / 2, 2, 3 / 2, 4, 2}

Question 22 Find the odd one: Which heat map does not belong to any of the images listed?

Task 2.3 Popularity task: Seven friends are in an online social network.

The network allows them to see posts on their own and their friends’ timelines. Two friends are connected (are friends) with a line.

Question 23 Direct connection: Who can see X’s messages?

Question 24 Valency of vertex: How many friends are in the network whose messages can be seen by exactly four other people?

Question 25 Removing edges: How can we “hide” posts’ from somebody?

concluded that their results significantly correlated with another

CT test.

The importance of Bebras and e-hód tasks was also

emphasized by the managing research group of the Hungarian

initiative (Pluhár and Gellér, 2017). Furthermore, researchers

have also highlighted the fact that with the help of these

problems teachers can be able to maintain students’ engagement

and motivation and they can also dissolve students’ fears and

negative feelings regarding computer science (Pluhár et al.,

2019).

In this study, we included three tasks from the Bebras

challenge in the interest of examining students’ CT skills. For

each task, we introduced further questions in order to provide

complexity-related concepts as well.

4.3.2.1. Math machine task

The original problem of the Math Machine task was

assigned in 2021 at the5 which consists of one question (Q16).

We extended this problem with three more questions: Q17

elementary question, similar to the main task of the problem,

5 https://digitalcareers.csiro.au//media/Digital-Careers/Files/Bebras-

Files/Bebras-Handbook-2021.pdf

Q18 which included a sequence of operations and students

needed to combine partial results into one, and Q19 where a

general formula was required.

4.3.2.2. Heat maps task

In the case of the second task two-dimensional

representation played an important role, where different

letters were described with the help of Heat Maps. The

initial task was also published in 2021 at the Bebras Australia

Computational Thinking Challenge and it was constituted

of one main question (Q20). We addressed two more

questions to this: Q21 pattern recognition task, similar to

Q20 and Q22 where students were asked to find the odd

Heat Map (find the incorrect Heat Map of three given

Heat Maps).

4.3.2.3. Popularity task

The third and the last problem illustrated a common

everyday situation, which is based on communication between

each other, on social networks. Networks and graphs are one of

the best ways to illustrate problems regarded to social networks

and friendships. The original problem was published in 2016
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at the6 where one single question was addressed (Q23). In the

CT test, we included two more questions: Q24 in the case in

which students needed to specify the degree of a given vertex

in the social network, and Q25 where participants were asked

to determine which connections should be removed from the

social network.

5. Results and discussion

The analysis was carried out in the R environment. The

investigation included four factors: CT-test scores, DR-test

scores, prior programming years (PPY), and students’ CS1

marks. Obviously, comparing the means would be of no

relevance, so we focused on examining possible correlations

between the variables. Although a total of 137 students were

present during the testing process, two of the participants did not

complete their tests appropriately, consequently, their answers

were excluded.

As a first step, we compared participants’ CT and DR

scores (RQ-1). Results of the Spearman correlation indicated

that there was a significant positive association between the two

test performances, [rs(135) = 0.39, p < 0.001]. Although

previous studies did not address these abilities as intertwining

skills, our findings are consistent with those studies that present

them as related abilities. For example, Falkner et al. (2010)

reported on a successful puzzle-based learning course initiative

for engineering and computer science students. These authors

emphasize that their approach has the potential to lay a basis for

CT in the curriculum. On the other hand, the paper highlights

that the implemented syllabus also included DR puzzles. Dodig-

Crnkovic and Cicchetti (2017) connected CT and DR in the

context of Model-Based Reasoning. They cite Giere (2002), who

described DR as “the interaction between the diagram and a

human with a fundamentally pattern-matching brain.” With

respect to generative computational methods, these authors

underlined that computing enables a new kind of science

(Wolfram, 2002), and supports what Jeannette Wing termed

computational thinking (Wing, 2006). More recently, the (Wan

et al., 2020) study aimed to maximize learning opportunities

of machine learning for K-12 students with diverse STEM

skills. Artificial Intelligence education traditionally assumes

computational skills. In addition, the authors point out that

the proposed method facilitates understanding, knowledge

discovery, and sense-making of abstract and complex concepts

through visual data exploration and diagrammatic reasoning.

As a next step, we examined students’ CT and DR test

performances from the perspective of their prior programming

experience (PPY). It is found that the correlation coefficient

for the PPY vs. CT comparison [rs(135) = 0.44, p < 0.001]

6 https://digitalcareers.csiro.au/media/Digital-Careers/Files/Bebras-

Files/2016-Bebras-Solution-Guide-AU.pdf

was considerably higher than in the case of the PPY vs.

DR comparison [rs(135) = 0.17, p = 0.04]. One possible

explanation could be that the SD for the DR-test was higher than

for the CT-test. This finding is in line with studies that reported

a strong connection between learning programming (if properly

taught) and students’ CT. Tikva and Tambouris (2021) state

that there is a dual association between CT and programming:

“Programming supports the development of CT while CT

provides to programming a new upgraded role.” Accordingly,

although programming is not the only approach for supporting

CT development and the CT-programming relationship is not

clear yet (Passey, 2017), these two concepts are widely associated

(Voogt et al., 2015). For example, Grover and Pea (2013)

refer to programming as a key instrument for supporting the

cognitive tasks that CT also implies. Other researchers, in the

same line of thought, emphasize that programming provides a

proper environment for implementing CT related concepts and

practices (Brennan and Resnick, 2012; Basogain et al., 2018).

Finally, we compared factors CT, DR, and PPY with

students’ CS1 scores. One hundred and twenty-three

out of 135 students had all four types of test data.

We found significant positive associations in all three

cases [CT vs. CS1: rs(123) = 0.47, p < 0.001; DR

vs. CS1: rs(123) = 0.39, p < 0.001; PPY vs. CS1:

rs(123) = 0.48, p < 0.001]. These results provide further

confirmation of the above-detailed ones, namely that there is

an evident connection between the examined factors: learning

programming, computational thinking, and diagrammatic

reasoning. In a recent study, Gjelsten et al. (2021) also found a

strong positive association between studying programming at

high school and CS1 performance. In addition, these authors

emphasize the importance of taking math and science-heavy

courses in high school which is in line with prior STEM research

regarding the association between mathematics, science, and CS

(Uttal et al., 2013).

Additionally, we also compared female and male students’

test results. The means and the corresponding SD (in brackets)

were the following: CT [females: 7.35 (1.86); males: 7.51 (2.33)],

DR [females: 6.47 (2.26); males: 7.42 (2.29)], and CS1 [females:

8.21 (2.03); males: 8.00 (2.01)]. No significant differences were

found in the case of CT and CS1 scores but, interestingly, male

students performed significantly better during the DR test. This

result might harmonize with the gender gap phenomenon in

STEM education (Wang and Degol, 2017).

6. Limitations

One of the limitations of this study is that the two tests were

not aligned in the sense that the exact values of the scores could

be compared. Therefore, we could not consider the difference

between the averages of the test results, we only examined the

correlation between them. As a next step, we plan to develop
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aligned CT and DR tests which would allow for a more thorough

joint examination of these two competencies.

7. Conclusion

Computational thinking and diagrammatic reasoning can

be considered essential factors in every person’s life in our

digital era. With the help of these key abilities, students can

learn to think in a different way and they can also gain a

better experience in problem-solving and abstract reasoning.

The present research supports the fact that computational

thinking is about developing a full set of mental tools in

order to solve complex everyday problems (Wing, 2006)

and diagrammatic reasoning reflects fundamentally means of

thought, understanding, and reasoning (Bakker and Hoffmann,

2005).

This study provided further evidence that computational

thinking and diagrammatic reasoning are closely related

abilities. Our findings also confirmed that proper programming

education has the potential to contribute to students’

computational thinking. In addition, we found that all

three examined factors (CT, DR, and PPY) positively correlate

with students’ CS1 performance. These results emphasize the

importance of K-12 STEM education, since STEM disciplines

(if properly taught) provide an appropriate framework for

developing students’ computational thinking and diagrammatic

reasoning. Teachers are encouraged to purposefully contribute

to the development of these abilities.
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