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Simulating computerized 
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Introduction: Adaptive tests have advantages especially for children with 

special needs but are rarely used in practice. Therefore, we have investigated 

for our web-based progress-monitoring platform www.levumi.de of how to 

build adaptive tests based on existing item pools by computerized adaptive 

testing (CAT). In this study, we explore the requirements of item pools and 

necessary settings of computerized adaptive testing in special education and 

inclusion in order to achieve both short test length and good test accuracy.

Methods: We used existing items fitted to the Rasch model and data samples 

of progress monitoring tests (N  = 681) for mathematics and reading to 

create two item pools for adaptive testing. In a simulation study (N = 4,000), 

we compared different test lengths and test accuracies as stopping rules with 

regard to an inclusive use of adaptive testing.

Results: The results show an optimal maximum test length of 37 and 24 items, 

with a target standard error for accuracy of 0.5. These results correspond to 

an average execution time of about 3 min per test.

Discussion: The results are discussed in terms of the use of adaptive testing 

in inclusive settings and the applicability of such adaptive tests as screenings, 

focusing mainly on students with special needs in learning, language, or 

behavior.
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Introduction

Diagnostic assessments in special and inclusive 
education

Diagnostic assessments are a relevant part of the education for students with disabilities, 
which can support teachers in monitoring and assessing students’ learning progress in the 
classroom (Köller, 2005; Anderson et al., 2020). If used at the beginning of a school year or 
unit, they can provide teachers with the current learning status of the students. In this way, 
teachers can base their lessons and support on the students’ existing knowledge or skills to 
respond in a more individual way to their needs.
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All teachers use classroom-based assessments to measure 
learning levels and progress in order to make data-based support 
decisions (Guskey, 2003). Normally, teachers assess their students’ 
abilities themselves and their own judgement is the primary 
source of information on the learning development of their 
students. For this purpose, they use many different instruments, 
such as “oral questioning of students, observation, written work 
products, oral presentations, interviews, projects, portfolios, tests, 
and quizzes” (Shepard et al., 2007, S. 275) as well as standardized 
instruments normalized to the total population (Ferrara and 
DeMauro, 2006).

Four types of standardized diagnostic assessments (Hasbrouck 
and Tindal, 2006) can be  distinguished. Screenings are short 
assessments conducted at the beginning of the school year. In 
order to identify struggling students or students with a risk to 
struggle, screenings focus on skills that predict their future 
development of performance in skill areas such as reading. 
Diagnostic measures are “assessments conducted at any time 
during the school year when a more in-depth analysis of a 
student’s strengths and needs is necessary to guide instructional 
decisions” (Hasbrouck and Tindal, 2006). Tests of this type are 
also used to determine special needs of students and to decide if 
students should attend a special or a general school or class. 
Outcome measures are used to check whether students have met 
a class or school goal. Progress monitoring measures are short 
tests that document student learning through regular 
administration. The results are used to evaluate support or identify 
students who are not responding to support. Tests with a fixed 
time limit in which as many tasks as possible must be answered 
correctly are often used for this purpose (Jungjohann et al., 2018; 
Anderson et al., 2020). The use of screenings and short reliable 
tests such as progress monitoring measures have not been widely 
adopted by the general teaching profession, especially at primary 
level. Instead, such standardized instruments which take less time 
to be administered, are clearer to interpret and more comparable 
are used more frequently by special educators and 
school psychologists.

Regardless of the test type, most assessments in school are 
conducted as pencil-paper versions. In part, they are supplemented 
or replaced by digital testing which can perform complex 
assessments and evaluations automatically and quickly. Also, 
digital testing offers new ways of item presentation, test 
administration, test scoring, test reporting, and interpretation 
(Green, 1983; Neumann et al., 2019). In the last few years, it could 
more and more be  ascertained that digital testing is more 
comfortable and motivating for students than paper-pencil tests 
(Bayazit and Aşkar, 2012; Blumenthal and Blumenthal, 2020). As 
digital testing reduces additional work connected with test 
executions and allows for automated interpretation of test results, 
it can support teachers in carrying out their diagnostic tasks, e.g., 
in terms of data-based decision making (Blumenthal and 
Blumenthal, 2020). In any case, the development of digital or 
computerized testings is currently still in its infancy in schools.

In general, the accuracy of teachers’ assessments fits more 
roughly than exactly especially when teachers are insufficiently 

informed about the assessment material. In such cases, the 
correlations between teachers’ judgement and students’ 
performance have only a mean effect size of 0.61 (Südkamp et al., 
2012). When teachers use standardized instruments, the 
comparability and reliability of tests are better, but such tools are 
often not suitable for the use in special and inclusive settings. To 
measure reliably, standardized instruments must have a certain 
length. As children with special needs often work more slowly, 
they need more time to complete the tests. This puts children with 
attention difficulties, learning disabilities, or concentration 
problems at a disadvantage and also makes test handling more 
difficult, as everyday inclusive teaching is characterized by limited 
time and personnel resources (Pool Maag and Moser Opitz, 2014). 
Secondly, standardized and norm-oriented tests only measure 
children whose performance is in the middle range of the norm, 
i.e., in the 50th percentile, with high discriminatory power. For 
these children, the tests work well and produce meaningful and 
reliable results. Children with significantly lower or higher 
competences record these tests much more inaccurately and 
unreliably, as there are fewer items in a suitable difficulty for them 
(Baker, 2001, S. 85–113). The tests are therefore not suitable for 
this group of students and there is a risk of over- or 
under-challenging.

Short and accurate testing of students 
with special needs

Various approaches have been developed to improve this 
situation. Children with special needs in mental development or 
learning have limited concentration time. Modern diagnostic 
views thus focus on short tests and formative assessments, such as 
screenings and progress monitoring (Berkeley et al., 2009; Voß 
et al., 2014; Anderson et al., 2020). Within formative assessment, 
only a few important skills, such as reading competence or 
mathematical basics, are tested. These tests are repeated regularly 
and at short intervals in order to have a meaningful basis for 
educational decisions (Deno, 2016). Short tests with duration of a 
few minutes are easier to use in everyday teaching and do not put 
children with concentration difficulties at an additional 
disadvantage due to a long execution time. An administration 
time of 3–5 min has proved to be  optimal in order to collect 
enough items for good reliability and to still be  within the 
children’s concentrated processing time (Ebenbeck et  al., 
submitted).1 The exact length depends on various factors, as the 
tests need to be long enough to measure meaningfully, reliably, 
and comparably, but short enough to meet special educational 
objectives and be usable in the classroom (Schurig et al., 2021).

To make testing even more efficient, adaptive testing is 
another approach, which is more and more considered for 

1 Ebenbeck, N., Jungjohann, J., Mühling, A., Gebhardt, M. (submitted). 

Die Bearbeitungsgeschwindigkeit von Kindern mit Lernschwierigkeiten als 

Grundlage für die Testentwicklung von Lernverlaufsdiagnostik.
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assessments in schools. If the exact performance level of the 
student is unknown, adaptive tests have a clear advantage because 
they can test multiple domains in less time. Adaptive tests are tests 
tailored to the student’s circumstances. In a broader sense, the 
difficulty of the tasks or the tasks themselves is adapted to the 
student, the context, the time, or the purpose (Frey, 2019; Mislevy, 
2019). In a narrower sense, adaptive testing is a type of assessment 
in which the child is not asked all the questions, but only those 
that correspond to his or her performance level and are therefore 
the most meaningful ones. Adaptive testing is more precise and 
reliable than linear testing, can improve individual learning 
(Chang, 2015), and allows all students to reach and redefine their 
potential (Stocking, 1969; Green, 1983).

Analog adaptive testing does exist (Kubinger, 2004; Roid and 
Barram, 2004), but it has not been able to gain acceptance in 
practice over linear testing because analog handling of adaptive 
testing is much more laborious than linear testing. That is why 
adaptive tests are nowadays mainly computer- or tablet-based 
(Frey and Hartig, 2013). Digital implementation of adaptive 
testing relieves teachers in the test situation and allows them to 
better concentrate on the specific needs and problems of the 
students (Chang, 2015). In comparison to a paper pencil test, the 
efficiency (with a balanced relation between length and accuracy) 
can increase by up to 19% (Ludewig et al., 2022) and the time 
required to complete a digital adaptive test is reduced by 50% 
(Weiss, 1985), which is why pupils with concentration difficulties, 
intelligence deficits, or performance deficits can benefit 
particularly (Stone and Davey, 2011). The motivation of students 
with low expectations of success is increased through digital 
adaptive testing (Asseburg, 2011). Due to the absence of negative 
test administration effects, an increase in the performance and 
well-being of the students during the test can also be assumed 
(Otterpohl and Schwinger, 2015). Overall, digital adaptive testing 
can be expected to be shorter, more accurate, more reliable, more 
individualized and less error-prone.

Computerized adaptive testing

To enable digital adaptive testing, Computerized Adaptive 
Testing (CAT) based on Item-Response-Theory (IRT) is an often-
used procedure (Bulut and Cormier, 2018; Eggen, 2018).

Item-Response-Theory, much as the classical test theory 
(CTT), is a psychometric theory underlying the creation of items 
and the interpretation of test scores. The basic idea of IRT is the 
assumption that the probability of solving an item depends on a 
person’s ability in the domain being measured and the item’s 
difficulty. Thus, for each item and person, it can be determined 
with what probability the item will be solved by that person. A 
person with higher ability can be  assumed to have a higher 
probability of solving the item. There are different models of the 
IRT, which can vary in their dimensionality and the assumed item 
parameters. If, for example, the Rasch model (Rasch, 1960) is 
used, all items in the item pool measure the same latent 
characteristic and only differ in their difficulty. The Rasch model 

assumes that the items are unidimensional and therefore capture 
only one latent variable. Furthermore, the items are independent 
of each other.

This interplay of person ability, item difficulty, and resulting 
solution probability can be used as the basis for CAT. CAT is a 
type of test in which the student’s response behavior determines 
the difficulty of the items in the test run. If the answer is correct, 
a more difficult item is presented, if the answer is incorrect, an 
easier item is drawn next. In the course of the test, the item 
difficulty thus levels off at the student’s ability level (Meijer and 
Nering, 1999). CAT can also be constructed based on CTT or 
using machine learning.

Basic components of IRT-based CAT are a calibrated item 
pool, a starting rule for the selection of the first item, the item 
selection algorithm which selects the following items based on the 
estimation of the person’s ability, and a stopping rule or multiple 
stopping rules for the termination of the test run (Thompson and 
Weiss, 2009). A suitable item pool is an important basis for 
adaptive testing. A larger item pool is better for CAT, but it also 
must be well balanced and wide enough to be able to differentiate 
between different levels of performance. It therefore needs to 
comprise items of different levels, from very easy to very difficult 
(Magis and Raîche, 2012). Also, it must be adapted to the target 
group and the objectives of the test. For example, a test in the field 
of special education needs to have a larger number of easier items 
for weak students, to estimate their ability exactly (Gebhardt et al., 
2015). Since it is necessary to have separate information for each 
item, e.g., about its difficulty, the item pool must be calibrated 
using IRT (Meijer and Nering, 1999). Different starting rules are 
available to select the very first item of a test run. It is possible to, 
e.g., include previous information about the test taker, to choose 
an item whose difficulty is as close as possible to the person’s 
ability, or to choose randomly from several starting items. The 
order of the items is determined for each test run based on the 
students’ answers. The next item selected is always the one that can 
provide the most information about the person’s ability. To 
estimate the person’s ability after each response, Bayes estimators, 
weighted likelihood and maximum likelihood are the ones the 
most commonly used. To select the next item, various methods 
are available, with the maximum Fisher information, the Urry’s 
Rule, the maximum likelihood weighted information, and the 
maximum posterior weighted information being among the 
(most) common choices. When using a Rasch-calibrated item 
pool, the use of maximum Fisher information seems to be the 
most common and statistically optimal choice (e.g., Lange, 2008; 
Reckase, 2010; Eggen, 2013). Items are drawn until a stopping rule 
takes effect or until there are no items left in the pool. For example, 
CAT can stop after a certain length or with a certain accuracy of 
the capability estimation being reached.

So, when setting up the CAT algorithm, one needs to define 
the first item of testing via the starting rule, the estimation of 
person ability after each item answered and the stop rule for test 
finishing. For this purpose, various software (for an overview see 
International Association for Computerized Adaptive Testing, 
2022) as well as solutions for the open-source programming 
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language R (e.g., catR—Magis et al., 2018 or mirtCAT—Chalmers 
and Nordmo, 2021) can be used for the calculation, estimation, 
and simulation of CAT runs. Simulation studies are used to check 
the performance of the created CAT or to decide on different 
possibilities of the CAT algorithm. In this process, response 
patterns of simulated test persons with random or fixed person 
parameters are generated (Magis and Raîche, 2012). They can, for 
example, clarify what precision a CAT can achieve depending on 
its length (Ludewig et al., 2022) and how many items have to 
be presented. Often, different stopping rules are compared in, e.g., 
Monte Carlo simulations (Harrison, 2010; Wang et al., 2019), such 
as the influence of different maximum standard errors on the 
accuracy of the test (Tan et al., 2018) or the resulting accuracy 
with differently set test lengths (Yasuda et  al., 2021; Ludewig 
et al., 2022).

Research questions

Even though many studies have already dealt with the 
development of CATs in psychological and educational fields 
(Wise and Kingsburg, 2000; Verschoor and Straetmans, 2010; 
Oppl et al., 2017), there are hardly any findings on its applicability 
for a special needs or inclusive target group. In this study, the 
following questions are therefore investigated and addressed with 
regard to the applicability of CAT in special needs education 
in schools:

 1. What are the requirements for an item pool to be used for 
CAT in special education and inclusive fields? Can one use 
existing item pools from tests with time limits?

 2. What impact has the setting of different stopping rules on 
the performance of CAT in view of achieving a good 
balance between test length and test accuracy?

Materials and methods

Item pools

In order to obtain suitable item pools for adaptive testing for 
experimental purposes, items of several CBM tests of the 
web-based platform www.levumi.de (Jungjohann and Gebhardt, 
2019) are used. The tests’ target population is students between the 
ages of 8 and 12 at primary and special schools, especially such 
students with weak abilities in reading and mathematics and 
special needs in learning. The tests are offered as digital tests. They 
are designed for progress monitoring and measure the same skill 
on different difficulties so that stronger or weaker students can 
be measured repeatedly over time in a reliable manner. They are 
IRT-based, measure a skill range, and have a maximum working 
time of 5 min. The time limit is necessary, as students with special 
needs have limited concentration and working time and the 

computer administration needs maximum time. The items have a 
range of difficulties which are managed via difficulty-generating 
item characteristics and theoretical constructions (Anderson 
et al., 2022). The tests focus on necessary cultural techniques in 
reading and mathematics. Due to the digital implementation, the 
processing time of the students per item can be  evaluated 
(Ebenbeck et  al., submitted, see footnote 1). In this study, 
we worked with tests for addition and subtraction and sentence-
based reading comprehension in order to create two different CAT 
item pools (Table 1).

For a CAT item pool of addition and subtraction tasks 
(“ZasM-CAT”), data of a school study with 591 s and third 
grade students were used (Anderson et al., 2022). The tasks ask 
for additions and subtractions in the hundreds, and the 
students solve the items using mental arithmetic. The items’ 
difficulty is influenced by the arithmetic operation, a possible 
necessary transition to tens, the number of digits of the second 
term and the addition to the next ten. To create a CAT item 
pool for reading, we  combined a test on three different 
difficulty levels. Each level can be administered as a single test 
on our platform. As the reading tests each have more narrow 
difficulties, the combination of all three of them is necessary to 
provide a greater difficulty bandwidth. The difficulty levels test 
sentence-based reading comprehension through cloze 
sentences, whose gaps must be filled in each case with one of 
four given words. Item difficulty is varied by the letters used 
and by the complexity of the omitted structures and 
sentence connections.

Previous studies have demonstrated the psychometric quality 
of the tests used regarding item response theory. All items were 
constructed and calibrated according to the Rasch model (Rasch, 
1960). The reading items were tested in school studies with third 
to eighth grade students at regular and special schools (Jungjohann 
et al., 2018, 2021; Jungjohann, 2022). In a comparative study, the 
results correlated with the results of the ELFE II (r  = 0.75; 
Anderson et al., 2020). For the addition and subtraction items, a 
fit to the Linear Logistic Test Model (Fischer, 1972) could 
be  proven (Anderson et  al., 2022). Both item pools 
are unidimensional.

TABLE 1 Overview of used tests and number of items for the sentence 
reading CAT (SinnL-CAT) and addition and subtraction CAT (ZasM-
CAT).

Item pool Levumi tests Items Source

SinnL-CAT SinnL-N2 66 Jungjohann and 

Gebhardt (2019)

SinnL-N4 60 Jungjohann and 

Gebhardt (2019)

SinnL-N6 93 Jungjohann and 

Gebhardt (2021)

ZasM-CAT ZasM100-N3 80 Anderson and 

Gebhardt (2021)
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Samples

For the ZasM-CAT, the test results of 591 pupils (282 girls, 209 
boys) from 28 classes in second and third grades were obtained 
(Anderson et al., 2022). 328 pupils had no special needs, while 54 
pupils had special needs in behavior, learning, hearing, or 
language. For each child, the first measuring point of the Levumi 
test ZasM100-N3 was included in the analysis (N  = 591). The 
mean sum scores of students with and without special needs did 
not differ significantly [t(70.727) = 2.03, p  < 0.05]. To generate 
samples for the reading tests, a different procedure had to be used. 
Because items from three difficulty levels were treated as a 
common item pool for sentence reading, data had to be available 
from pupils who completed all items in the item pool to estimate 
the necessary item parameters. The sample was composed of data 
on test performances of www.levumi.de, so, for the SinnL-CAT, 
the test results of 90 pupils with and without special needs (37 
girls, 49 boys, and four not specified) from 21 classes were 
obtained. Due to missing values, it was not possible to make a 
valid statement regarding the grade and the exact number of 
pupils with special needs. For each child, the first measuring point 
of each test was included in the analysis. All pupils took the 
reading tests at intervals of no longer than 3 months. In both 
reading and mathematics, pupils with and without special needs 
took the same items.

IRT analysis

To check which IRT models the SinnL-CAT and ZasM-CAT 
item pools best correspond to, depending on the IRT model, the 
required item parameters are calculated for each item within a 
value range between -∞ and + ∞ (Partchev, 2004; Yang and Kao, 
2014) and the remaining item parameters are set. In addition to 
the difficulty of the item (bi), the importance of the item for ability 
estimation (ai), the probability of a correct answer despite too low 
person ability (ci), and the probability of a wrong answer despite 
too high person ability (di) are parameters characterizing each 
item in an IRT model (Magis et al., 2017; Battauz, 2020). The R 
package TAM is used to check whether the Rasch model (Rasch, 
1960) or 2PL model fits the CAT item pools best. Due to the 
sample size, the 2PL model is only calculated for the ZasM item 
pool. As each test was created with the assumptions of the Rasch 
model, a fit to it is expected.

The items were processed with a time limit, which is why 
some children did not answer the items towards the end of the test 
(Brandt and Moosbrugger, 2020). For adaptive testing, an 
evaluation must be made as power tests. Therefore, unanswered 
items are counted as missing values in the Rasch estimates 
(Hohensinn and Kubinger, 2011), while right and wrong answers 
are counted as right and wrong. The analyzed data matrices can 
be seen in the added osf-project. This procedure results in many 
missing values in the data set. Therefore, the R package pairwise 
(Heine, 2021) is used which calculates the item parameters in the 

Rasch model using the “pairwise item comparison” method 
(Rasch, 1960; Choppin, 1985). With this method, the item 
parameters can be determined stably even with comparatively 
high proportions of missing values (Heine and Tarnai, 2015). The 
global model fit of the items to the Rasch model is checked with 
an Andersen Likelihood-Ratio-Test (Andersen, 1973).

CAT simulations

The R package catR (Magis et  al., 2018) is used for CAT 
simulations. The estimated bi values of the item pools serve as a 
basis, supplemented by further item parameters fixed in the Rasch 
model. bi values can theoretically vary between -∞ and + ∞ in the 
Rasch model, but lie mostly between −3 and + 3, with negative 
values indicating easy items and positive values indicating 
hard items.

The CAT algorithm of catR follows four steps. After the Initial 
Step where the first item is selected, the following Test Step selects 
items based on student answers and estimates the student’s ability 
after each answer. If the given stopping rule is satisfied, the item 
administration is ended in the Stopping Step. In the Final Step, the 
final ability is estimated. We  configurated our CATs with the 
following settings: We chose the first item to be one of average 
difficulty of all items (bi = 0.000), which is the common way to 
proceed (Weiss, 1985; Magis and Raîche, 2012), since an item with 
average difficulty is most meaningful at the beginning. The first 
item is pre-set to ensure the same starting item for each test run. 
For ability estimation in the Test Step and Final Step, a 
recommended procedure of Magis et  al. (2017) to avoid the 
problem of infinite estimators for fully correctly or incorrectly 
answered test items is used. That way, the subsequent item 
selection within a test run is performed using Fisher information, 
which is also the most commonly used method of item selection 
(Barrada et al., 2009) in combination with the Bayesian modal 
estimator (Birnbaum, 1969) and normal distributed prior 
distribution. The final ability is estimated using maximum  
likelihood.

Different stopping rules can be adopted as Stopping Step. A 
distinction is made between fixed-length and variable-length 
stopping rules, which have different advantages and disadvantages. 
If the test is stopped after a fixed length, i.e., after a certain number 
of items, it may not test accurately enough. If a variable-length test 
is stopped when certain accuracy is reached, it may take too long 
to complete the test. In the school context, fixed-length tests are 
preferred, as this means that each pupil completes the same 
number of items, the duration of the test is more comparable and 
the test as a whole can thus be more easily integrated into everyday 
teaching (Way, 2006).

The catR package allows a combination of several stopping 
criteria. The aim is to combine accuracy and a length rule in order 
to be able to use all the advantages. The resulting CATs should 
have a fixed length for better handling. CAT is supplemented by 
another accuracy stopping rule. Therefore, the performance of 
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CATs with different variable-length stopping rules is first tested in 
simulations. catR uses the standard error (SE) stopping rule which 
ends the test when a specific SE of the person’s ability estimate has 
been reached (Dodd et al., 1989). An SE between 0.3 and 0.5 is 
recommended, with SE = 0.3 testing the most accurate, but SE = 0.5 
being still acceptable (Forkmann et al., 2013). Based on this, the 
necessary length of the CATs for an accurate test is determined 
and checked in a further simulation.

Table 2 gives an overview of all the simulations of this study. To 
determine the possible precision of a CAT, 1,000 test runs of 
individuals each with normally distributed θ-values based on the 
θ-value range of our students are simulated three times for different 
standard errors as stopping criteria (SE = 0.3, SE = 0.4, SE = 0.5). The 
change in RSME and bias values as well as the correlation between 
estimated and actual θ-values is compared. The most appropriate 
stopping rule is selected to serve as the basis for another simulation 
of 1,000 individuals whose length and standard error are fixed as 
stopping criteria. This procedure is performed for the SinnL-CAT 
and the ZasM-CAT, respectively. CAT conditions are compared 
based on RMSE, Bias values, length, duration, and the correlation 
between estimated and true theta values.

Results

Test scaling

For the Rasch analysis, 45 items of the SinnL-CAT item pool 
had to be excluded because no answers were available for them. 
The 45 items were all taken from the SinnL-N6 test. Thus 66 items 
from SinnL-N2, 60 items from SinnL-N4 and 48 items from 
SinnL-N6 were included. In the ZasM-CAT item pool, 13 items 
were excluded because of missing answers, leading to 67 
remaining items in the item pool.

Both SinnL-CAT and ZasM-CAT fit to the Rasch model 
(Table  3) significantly better than to the 2PL model [F(2, 
173) = 334.26, p < 0.001 and F(2, 50) = 113.71, p < 0.001] and the 
3PL model [F(2, 174) = 329.14, p < 0.001 and F(2, 51) = 114.79, 
p < 0.001]. In addition, the Akakike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC) were used for 
selecting the most suitable model. Both criteria have advantages 
and disadvantages. The AIC tends to overfitting and is more 
accurate with larger samples. The BIC tends to underfitting and 
preferring a simpler model. Therefore, both criteria are considered 
to assess the model fit. A lower value indicates a better model fit. 
The Rasch model is chosen based on the lower BIC values for both 
item pools.

The ZasM-CAT item pool covers a larger range of the logit 
scale than the SinnL-CAT item pool (Figure 1), i.e., the ZasM-
CATs item difficulties are wider (Mbi = 0, SDbi = 1.07) than the 
SinnL-CATs (Mbi = 0, SDbi = 0.37). Both item pools have good item 
fit statistics (SEL: M infit = 0.84, SD infit = 0.36; M outfit = 0.81, SD 
outfit = 1.5; ZASM: M infit = 0.84, SD infit = 0.28, M outfit = 0.80, 
SD outfit = 0.56). For both item pools, a global model fit to the 

Rasch model is achieved, as the Andersen Test is not significant. 
Both item pools cover a relatively narrow range of competencies 
because they were constructed and administered as progress 
monitoring tests. Such items must have a difficulty that is as 
comparable as possible, since processing speed is added as an 
additional variable of performance.

For SinnL, the mean θ is 1.588 with a SD of 1.546. For ZasM, 
the mean θ is 0.594 with a SD of 1.637. From this follows, that the 
persons taking SinnL showed in average higher abilities than the 
persons taking ZasM. This circumstance is not relevant for the 
simulations themselves, but the final estimated θ value ranges have 
to be estimated with this background.

CAT simulations

The simulation of different stopping rules provides 
information about the achievable correlations between estimated 
and actual θ-, RMSE- and bias-values (Table  4). A shorter 
implementation with fewer items is shown with increasing SE, 
which is correspondingly shorter in its implementation time. The 
correlation between estimated θ- and actual θ- as well as RMSE 
and bias values decrease with increasing SE but are still considered 
high even at SE = 0.5.

Due to the results, the implementation time, the high 
correlation and the acceptable RMSE and bias values, SE = 0.5 was 
chosen as the stopping rule. The SinnL-CAT thus reaches an 
average length of approximately 18 items, which corresponds to a 
test time of 3 min with an average processing time of 10 s per item. 
The ZasM-CAT reaches a length of approximately 15 items, which 
also corresponds to a test time of 3 min with an average processing 
time of 12 s per item.

For a further simulation, an additional stopping rule should 
be added, as, for a more practical usability, the test run has to stop 
at a given point. The simulation of 1,000 examinees is done by 

TABLE 2 Simulation rounds for each SinnL-CAT and ZasM-CAT for 
each 1,000 replications.

Round Runs Accuracy Length Stopping 
rule

1 1,000 SE = 0.3 Variable Accuracy

2 1,000 SE = 0.4 Variable Accuracy

3 1,000 SE = 0.5 Variable Accuracy

4 1,000 Best Option Fixed Accuracy & 

Length

TABLE 3 AIC and BIC model fit for scaling the SinnL and ZasM items 
as Rasch, 2PL and 3PL model.

Rasch 2PL

AIC BIC AIC BIC

SinnL 5675.31 6305.04 – –

ZasM 10308.45 10536.31 10294.74 10741.68
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catR in 10 steps, with simulating 100 examinees each. In these 10 
steps, 10 mean lengths of the simulation rounds are calculated by 
catR. They range for SinnL-CAT between a mean length of 13 and 
37 items and for ZasM-CAT between a mean length of 13 and 24. 
In order to ensure that also examinees who need more items 
obtain an accurate estimate of their ability, the upper mean values 
of 37 items for SinnL-CAT and 24 for ZasM-CAT are set as the 
maximum length. The test ends when one of the two stop criteria 
is met (Table 5).

95% of the simulations of both CATs were stopped at less than 
the maximum number of items specified, so the SE criterion was 
applied here (Figures  2, 3) so that the measurement may 
be assumed to be accurate. Instead, the remaining simulations were 
stopped because of the maximum length reached. The accuracy of 
the tests is particularly strong in the middle ranges for θ-values 
between −2.5 and + 2.5, while values smaller than −2.5 or higher 
than 2.5 cannot be tested well enough. The items do not cover this 
range. The test is therefore too difficult or not appropriate for a 
person’s ability <−2.5 or > 2.5 to test accurately enough.

Discussion

Summary and discussion

Constructing a new adaptive test from Levumi’s inclusive time 
limit tests for progress monitoring is generally reasonable and 
possible according to the analyses. The item pools meet the 
requirements of the IRT and therefore computerized adaptive 
testing can be applied. Such an adaptive test can shorten the test 
time with the same reliability from 5 min to less than 3 min, which 

can be seen as a prerequisite for fair and inclusive testing suitable 
for everyday teaching and progress monitoring as well as for the 
usage of a short class-based screening.

The two simulated CATs for reading and mathematics are 
more efficient than the linear implementation of the items. The 
tests adopted from www.levumi.de measure a narrow range of 
competencies in reading and have a completion time of 5 min, as, 
after this time, most students with and without disabilities can 
be assumed to have completed enough items (Ebenbeck et al., 
submitted, see footnote 1; Schurig et al., 2021). We analyzed the 
case of combining three of these tests to form a wider test. The use 
of adaptive tests has the advantage that the total processing time 
can be  reduced again to average 2.9 min. The duration of the 
adapted maths test for addition and subtraction could only 
be reduced from 5 to 2.9 min, which means to nearly half the 
duration. When the test time limit is shorter than 5 min, it may 
well be that the reduction of the test time is less than 2.9 min.

Also, the simulation studies showed a greater accuracy of 
ability estimation even with short test runs. The length of the 

FIGURE 1

Wright map (Lunz, 2010) of the item pools (x axis stating the progress of items, test run with each dot being one item, and y axis stating the item 
difficulty. The histogram displays the person parameters).

TABLE 4 Results of CAT simulations of different standard errors (SE = 0.3, SE = 0.4, SE = 0.5) with 1,000 simulees each and the resulting test lengths in 
items and minutes, the correlation between estimated θ- and actual θ-values, the mean and standard deviation of the estimated θ-values as well as 
RMSE- and bias values.

Test SE M length Dur Cor Theta M (SD) RMSE Bias

SinnL-CAT 0.3 83.6 13.9 min 0.968 1.517 (1.566) 0.404 −0.046

SinnL-CAT 0.4 42.4 7.1 min 0.946 1.494 (1.555) 0.526 −0.069

SinnL-CAT 0.5 18.3 3.1 min 0.919 1.502 (1.633) 0.657 −0.062

ZasM-CAT 0.3 50.6 10.1 min 0.973 0.584 (1.700) 0.397 0.010

ZasM-CAT 0.4 28.8 5.8 min 0.964 0.527 (1.701) 0.460 −0.048

ZasM-CAT 0.5 15 3 min 0.941 0.560 (1.748) 0.594 −0.015

TABLE 5 Results of CAT simulations of fixed length and fixed SE 
stopping rules with 1,000 test executions each and the resulting test 
lengths in items and minutes, the correlation between estimated θ- 
and actual θ- as well as RMSE- and bias values.

Test SE M 
length Dur Cor theta M 

(SD) RMSE Bias

SinnL-

CAT

0.5 17.4 2.9 min 0.916 1.516 (1.562) 0.652 −0.048

ZasM-

CAT

0.5 14.4 2.9 min 0.943 0.545 (1.752) 0.587 −0.030
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FIGURE 3

Test length and accuracy of SinnL-CAT in a simulation of 1,000 test executions with stopping rules SE = 0.5 and length = 37 items.

adaptive test is determined by the maximum number of items 
that can be processed during one run. This maximum number 
was set to 24 or 37 items in our CAT simulations. This length is 
comparable to the assumed length of similar simulations 
(Ludewig et al., 2022) that have comparably good standard error 
values. However, 95% of the simulated persons achieve the 
targeted accuracy with fewer items, raising the expectation for 
an even shorter implementation time to ensure accurate ability 
estimation as well. The accuracy of the ability estimation 
correlates highly with the actual people’s abilities, even with the 
short implementation time. In comparable simulations (Ludewig 
et al., 2022), a reliability of 0.91 could be demonstrated. Adaptive 
tests thus estimate students’ ability more accurately than the 
teacher (Südkamp et al., 2012). This advantage can be fed back 
to teachers through a qualitative evaluation of the results based 
on error patterns and characteristics of incorrectly answered 
items. It would be  conceivable to sum up the solved and 
unsolved items from the different item groups and 
sub-dimensions. Also, the use of DGICs in the maths item pool 
and the corresponding student results could be analyzed in more 
detail by fitting a multidimensional Rasch model and run 
simulations within a multidimensional framework. That way, 
teachers could detect specific errors more easily to provide better 

fitting support. If the underlying rules of the tests are 
communicated as accurately as possible, they can simplify the 
derivation of support and contribute to its precision and 
individuality and thus provide a more precise, accurate and 
reliable basis for support planning.

Shortening tests while maintaining accuracy is particularly 
relevant for children with special needs. The adaptive drawing 
procedure enables to propose both suitably difficult tasks and a 
short testing time to students, which minimizes the duration of 
concentration required, and potentially reduces the risk of under- 
and over-testing and subsequent frustration and loss of 
motivation. In addition, matching items are presented to students 
even if the teacher cannot yet sufficiently assess students’ abilities. 
From this, we deduce that adaptive testing can be a good approach 
for screening procedures that are used for ability assessment at the 
beginning of the school year.

In order to function as a screening, the current item pool is 
suitable from a technical point of view. However, from a 
psychological point of view, expanding the item pool makes sense 
to ensure tailored testing also for students with low abilities. The 
item pools of SinnL-CAT and ZasM-CAT were created as tests 
with a time limit on the first hand. They measure only a narrow 
range of competencies. Anyway, their difficulty is not as wide as it 

FIGURE 2

Test length and accuracy of ZasM-CAT in a simulation of 1,000 test executions with stopping rules SE = 0.5 and length = 24 items.
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would be recommended for adaptive testing (Magis and Raîche, 
2012; Gebhardt et al., 2015). Accordingly, they measure the low 
and high ability range only inadequately. In order to be able to use 
existing item pools for adaptive testing, it is (therefore) necessary 
to precisely control their width. In this case, the SinnL-CAT item 
pool would have to be supplemented with additional items. This 
could be  achieved by adding more sentence-based reading 
comprehension tests to the item pool. Since the target group of the 
test is children with learning disabilities or weak reading skills, the 
focus should be on easier items to be able to better differentiate in 
this ability area. If the item pool is wide enough, a resulting 
adaptive test can cover an entire competence area. That way, 
competencies of primary school students in general schools, 
special schools, and inclusive schools can be accurately tested and 
differentiated. The strengths of the instrument can (therefore) 
be seen especially in classes with a heterogeneous performance 
profile, as the same test can be used for all pupils. From a special 
educational perspective, when expanding the item pool, care must 
be  taken nonetheless to ensure that only one type of task 
instruction is used. For students with special needs, different 
instructions that are required alternately present a particular 
challenge. Therefore, easier items that are added must have the 
same task instruction and must not vary by their difficulty.

Limitations and outlook

The main limitations of our study result from the sample 
generated from the data of the platform www.levumi.de. Especially 
in the sample of reading data, the data show a high number of 
missing values, which is why the sample cannot be checked in this 
respect. Furthermore, the sample of the reading tests is not 
uniform, as the students attend different classes and schools, with 
different test administrators holding the tests. However, since the 
data of the reading tests were collected in real everyday school life 
and thus reflects a realistic performance profile of the test users, it 
was possible to include sufficient data in the analysis despite the 
lack of data without having to conduct the tests in schools. Also 
the simulations may show different results when they are 
conducted based on a larger sample size than 90. This question 
should be addressed in a follow-up study to compare the CAT 
performance based on different sample sizes.

Another limitation results from the technical possibilities of 
the simulation. Especially in schools, adaptive testing requires 
educational guidance, supervision, and evaluation. At the 
moment, the analyzed adaptive tests in this study cannot 
automatically stop after less than 24 or 35 items if the ability is too 

low. It is therefore the pedagogical task of the teacher to supervise 
the class during the test and, if necessary, to manually stop the 
test early if the person’s ability is obviously too low (e.g., if there 
is a lack of mechanical reading competence). For an 
implementation of adaptive tests on www.levumi.de, an 
additional early drop-out criterion should be considered for such 
cases in order to achieve a fully student-centered testing, to 
relieve the teacher and to avoid overtaxing the students by 
inappropriate items.
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