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Item parameter estimations for
multidimensional graded
response model under complex
structures
Olasunkanmi James Kehinde*, Shenghai Dai and
Brian French
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Item parameter recovery in the compensatory multidimensional graded

response model (MGRM) under simple and complex structures with rating-

scale item response data was examined. A simulation study investigated

factors that influence the precision of item parameter estimation, including

sample size, intercorrelation between the dimensions, and test lengths for

the MGRM under balanced and unbalanced complex structures, as well as

the simple structure. The item responses for the MGRM were generated and

analyzed across conditions using the R package mirt. The bias and root mean

square error (RMSE) was used to evaluate item parameter recovery. Results

suggested that item parameter estimation was more accurate in balanced

complex structure conditions than in unbalanced or simple structures,

especially when the test length was 40 items, and the sample size was

large. Further, the mean bias and RMSE in the recovery of item threshold

estimates along the two dimensions for both balanced and unbalanced

complex structures were consistent across all conditions.
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Introduction

The item response theory (IRT) framework has been used in conjunction with
polytomous probabilistic models, such as the graded response model (GRM), to describe
the interaction between individuals and items for a wide range of psychological,
educational, and medical outcomes measured with rating scales (Samejima, 1969; Bolt
and Lall, 2003; Scherbaum et al., 2006). A foundational assumption in the polytomous
IRT models is unidimensionality. In practice, many constructs and corresponding
measures are multidimensional, such as the Resilience Scale and Cushing Syndrome
Scale (Depaoli et al., 2018; Hunsu et al., 2022). As a result, the unidimensionality
assumption of IRT models is violated, and consequently, multidimensional IRT models
such as the multidimensional GRM (MGRM) are proposed to ensure a deeper
grasp of how multiple constructs in the instrument are measured by the item sets.

Frontiers in Education 01 frontiersin.org

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2022.947581
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2022.947581&domain=pdf&date_stamp=2022-09-20
https://doi.org/10.3389/feduc.2022.947581
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2022.947581/full
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-947581 September 13, 2022 Time: 20:39 # 2

Kehinde et al. 10.3389/feduc.2022.947581

The application of MGRM has occurred in both education
(Wang et al., 2004; Friyatmi, 2020) and health-related contexts
(e.g., mental health; DeMars, 2013; Nouri et al., 2021). Using
GRM (or other multidimensional polytomous IRT models) to
describe the interaction of items and examinees necessitates
the specification of either a simple or complex structure.
Many studies have operationalized the definitions of simple
and complex structures (DeMars, 2013; Wetzel and Hell, 2014;
Jiang et al., 2016). Wetzel and Hell (2014), for example,
used these two structures to investigate which structure best
described Holland’s model for vocational interest inventories.
In their study, the simple structure was defined as a between-
multidimensional model in which several latent traits of the
vocational interest scale, as well as the correlation between
dimensions, are modeled simultaneously, and each item only
measures one latent trait at a time. The complex structure, on
the other hand, was referred to as the within-multidimensional
model because items were allowed to measure multiple latent
traits at the same time. Jiang et al. (2016) and Svetina et al.
(2017) operationalized these two structures (i.e., simple and
complex) by the number of non-zero discrimination parameters
on each dimension.

Despite its capabilities in addressing multidimensionality
under both simple and complex structures, the performance of
MGRM has not been fully explored and evaluated, especially
under complex structure. Only very few studies could be
identified that examined the implementation of MGRM
across factors, such as sample size (N), test length (L), and
intercorrelations between the dimensions (r). All of the studies,
however, were conducted assuming a simple structure. Ferrando
and Chico’s study (2001), for example, found that using
MGRM in the data analysis (N < 500) was insufficient and
computationally demanding for test lengths of 20 items. For
this reason, the authors used the linear factor analysis (FA)
model for their analysis instead of MGRM. As a result of
this limitation, Forero and Maydeu-Olivares (2009) and Jiang
et al. (2016) conducted simulation studies that investigated the
minimum sample size in conjunction with other manipulative
factors required in the implementation of MGRM, particularly
under a simple structure. In both studies, the authors used
various sample sizes (200 ≤ N ≤ 2, 000), test lengths
(J = 9, . . . , 240), and intercorrelations between dimensions
(r = 0.2, . . . , 0.8) in their simulations to investigate the
performance of MGRM under a simple structure. A more in-
depth review of these studies appears below.

While many of the instruments assume a complex structure
(e.g., English language proficiency [ELP] assessment; Wolf
and Butler, 2017), the performance of MGRM under such a
dimensional structure is yet to be explored. Items are frequently
associated with more than one latent feature in practice, rather
than assuming a simple structure. No simulation studies that we
are aware of have employed the MGRM to evaluate the potential
variables that may promote better accuracy of item parameter

estimation under different data structure complexities. In light
of this, our purpose with this article is to extend the current
literature by examining the performance of MGRM under
both simple and complex structures in the presence of several
manipulated factors, including sample size, intercorrelation
between dimensions, test lengths, and dimensional structure
(level of complexities). This article is structured as follows:
first, we provide context and literature on MGRM; second,
the design and analysis of simulations are described; third,
the results are summarized and discussed; and fourth, the
conclusion and recommendation for the implementation of
MGRM are presented.

Background and literature

The multidimensional graded response
model

The MGRM is an extended version of the conventional
GRM extensively as a statistical choice to investigate the
correlation among the latent traits in an instrument. Below is
the two-parameter logistic form of the MGRM (De Ayala, 1994;
Jiang et al., 2016; Wang et al., 2018). See Jiang et al. (2016) and
Wang et al. (2018) for more details about Equation 2.

P∗jk(θ) =
exp

[∑
m ajm(θm − bjk)

]
1 + exp

[
−D

∑
m ajm(θm − bjk)

] , (1)

Simplifying, Equation 1 becomes

P∗jk(θ) =
1

1 + exp
[
−D

∑
m ajm(θm − bjk)

] , (2)

Where P∗jk(θ) is the probability that observed scores for
item j and examinee i given the ability or latent trait θ to obtain
a score greater than or equal to category k, D = 1 or 1.7,
ajm is the vector of item discrimination parameters for item
j on each latent trait m, bjk is the vector of item difficulty
parameters for each category k within item j, θm is the vector
of the latent traits on mth dimension. However, the number
of latent traits and category responses influence the dynamical
feature of MGRM to GRM, and other multidimensional IRT
models (e.g., multidimensional two-parameter logistic model;
De Ayala, 1994; Embretson and Reise, 2000; Penfield, 2014; Dai
et al., 2021).

The manner in which the latent traits interact and their
respective denominators can be categorized into compensatory
and non-compensatory MGRMs. In the non-compensatory
model, the probability of an examinee endorsing a certain
item response category requires mastery of all required latent
traits, and the denominator is the product of the corresponding
probability of each dimension. Whereas, in the compensatory
model, the probability of endorsing a specific category on an
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item is non-zero if the examinee is proficient in any of the
traits measured by the item (i.e., high ability compensates
for lower ability), and the denominator is the exponential
sum of the probability of each dimension. In applied settings,
the appropriate use of these models varies. Due to its
computational flexibility, we focused on the compensatory
MGRM in this study.

Application of multidimensional
graded response model

We identified 60 articles across various contexts that
applied MGRM with empirical data using databases (e.g.,
Google Scholar and Worldwide Science). Among the identified
articles, we noted that MGRM has been gaining attention from
researchers in health (e.g., Walton et al., 2008; Depaoli et al.,
2018; Haem and Doostfatemeh, 2020) and education (e.g.,
DeMars, 2013; Wang et al., 2015; Friyatmi, 2020). These studies
used MGRM because it improved measurement precision,
especially when the correlation between latent traits was taken
into account, and the test lengths and sample sizes were
modest. For instance, Depaoli et al. (2018) utilized MGRM
in health research to analyze the Cushing Quality of Life
Questionnaire (CushingQoL) scale that contained 12 five-point
rating scale items. The Cushing syndrome instrument consisted
of items that were developed to measure two subscales, namely,
physical and psychological factors. The authors investigated
the accuracy of item parameter estimation and model fit of
MGRM with a relatively small sample size (N = 397) as
compared to the unidimensional IRT models, such as GRM.
Their findings showed that MGRM fit the data better than the
unidimensional model based on the nested log-likelihood test.
Based on the model fit results, further analysis was conducted
to determine the accuracy of item parameter estimates with
MGRM. Furthermore, all items in the development of the
CushingQoL scale were well discriminative between low and
high levels of Cushing syndrome patients, and the item difficulty
parameter estimates indicated that the patient with a low QoL
level tended to agree more with the items.

Another example is Haem and Doostfatemeh (2020) in
which the authors applied MGRM to analyze data from a general
health questionnaire (GHQ) that consisted of 12 items with a
4-point rating scale. Their purpose was to investigate which
of the 12 items was more informative. They found that one
item (i.e., feeling unhappy and depressed) measuring the social
dysfunction dimension was more informative than other items.
In addition, the authors’ finding on the MGRM model fit was
consistent with Depaoli et al. (2018), indicating that MGRM
with two dimensions yielded an adequate fit according to all
model fit indices. These examples continue in the educational
domain, where the MGRM showed better model fit compared
to a unidimensional model with data from the Trend in
International Mathematics and Science Study (TIMSS) science

assessment (DeMars, 2013), and better model fit with data
from the 21-item Teacher Observation of Classroom Adaptation
(TOCA) scale consisting of three subscales—concentration
problems, disruptive behavior, and prosocial behavior (Wang
et al., 2015). The evidence supports the MGRM in many
applications and across domains.

Literature on the performance of
multidimensional graded response
model

In the last decade, studies (Reckase, 2009; Finch, 2010;
Finch, 2011; Svetina, 2013; Svetina et al., 2017) have investigated
the performance of multidimensional polytomous IRT models.
In this section, we synthesize the details of these studies and
discuss their findings.

According to the concerns raised by Ferrando and Chico
(2001), using MGRM under the simple structure to analyze
data from a 20-item instrument with a sample size of 500
might influence the accuracy of the item parameter estimations.
Based on this, Forero and Maydeu-Olivares (2009) conducted
a simulated study that investigated the performance of MGRM
across 324 conditions with a variety of manipulated factors
(e.g., sample size [200, 500, 2,000], test length [9, 21, and
42 items], and factor loadings [0.4, 0.6, 08]). When using
the unweighted least square (ULS) estimation, the authors
discovered that a sample size of 500 and an instrument of
40 items would be appropriate to provide relatively accurate
item parameter estimates. The use of the weight least square
(WLS) estimation under a small sample size of 500 yielded
poor standard errors, especially when indicators had extreme
item parameters. The authors’ assumption that the three
latent traits were uncorrelated, however, posed a limitation
to the study. Following this limitation, some studies (Jiang
et al., 2016; Wang et al., 2016, 2018; Su et al., 2021) further
investigated the impact of different levels of correlation and
other manipulative variables (e.g., sample size and test lengths)
on the performance of MGRM.

In Jiang et al. (2016), the authors were motivated by the
constraints of prior studies to investigate the performance of
a three-dimensional simple structure MGRM over five sample
sizes (N = 500; 1,000; 1,500; and 2,000), three test lengths (L = 30,
90, and 240), and intercorrelation between the dimensions was
specified at r = 0.2, 0.5, and 0.7, respectively. With a test length of
90 or less, the results showed that a sample size of 500 produced
reliable parameter estimates. For better parameter estimates, a
higher sample size of 1,000 was necessary when the test items
were increased to 240. For further work on the performance of
MGRM, Wang et al. (2016) conducted a simulation study that
estimated the classification accuracy and consistency indices
using MGRM across several manipulated variables (i.e., sample
size [1,000, 3,000] and levels of correlation [0.00, 0.50, 0.80]).
Results of the study revealed that the value of accuracy indices
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(e.g., bias, absolute bias, and RMSE) increased as the sample
size and the correlation between latent traits increased. Another
study is a simulation study on the performance of the S-
χ2 statistic with MGRM conducted by Su et al. (2021). In
this study, the authors utilized the Monte Carlo simulation
procedure to evaluate the performance of S- χ2 for detecting
item misfits using MGRM across manipulated factors (e.g.,
sample size [500, 2,000], test length [30, 60, and 90 items],
and correlation between dimensions [0.5, 0.7]). In addition, the
authors randomly selected 10% of the items as misfitting items
in the simulation study. Results of the study regarding false
positive rates (FPRs) and true positive rates (TPRs) suggested
that increasing the sample size to 2,000 inflated the FPRs from 13
to 14% for the test length of 90 items at α = 0.05, and remained
reasonably close to the nominal rates for 30 and 60 items with a
sample size of 500, whereas TPR was found higher with 30 and
90 items for a sample size of 2,000.

To further investigate the performance of MGRM, some
simulation studies (Kuo and Sheng, 2016; Wang et al., 2018)
have incorporated the presence of non-normality of latent
traits and several parameter estimation methods via the
use of software in their simulation studies. For example,
Kuo and Sheng (2016) investigated the performance of
MGRM under different estimation methods (e.g., marginal
maximum likelihood or MML, Bayesian algorithms) and the
use of software (e.g., IRTPRO, BMIRT, and MATLAB). The
simulation study was conducted across several manipulated
variables (i.e., sample size [500, 1,000], test length [20, 40],
inter-trait correlation [0.2, 0.5, 0.8], estimation methods
[Bock-Aitkin expectation-maximum algorithm, adaptive
quadrature approach], Gibbs, Metropolis-Hastings or MH,
Hastings-within-Gibbs, blocked Metropolis, Metropolis-
Hastings Robbins-Monro, and software [IRTPRO, BMIRT, and
MATLAB]). Results of the study revealed that MH with the
three procedures implemented in BMIRT (e.g., TRUE, AIC,
or COR) provided better estimates of item discrimination and
threshold parameters than other procedures with a sample
size of 500, and a test length of 20. However, the procedures
implemented in BMIRT resulted in a better estimate, especially
with a sample size of 1,000, a test length of 20, and an inter-trait
correlation of 0.2. Another study is Wang et al. (2018), where
the performance of MGRM in the presence of non-normality
of latent traits across several manipulated variables (i.e., sample
size [500, 2,000], test length [30, 90], factor loadings [0.5, 0.7],
and the number of non-normal dimensions [0, 1, 2, 3]) was
investigated. One interesting finding was that skewness on one
dimension did not affect the recovery parameter accuracy of the
rest of the dimensions, regardless of the level of correlation. The
full-information maximum likelihood (FIML) produced more
accurate estimates compared to other estimation methods.

In the medical domain, application studies with MGRM
have addressed sample size issues (Wang et al., 2018; Haem
and Doostfatemeh, 2020). These studies found that the MGRM

model provided reliable estimates with sample sizes that are
frequently considered small in health research and that the
recovery of parameters in one dimension was unaffected
by skewness in other dimensions, regardless of the level of
correlations among dimensions.

The abovementioned studies investigated the performance
of MGRM across different manipulative factors (e.g., sample
size, test length, and intercorrelations) but only with a simple
structure. To extend the existing literature, the current study
investigated the performance of MGRM under both simple and
complex structures across sample size, intercorrelation between
dimensions, test lengths, and the complexity of dimensional
structure (simple, balanced, and unbalanced). The authors of
the current study hypothesized that MGRM with a complex
structure would yield a better estimate than a simple structure.
Furthermore, the authors hypothesized that a higher level
of correlation among dimensions under a complex structure
would substantially impact the accuracy of the recovery of
parameter estimates than when it was modeled using a simple
structure, and that the parameter recovery would be better in
a balanced structure than unbalanced structure, particularly
when a small number of items were unbalanced in terms of
the level of complexity. In lieu of this, it would be worthwhile
to investigate the accuracy of MGRM parameter estimates
under complex structures, which is frequently reflected in
assessment settings. To the best of our knowledge, no studies
have systematically investigated or evaluated the performance
of MGRM, particularly under complex structures. In this study,
our goal is to investigate the performance of MGRM under
complex structures with several manipulated variables.

Method

Simulation design

We conducted a simulation study using the manipulated
factors that have been implemented in previous research (Reise
and Yu, 1990; Jiang et al., 2016; Svetina et al., 2017), including
sample size (three levels), intercorrelation (three levels), test
length (two levels), and structure of data (five levels; seeTable 1).
A fully crossed design for all these manipulated factors yielded a
total of 120 conditions, each of which was replicated 500 times
using packages and code written in R (R Core Team, 2021).

Sample size (N) and test length (L)
The influence of sample size and test length for

unidimensional and multidimensional models has been
investigated (e.g., Reise and Yu, 1990; Jiang et al., 2016;
Wang et al., 2018). Wang et al. (2018) examined N = 500 and
2,000 to demonstrate that large sample sizes (>N = 1,000)
played a vital role in the accuracy of the MGRM parameter
estimates, especially when the non-normality of dimensions
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TABLE 1 Simulation design for study.

Manipulated factors Number of levels Values of levels References

Sample size (N) 3 N = 500, 1, 500, 2, 000 Jiang et al., 2016

Test length (L) 2 L = 20, 40 Jiang et al., 2016

Intercorrelation (r) 4 r = 0, 0.25, 0.5, 0.75 Svetina et al., 2017

Structure of data

Simple structure (SS) 1 C0% Svetina et al., 2017

Balanced complex structure (BS) 2 C20%BS, C40%BS

Unbalanced complex structure (UBS) 2 C20%UBS, C40%UBS

Total structure 5 0%, C20%BS, C40%BS, C20%UBS, C40%UBS

under simple structure was taken into account. Thus, we
utilized a small sample size (N = 500) to evaluate a lower
bound and the 1,500 and 2,000 as an upper bound, assuming a
positive relationship with larger sizes and parameter estimation
accuracy, and to also reflect the typical applications with large
sample size. These levels of sample sizes of N = 500, 1,500, and
2,000, with test lengths of L = 20 and 40 were chosen to be
consistent with previous studies and real data. This enhances
the contextualization of our results to previous work.

Intercorrelation between dimensions
Several correlations between dimensions have been

investigated based on previous simulated and empirical
literature (Wetzel and Hell, 2014; Jiang et al., 2016; Svetina et al.,
2017; Wang et al., 2018). For this study, the correlation between
dimensions was set at r = 0.00, 0.25, 0.50, and 0.75, to increase
generalizability with previous work.

Dimensional structure
Only two dimensions were specified for both simple and

complex structures. The simple structure (i.e., 0% cross-
loadings) was modeled as the baseline conditions. Explicitly,
the same number of items in a simple structure measures
each dimension. In the 20-item condition, for instance, items
1–10 loaded on the first dimension only and items 11–
20 loaded on the second dimension only (see columns 1
and 2 in Table 2). For complex structures, we specified
two different types (balanced vs. unbalanced) and degrees
of complexity (20 vs. 40% of cross-loaded items). In the
balanced complexity condition, the loadings parameters are
equal. For instance, a 20% balanced complexity in the
20-item condition means that four items loaded on both
dimensions and each item had equal discrimination parameters
(i.e., factor loadings) across the dimensions. In the case
of unbalanced complexity, the items were assumed to have
different discrimination parameters across the dimensions.
Specifically, the discrimination parameters of the items in the
balanced complex structure were generated from a uniform
distribution of U [1.1, 2.8], whereas a value of 0.85 was added
to those of the second dimension to obtain the unbalanced

structure (Jiang et al., 2016; Svetina et al., 2017). See Table 2 for
the item discrimination parameters that we used for different
types of dimensional structures under the condition of 20 items
with 20% complexity.

Fixed factors
All items followed a 4-point rating scale, and the three

threshold parameters were randomly sampled from a uniform
(U) distribution, U [−2, −0.67], U [−0.67, 0.67], and U [0.67,
2] (Jiang et al., 2016). The simulees’ latent ability values on the
two dimensions were generated using a multivariate normal
(MVN) distribution with a specified mean vector of zeros and
a variance-covariance matrix with specified covariance (i.e.,
off-diagonal) elements (e.g., r = 0.25).

Data generation and analysis

We used the simdata function from the mirt R package
(Chalmers, 2012, version 1.35.1) to generate the item responses
for the MGRM. With fixed quadrature points and a convergence
threshold of 0.0001 by default, the item parameters were
estimated with maximum likelihood (ML) estimation with the
expectation-maximization (EM) algorithm. According to the
manual of the package, the EM algorithm was effective for one to
three dimensions (Chalmers, 2012). In this simulation study, we
monitored and tested the model misfit across all 120 conditions,
as well as the 500 replications, by ensuring that the model fit
indexes for each condition satisfied the criteria for satisfactory
model fit including a non-significant M2 test (i.e., p > 0.05),
RMSEA < 0.05, CFI > 0.9, and SRMR < 0.05 (Hu and Bentler,
1999; Weston and Gore, 2006).

Outcome measures for parameter
recovery

Both the estimated and true parameters were used to
calculate the average bias and root mean square error (RMSE)
across the 500 replications. For each replication, bias and RMSE
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TABLE 2 Item discrimination parameters for different types of complexity under selected conditions.

Item Simple structure (C0) Balanced complex structure (C20%BS) Unbalanced complex structure
(C20%UBS)

a1 a2 a1 a2 a1 a2

1 1.293 0 1.293 1.293 1.293 2.143

2 2.158 0 2.158 2.158 2.158 3.008

3 2.136 0 2.136 0 2.136 0

4 2.160 0 2.160 0 2.160 0

5 2.564 0 2.564 0 2.564 0

6 2.189 0 2.189 0 2.189 0

7 1.116 0 1.116 0 1.116 0

8 1.495 0 1.495 0 1.495 0

9 2.232 0 2.232 0 2.232 0

10 1.974 0 1.974 0 1.974 0

11 0 2.279 2.279 2.279 1.429 2.279

12 0 2.026 2.026 2.026 1.176 2.026

13 0 1.581 0 1.581 0 1.581

14 0 2.670 0 2.670 0 2.670

15 0 1.597 0 1.597 0 1.597

16 0 2.523 0 2.523 0 2.523

17 0 1.587 0 1.587 0 1.587

18 0 1.554 0 1.554 0 1.554

19 0 1.417 0 1.417 0 1.417

20 0 1.495 0 1.495 0 1.495

were calculated for the two discrimination and three threshold
parameters across items, respectively. Average bias and RMSE
were then computed across replications for every condition.
For example, the bias and RMSE for the first discrimination
parameter were computed as follows:

Bias =

∑L
j = 1 (âj1 − aj1)

L
(3)

RMSE =

√∑L
j = 1 (âj1 − aj1)

2

L
(4)

Where âj1 and aj1 are the true and estimated parameters
across J items, respectively. L is the test length.

Result

The results for the bias and RMSE of item parameter
estimations across the conditions in the study are presented
through the profile plots with four main sections: (1)
item discrimination estimates for simple structure, (2)
discrimination estimates for balanced complex structure, (3)
discrimination estimates for unbalanced complex structure, and
(4) mean of item threshold estimates for simple, balanced, and
unbalanced structures.

Figure 1 depicts the bias and RMSE of item discrimination
parameter estimations for MGRM across conditions under a
simple structure. As indicated in the upper panel, a similar
pattern was found across test lengths (L = 20, 40), indicating
that the bias values for the first and second item discrimination
parameters, a1 and a2, were unaffected by the number of items
specified. For a1, the upper panel of the figure indicates that
the bias values for the zero correlation condition (r = 0, the
solid lines with square in the graphs) showed overestimation,
while conditions with other correlations (r = 0.25 [dashed lines
with circles], 0.5 [dotted lines with triangles], and 0.75 [dot-
dash lines with crosses]) showed underestimation, especially
when the sample size was 500. The bias, however, only ranged
slightly from −0.041 to 0.033 across all conditions except for
the condition of r = 0.5 and N = 500 under which the average
bias was found to be −0.082. Additionally, the magnitude of
the bias values only varied trivially when the sample size was
increased from 1,500 to 2,000. For a2, we observed that the bias
values ranged only slightly from −0.025 to 0.029 across levels
of sample sizes and correlations, despite the different patterns
of bias noticed under the r = 0.5 condition. The RMSEs for a1

and a2 are included in the lower panel of Figure 1. Similar
patterns were observed across all conditions for both a1 and
a2. Across all levels of correlation, the RMSEs for a1 and a2

decreased as the sample size increased. The largest RMSE of
a1 was observed to be 0.158 when N = 500 and r = 0.5.
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FIGURE 1

Bias and RMSE of item discrimination parameter estimations for simple structure.

There was no discernible difference in RMSE values for a2 across
sample sizes and levels of correlations.

Figure 2 shows the bias and RMSE of item discrimination
parameter estimations for MGRM across conditions under a
balanced complex structure. Similar patterns of bias were found
across test lengths (L = 20, 40) when complexity was 20%
balanced for a1 and a2, as seen in the upper panel of the
figure. With 20% balanced complexity, bias results revealed
overestimation for zero correlation (r = 0, the solid lines with
squares in the graphs) and underestimation for other levels of
correlation (r = 0.25 [dashed lines with circles], 0.5 [dotted lines
with triangles], and 0.75 [dot-dash lines with crosses]) for a1.

Further, the bias values ranged slightly from −0.050 to 0.043
across all conditions except for the condition of r = 0.5 and
N = 500. Under this condition, the bias was −0.103, which
decreased to almost 0 as the sample size increased from 500 to
1,500, and then declined slightly after reaching a steady state
(bias of zero) and remained unchanged (1, 500 ≤ N ≤ 2, 000).
The bias results for a2 across test lengths (L = 20, 40) with 20%
balanced complexity ranged from−0.033 to 0.038 across sample
sizes and correlations.

Bias patterns varied across test lengths (L = 20, 40) when
complexity was 40% for a1 and a2. When L = 20, the bias values
for a1 increased as the level of correlation increased. Further, as
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FIGURE 2

Bias and RMSE of item parameter estimations for balanced structure.

the sample size increased for the levels of correlation (r = 0.5 and
0.75), the bias values were high except for the condition of r = 0.5
and N = 500. Under this condition, the bias value was found
to be 0.042. However, the bias results decreased as the sample
size increased from 500 to 1,500, and then falls below zero and
increased to 0.055 for the level of zero correlation (r = 0) as
the sample kept increasing from 1,500 to 2,000. Also, when
L = 40, the bias values for a1with 40% balanced complexity
exhibited the same pattern of bias for a1 with 20% balanced

complexity. For a2, the magnitudes of bias values were similar
to the bias results for a1 with 40% balanced complexity when
L = 20, whereas, with 40% balanced complexity, bias results
for a2 showed the same bias results for a2 with 20% balanced
complexity when L = 20.

RMSE for a1 and a2 with 20% balanced complexity at the
lower panel of Figure 2 indicated similar patterns across test
lengths (L = 20, 40). With 20% balanced complexity across all
levels of correlation between a1 and a2, the RMSEs decreased as
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the sample size increased. Under 40% complexity, the pattern
of RMSE differed across test lengths (L = 20, 40) for a1

and a2. RMSE values for correlation (r = 0.75) were high across
sample sizes for a1 and a2 when L = 20, and as the sample
size increased from 500 to 1,500 across all levels of correlation
and test lengths, the RMSE values decreased except for a1 with
40% complexity for correlations (r = 0.5, 0.75). Under this
condition, the RMSE increased for correlation (r = 0.75),
was stable for correlation (r = 0.5), and decreased across

correlation (r = 0, 0.25). With 40% complexity, as the sample
size increased from 1,500 to 2,000 when L = 40, RMSE
decreased and ranged slightly from 0.064 to 0.095 across all
levels of correlation, but when L = 20, RMSE values increased
by 0.25 and 0.5 for correlation along a1 and a2, respectively, and
remained stable for correlation (r = 0) for both a1 and a2.

Under the unbalanced complex structure, Figure 3 shows
the bias and RMSE item discrimination parameter estimations
for MGRM across conditions. As indicated in the upper panel,

FIGURE 3

Bias and RMSE of item parameter estimations for unbalanced structure.
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a similar pattern of bias was identified across test lengths
(L = 20, 40) when complexity levels were 20 and 40%
unbalanced for a1 and a2, implying that the bias values for both
parameters under this condition were unchanged by the number
of items specified. However, with 20 and 40% unbalanced
complexity for a1, the upper panel of the figure indicates that
the bias values for the zero-correlation condition (r = 0, the
solid lines with square in the graphs) revealed overestimation,
while conditions with other correlations (r = 0.25, 0.5, and 0.75)

showed underestimation, particularly when the sample size was
500. The average bias was found to be −0.093 for the condition
of r = 0.5 and N = 500 except at L = 20 with 40% unbalanced
complexity, where bias values decreased from 0.008 to −0.009
as the sample size increased from 1,500 to 2,000. Furthermore,
as the sample size increased, bias values decreased to a steady
state (bias of zero), and then declined slightly for the r = 0.25
condition, and when the sample size was increased from 1,500
to 2,000, the magnitude of the bias only changed minimally.

FIGURE 4

Bias and RMSE for average item threshold estimations for simple structure.
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Despite the varied pattern of bias detected under the r = 0.5
condition, the bias values for a2 across 20 and 40% unbalanced
complexity levels ranged only significantly from−0.039 to 0.048
across levels of sample sizes and correlations.

The RMSE for a1 and a2 across levels of unbalanced
complexity (20 and 40%) and test lengths (L = 20, 40) are
indicated in the lower panel of the figure. Similar patterns
were observed across all conditions for both a1 and a2. Across
all levels of correlation between a1 and a2 with 20 and 40%
unbalanced, the RMSEs decreased as the sample size increased.

However, with 20% unbalanced, the largest RMSE for a1 was
observed when N = 500 and r = 0.5, but no noticeable
difference was found in RMSE values for a2 across sample sizes
and levels of correlations. Additionally, the largest RMSE values
observed for a1 and a2 when N = 500 and r = 0.75 with 40%
unbalanced complexity across test lengths (L = 20, 40).

Figure 4 shows the average bias and RMSE of item
threshold parameter estimations across conditions under a
simple structure. As indicated in the upper panel, a similar
pattern of bias was detected across test lengths (L = 20, 40),

FIGURE 5

Bias and RMSE for average item threshold estimations for balanced structure.
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indicating that average threshold bias was unaffected by
items specified. The average bias values ranged from −0.024
to 0.026 for correlations (r = 0, 0.25) and sample sizes
(500 ≤ N ≤ 2, 000) except for the conditions of other
correlations (r = 0.5, 0.75) and N = 500. Under this
condition, the absolute maximum average threshold bias values
were found. However, for the condition of r = 0.75, average
threshold bias values decreased to almost zero as the sample size
increased from 500 to 2,000. Regarding the average threshold
RMSE across test lengths (L = 20, 40) in the lower panel, its
values decreased and tended to 0.08 as the sample size increased

(500 ≤ N ≤ 2, 000) across correlations except for conditions
with correlations (r = 0, 0.25, 0.5, and 0.75) and N = 500 under
which high average threshold RMSE were identified.

Figures 5, 6 depict the average bias and RMSE of
item threshold parameter estimations across conditions under
balanced and unbalanced structures. As indicated in all the
panels, a similar pattern of bias and RMSE were detected
across test lengths (L = 20, 40), indicating that average
threshold bias and RMSE values were unaffected by the items
specified. Similarly, the average threshold bias and RMSE for
both balanced and unbalanced with 20 and 40% exhibited the

FIGURE 6

Bias and RMSE for average item threshold estimations for unbalanced structure.
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same patterns as the results for average threshold bias and RMSE
under the simple structure.

Conclusion and discussion

Conclusion

A simulation study was conducted to examine the
performance of MGRM across several manipulated factors,
including sample size, correlation between the dimensions,
and test lengths under both simple and different types of
complex structures. These factors varied in a completely crossed
simulation design to evaluate the recovery of item parameter
estimation using bias and RMSE. Results of the simulation study
revealed several impacts of the manipulated factors on bias
and RMSE of item discrimination and threshold values. Some
patterns were identified for the item parameter estimations
across all conditions under different complex structures.

Regarding the item parameter estimations for simple
structure, the following patterns were observed across the
manipulated variables. First, the test length did not influence
either the bias or RMSE of item discrimination and threshold
values. Second, the level of correlations and sample sizes
impacted the accuracy of the item parameter estimations. Third,
bias and RMSE of the item parameters of the first dimension
were inflated in the presence of small sample size (N = 500)
and a correlation of 0.5 (r = 0.5), but a trivial change in
the magnitude of bias was observed when the sample size was
between 1,500 and 2,000. Fourth, smaller average threshold bias
values were yielded under the correlations of r = 0 and 0.25
and sample sizes 500 ≤ N ≤ 2, 000. Fifth, almost zero average
RMSE values were obtained for threshold parameters when the
correlation was r = 0 and sample sizes were 500 ≤ N ≤ 2, 000.

For complex structures (i.e., balanced and unbalanced), the
synthesized results of item parameter estimations are as follows:
First, bias and RMSE of item discrimination and threshold
values under the balanced structure were more affected by test
lengths across all conditions than in the unbalanced structure.
Second, bias values under 20% balanced complexity yielded
smaller bias values than the 20% unbalanced complexity across
sample sizes and level correlations when the test length was
20 and 40 items. Third, the performance of MGRM for 20%
complexity under both balanced and unbalanced structures
yielded higher bias values across all conditions, especially
for a correlation level of 0.5 and a sample size of 500.
Fourth, under 40% unbalanced complexity, as the sample
size increased (1500 ≤ N ≤ 2, 000) with a low level of
correlation (r = 0.25), the bias values declined slightly,
especially with a small test length (L = 20). Under 40%
balanced complexity, bias values were inflated as the sample
size increased (500 ≤ N ≤ 2, 000) with higher levels of
correlations (r = 0.5, 0.75) across test lengths. Fifth, under

20% complexity for both balanced and unbalanced structures,
RMSE values decreased as the sample size increased across all
levels of correlations and test lengths. Sixth, for both balanced
and unbalanced structures, a higher correlation (r = 0.75)
with 40% complexity yielded higher RMSE values across all
conditions, especially with a small sample size (N = 500)
under the unbalanced structure. Seventh, bias values under 40%
balanced complexity and a moderate test length (L = 40)
were stable when there was no correlation (r = 0) between
dimensions. The bias values decreased, however, across all levels
of correlations in the presence of a moderate to large sample
size (1, 500 ≤ N ≤ 2, 000). Eighth, for both complexity
levels (20 and 40%) across test lengths (L = 20, 40), bias
and RMSE values for threshold parameters under balanced and
unbalanced complex structures were the same as those under a
simple structure.

Discussion

In practice, the chances of obtaining accurate item
parameter estimation based on the assumption that items are
tightly restricted to perfect simple structure rather than multiple
latent traits are uncertain (Finch, 2011). According to Dai et al.
(2021), the choice of polytomous IRT models (e.g., GRM and
generalized partial credit model [GPCM]) is beyond the model
fit indices, especially when the sample size is less than 300
and the test length is less than 5. Similarly, fitting a complex
structure of multidimensionality to a simple structure may
be inappropriate in practice. Previous research, however, has
provided evidence to support this conclusion (e.g., Finch, 2011;
Jiang et al., 2016; Svetina et al., 2017; Wang et al., 2018; Finch
and French, 2019). We noted that, however, this evidence was
mainly obtained from MGRM models with simple structures
and other MIRT models with complex structures (e.g., two- and
three-parameter normal ogive and models). Our study differs
from the previous studies (e.g., Jiang et al., 2016; Svetina et al.,
2017; Wang et al., 2018) in the five following ways: (1) We found
that correlation levels influenced the recovery of item parameter
estimations under both simple and complex structures, whereas
two previous studies (i.e., Jiang et al., 2016; Svetina et al.,
2017) revealed that correlation levels had no meaningful impact
on parameter recovery under the simple structure. (2) Jiang
et al. (2016) revealed that increasing sample size decreased
RMSE under simple conditions. Our study went beyond and
further revealed that increasing sample size decreased RMSE
as correlation and complexity levels increased. (3) Our study
found that small sample size (N = 500) and a moderate level
of correlation (r = 0.5) affected the bias of the parameter
estimates, while previous studies found that sample size had
no effect on bias under the simple structure. (4) Bias and
RMSE values associated with complex structures yielded larger
item discrimination parameters in our study, not only with
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increased correlations as indicated by Finch (2011) and Svetina
et al. (2017) but also with 40% complexity and test lengths
of 20 and 40 items. (5) In Svetina et al. (2017), balanced
complexity provided better accuracy than when only a few
items were unbalanced with respect to complexity, whereas in
our study, the accuracy of parameter estimates under complex
structures was dependent not only on the number of items being
unbalanced with respect to complexity but also on sample size
and levels of correlation.

Based on the results of the current study, the choice between
balanced and unbalanced complex structures should be made
with caution in the presence of levels of complexity, correlation,
sample size, and test lengths. In terms of test lengths, the
bias results associated with unbalanced complex structures
were unaffected when compared to the balanced complex
structure. Balanced and unbalanced complex structures might
provide better accuracy of item parameter estimations than
simple structures depending on the conditions specified, but
the accuracy in recovering the item parameters might not be
attainable when the correlations between the dimensions are 0.5
and 0.75, particularly with a sample size of 500. Additionally,
the average bias and RMSE for item threshold parameters were
recovered reasonably well in unbalanced and balanced complex
structures than in simple structures across conditions.

Given that the accuracy of item parameter estimations is
improved more under complex structures than under simple
structures, one of the limitations of this study is that the recovery
of the item parameters was the main objective. Also, the study
assumed multivariate normality of the latent traits. Based on
these limitations, future research would consider non-normality
of the dimensions and investigate the impact of missing data on
MGRM under complex structures, as well as parameter recovery
in MGRM in the presence of more than two dimensions.
Although RMSE with a 40-item rating scale decreased under
a balanced complex structure, most rating scales on health or
education are rarely 40 items in practice. As a result, among the
investigated test lengths and sample size, the future study should
cover the condition of 30 items and N = 1, 000.

The current simulation study on balanced and unbalanced
complexities allows us to make some recommendations to
applied researchers in education and health to avoid some
challenges in MGRM, and more broadly, MIRT applications that
are related to dimensional structures. The complex structure
of the MIRT model could be determined and fitted by the
Q-matrix developed by subject matter experts (da Silva et al.,
2019). For example, if 20 items were developed to measure
two latent traits, a Q-matrix representing the mapping of each
item to the latent trait, its measures are developed based on
the responses of the examinees to the items. Assume that
9 of these 20 items only measure the first latent trait and
only 11 items measure the second latent trait. In the case of
balanced complexity, the two latent traits will have an equal
number of cross-loadings, whereas in the case of unbalanced
complexity, the first dimension will have a simple structure,

and the second dimension will have four unbalanced items with
45% complexity. To ensure that unbalanced complexity results
in better accuracy as the balanced complexity, consider a large
sample size and a low level of correlation between dimensions.
Adopting MGRM in models with a complex structure could
improve validity in both education and health research.
Evaluating MGRM under complex structures, the results of our
simulation study revealed that a sample size greater than 500
and a correlation between dimensions less than 0.5 should be
employed to maximize parameter recovery accuracy because the
accuracy of parameter recovery is important in clinical studies
of Cushing syndrome, depression, and so on. Furthermore, the
accuracy of parameter recovery of a person’s health condition
reflects the development of an appropriate treatment plan for
the individual. In this context, the presence of biased item
estimates does not account for low or high stakes, as opposed to
education testing (e.g., TOEFL and GRE), where low and high
stakes are based on the biased item or person estimates.
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