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National educational standards stress the importance of science and

mathematics learning for today’s students. However, across disciplines,

students frequently struggle to meet learning goals about core concepts

like energy. Digital learning environments enhanced with artificial intelligence

hold the promise to address this issue by providing individualized instruction

and support for students at scale. Scaffolding and feedback, for example, are

both most effective when tailored to students’ needs. Providing individualized

instruction requires continuous assessment of students’ individual knowledge,

abilities, and skills in a way that is meaningful for providing tailored support and

planning further instruction. While continuously assessing individual students’

science and mathematics learning is challenging, intelligent tutoring systems

show that it is feasible in principle. However, the learning environments in

intelligent tutoring systems are typically not compatible with the vision of

how effective K-12 science and mathematics learning looks like. This leads

to the challenge of designing digital learning environments that allow for

both – meaningful science and mathematics learning and the reliable and

valid assessment of individual students’ learning. Today, digital devices such

as tablets, laptops, or digital measurement systems increasingly enter science

and mathematics classrooms. In consequence, students’ learning increasingly

produces rich product and process data. Learning Analytics techniques can

help to automatically analyze this data in order to obtain insights about

individual students’ learning, drawing on general theories of learning and

relative to established domain specific models of learning, i.e., learning

progressions. We call this approach Learning Progression Analytics (LPA). In

this manuscript, building of evidence-centered design (ECD), we develop a
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framework to guide the development of learning environments that provide

meaningful learning activities and data for the automated analysis of individual

students’ learning – the basis for LPA and scaling individualized instruction

with artificial intelligence.

KEYWORDS

learning progression, evidence-centered design (ECD), machine learning (ML),
automated assessment, learning sciences, learning analytics (LA), science education,
mathematics education

Introduction

National educational standards (e.g., National Research
Council, 2012; Sekretariat der ständigen Konferenz der
Kultusminister der Länder in der Bundesrepublik Deutschland,
2020) and international organizations (e.g., OECD, 2016) stress
the importance of science and mathematics learning for today’s
students. Knowledge about science and mathematics is key to
understand and engage global challenges such as the climate
catastrophe or the ongoing COVID-19 pandemic. However,
across disciplines, students frequently struggle to meet learning
goals about core concepts like energy (Neumann et al., 2013;
Herrmann-Abell and DeBoer, 2017), evolution (Todd and
Romine, 2016; Todd et al., 2022), reaction kinetics (Bain and
Towns, 2016), or the derivation concept (vom Hofe, 1998).

Digital learning environments enhanced with artificial
intelligence hold the promise to address this issue by providing
individualized instruction and support for students at scale.
Scaffolding and feedback, for example, are both most effective
when tailored to students’ needs (Narciss et al., 2014). Providing
individualized instruction requires continuous assessment of
students’ individual knowledge, abilities, and skills in a way
that is meaningful for providing tailored support and planning
further instruction, i.e., students’ learning needs to be assessed
relative to the relevant domain specific models of learning.

While continuously assessing individual students’ science
and mathematics learning is challenging, intelligent tutoring
systems show that it is feasible in principle (e.g., Nakamura
et al., 2016). However, the learning environments in intelligent
tutoring systems are typically not compatible with the vision of
how effective K-12 science learning (National Research Council,
2012, 2018) looks like, i.e., instruction rooted in inquiry learning
approaches such as project-based learning that puts students
engagement in scientific practices at the center. This leads to the
challenge of designing digital learning environments that allow
for both – meaningful science and mathematics learning and the
reliable and valid assessment of individual students’ learning.

Today, digital devices such as tablets, laptops, or
digital measurement systems increasingly enter science
and mathematics classrooms. In consequence, students’

learning increasingly produces rich product (e.g., students’
written answers in a digital workbook) and process (e.g., mouse
movement in a digital modeling tools) data. This data is large,
heterogeneous, and dynamic and thus challenging to analyze.
Yet in principle, this data should allow continuous assessment
of individual students’ learning and thus provide the basis
for individualized instruction. Learning Analytics techniques
can help to automatically analyze this data in order to obtain
insights about individual students’ learning, drawing on general
theories of learning and relative to established domain specific
models of learning, i.e., learning progressions. We call this
approach Learning Progression Analytics (LPA).

In this manuscript, building of evidence-centered design
(ECD) (Mislevy et al., 2003), we develop a framework to
guide the development of learning environments that provide
meaningful learning activities and data for the automated
analysis of individual students’ learning – the basis for LPA and
scaling individualized instruction with artificial intelligence.

Learning progression analytics

Learning in science and mathematics

Following research that indicates that the learning of
science and mathematics content cannot be separated from
the doing of science or mathematics, modern standards
such as the Next Generation Science Standards (National
Research Council, 2007) or the German Bildungstandards
(Sekretariat der ständigen Konferenz der Kultusminister der
Länder in der Bundesrepublik Deutschland, 2020) emphasize
that students should not only develop knowledge about science
or mathematics ideas but be enabled to use that knowledge to
make sense of phenomena. To demonstrate such knowledge-
in-use (Harris et al., 2016) requires that students have well-
organized knowledge networks as those are a prerequisite
for fluent application and retrieval (Bransford, 2000; National
Academies of Sciences, Engineering, and Medicine, 2018). The
knowledge-integration perspective (Linn, 2006) emphasizes the
importance of well-organized knowledge networks and views
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learning as a process of developing increasingly connected and
coherent sets of ideas. Building coherent connections between
ideas, however, is a process that takes time and instruction
that provides opportunities for students to establish these
connections (Sikorski and Hammer, 2017; National Academies
of Sciences, Engineering, and Medicine, 2018) and see their
explanatory value (Smith et al., 1994).

Project-based learning (PBL) is a pedagogy grounded in
learning sciences research that is well aligned with the modern
vision of science and mathematics instruction just outlined,
i.e., it emphasizes that learning about science and mathematics
requires the active construction of knowledge by using ideas in
meaningful contexts (Krajcik and Shin, 2014; Jacques, 2017).
A core feature of PBL in order to reach this goal is that
instruction is centered around phenomena which are tied
together by a driving question. A typical PBL unit consists of
a driving question with several sub-driving questions which
are guiding instruction. These questions act as an advance
organizer and help students develop a need-to-know, i.e., they
elicit a desire to learn and make students realize that there is
an important problem that genuinely needs to be solved. This
need-to-know then drives and sustains students’ motivation to
engage in scientific and mathematical practices such as asking
questions, conducting experiments, constructing explanations,
developing models, or engaging in argumentation (proving) to
make sense of phenomena. Throughout a unit, students then
repeatedly engage in these practices and develop and refine a
set of ideas they use to make sense of the driving question. In
this way, PBL supports students in developing well-organized
knowledge networks and the ability to apply this knowledge, i.e.,
knowledge-in-use (Schneider et al., 2020).

While PBL provides a framework for structuring science
and mathematics instruction, it does not provide guidance on
how to structure the content of a given domain. This has
been the focus of research on learning progressions (Duncan
and Rivet, 2013). Learning progressions are descriptions of
“successively more sophisticated ways of reasoning within a
content domain that follow one another as students learn”
(Smith et al., 2006). Learning progressions, building on general
theories of learning, focus on core aspects of a domain and
delineate a series of intermediate stages from a lower anchor –
representing students’ tentative understandings upon entry into
the learning progression – to an upper anchor representing
mastery of the domain, or aspect thereof (Duschl et al.,
2011). The intermediate stages represent ideal trajectories of
learning as a means of aligning instruction and assessment
(Duncan and Hmelo-Silver, 2009; Duschl et al., 2011; Lehrer
and Schauble, 2015). These trajectories are hypothetical in
nature and need empirical validation (Duschl et al., 2011;
Hammer and Sikorski, 2015; Jin et al., 2019). In science, learning
progressions have been developed and investigated for core
concepts, such as energy (Neumann et al., 2013; Yao et al.,
2017), matter (Hadenfeldt et al., 2016) and its transformation

(Emden et al., 2018), genetics (Castro-Faix et al., 2020), or the
concept of number (Sfard, 1991). However, this research has
triggered much debate (Steedle and Shavelson, 2009; Duschl
et al., 2011; Shavelson and Kurpius, 2012) mostly revolving
around how individual learners’ trajectories align with the
hypothesized one (underlying the sequence of classroom
activities; e.g., Duschl et al., 2011; Hammer and Sikorski,
2015; Lehrer and Schauble, 2015; Bakker, 2018). As typically
used designs with few points of data collection distributed
across months or even years do not allow for evaluating
individual students’ learning, let alone reconstructing their
learning trajectories (see also Duschl et al., 2011), to date, this
issue has not been resolved. What makes matters worse is
that students do not typically progress in a linear fashion, e.g.,
they may move back and forth between levels of a learning
progressions or jump across entire levels. This phenomenon
has coined the term “messy middle” to characterize the phase
of students’ learning between novice and mastery (Gotwals and
Songer, 2009) where it is often difficult to place a student in a
model with current research designs and methodologies (e.g.,
Duncan and Rivet, 2018; Todd et al., 2022).

In summary, PBL is a model for science and mathematics
instruction rooted in learning sciences research that supports
students in developing knowledge-in-use about science and
mathematics (Holmes and Hwang, 2016; Chen and Yang,
2019; Schneider et al., 2020) and learning progressions provide
domain specific models of learning to guide instruction (Sfard,
1991; Duncan and Rivet, 2018). However, in order to guide
instruction at the individual level on a day-to-day basis, the
resolution of current learning progression research designs
(cross-sectional or using few measurement time points often
spread far apart) is insufficient.

Assessing student learning using data
from digital technologies

As digital technologies increasingly permeate science and
mathematics classrooms, a new opportunity arises to assess
students’ learning on the grain size needed for individualized
instruction: data from students’ interactions with digital
technologies. Much research on assessing student learning using
data from their interactions with digital technologies has been
done in the context of intelligent tutoring systems (e.g., Ma
et al., 2014). Intelligent tutoring systems present students with
tasks and based on the assessments of students’ learning on
one task, ITSs choose next steps or tasks to match learners’
individual needs. ITSs monitor student learning through a
process called student modeling (Pelánek, 2017). In the context
of science and mathematics instruction where tasks are often
ill-defined, e.g., when students engage in authentic scientific or
mathematical inquiry tasks, learning analytics techniques such
as machine learning (ML) are used for student modeling. An
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example for this approach is InqITS (Gobert et al., 2015). InqITS
was originally developed as a series of microworlds to support
students in developing scientific (and/or mathematical) inquiry
skills, such as formulating hypotheses, designing and carrying
out experiments as well as interpreting data and drawing
conclusions. InqITS provides a series of activities supporting
students in developing scientific and mathematical inquiry
skills, tracks students’ learning across these performances and
provides students and teachers with in-time feedback – based
on ML algorithms (Gobert et al., 2018). InqITS can, for example,
automatically score students’ explanations provided in an open
response format (Li et al., 2017) using the commonly used
claim, evidence, reasoning (CER) framework (McNeill et al.,
2006). In summary, research on ITSs has demonstrated that it
is in principle possible to use the data that is generated when
students engage in scientific and mathematical inquiry activities
in digital learning environments to assess individual students’
learning in science and mathematics on a grain size sufficient for
individualized instruction. At the same time, a series of activities
in an intelligent tutoring system does still not reflect a science or
mathematics curriculum.

Toward learning progression analytics

In the preceding sections, we have discussed that past work
in the learning sciences, science and mathematics education,
and educational technologies, especially the sub-field of learning
analytics, has produced (a) models of how effective science
and mathematics learning can generally be facilitated, e.g.,
the pedagogy of project-based learning (Krajcik and Shin,
2014; Schneider et al., 2020), (b) domain specific models of
learning about specific scientific or mathematics concepts and
practices, that is, learning progressions (see, e.g., Sfard, 1991;
Hadenfeldt et al., 2016; Osborne et al., 2016), and (c) methods
and techniques for automatically assessing students’ learning
trajectories from the data that is generated when students
engage in digital learning environments (Gobert et al., 2015).
Thus, at the intersection of the learning sciences, learning
progression research, and learning analytics, the building blocks
are available for realizing a vision where individualized science
and mathematics learning can be delivered at scale using digital
learning environments enhanced with artificial intelligence. We
call the area of work that aims at realizing this vision Learning
Progression Analytics (LPA).

A key challenge for learning progression analytics is how
to design the learning environments that allow to automatically
assess students’ learning trajectories (as a prerequisite for later
individualized learning supports such as adaptive scaffolds).
While frameworks for the design of effective science and
mathematics instruction and curriculum materials such as
Storyline Units (Reiser et al., 2021), Storylines (Nordine et al.,
2019), or the principles of project-based learning more generally

(e.g., Petrosino, 2004; Miller and Krajcik, 2019) exist, these
frameworks do not address the specific considerations and
affordances that allow for a valid and reliable assessment of
students’ learning trajectories. Frameworks for designing valid
and reliable science or mathematics assessments (that can be
evaluated automatically), however, e.g., on a conceptual level
the assessment triangle (Pellegrino et al., 2001), on a general
level evidence-centered design (e.g., Mislevy et al., 2003), and
on a procedure level the procedure by Harris et al. (2016,
2019), have a complementary blind-spot: they do not consider
the affordances of crafting engaging science and mathematics
instruction and curriculum. In other words, we can design
good curriculum but the tasks therein are not necessarily good
assessments and we can design good assessment tasks but a
series of assessment tasks is not necessarily a good curriculum.

To address this issue, we present a framework and procedure
for developing learning environments that address the needs
of learning progression analytics, i.e., learning environments
that provide engaging science and mathematics instruction and
valid and reliable assessment of students’ learning trajectories.
We base our framework and procedure on ideas rooted in the
assessment triangle, evidence-centered design, and the design
cycle for education.

Developing learning environments
for learning progression analytics

A distinctive feature of the learning environments needed
for learning progression analytics is that the tasks that students
engage in during the curriculum allow to draw inferences about
students’ learning. These inferences should be supported by
evidence. As students’ learning cannot be directly measured,
we need to engage in a process of evidentiary reasoning.
The 2001 NRC report Knowing What Students Know: The
Science and Design of Educational Assessment (Pellegrino
et al., 2001) introduces the assessment triangle (Figure 1) to
describe the core elements – cognition, interpretation, and
observation –and relations between these elements in the
process of evidentiary reasoning.

The cognition corner represents the model of learning in
a given domain. In the context of science or mathematics,
this means domain specific models of learning, i.e., learning
progressions (Sfard, 1991; Duncan and Rivet, 2018), and
underlying general models reflected for example in the
knowledge integration theory (Linn, 2006), knowledge-in-
pieces (diSessa, 1988) or coordination class theory (Mestre,
2005). In order to be an effective basis for a process of
evidentiary reasoning, these models should represent the best
supported understanding of how students typically learn and
express their learning in the domain of interest. Further, the
grain size in which these models are expressed must meet
the affordances of the instructional context, e.g., if students
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FIGURE 1

Assessment triangle, adapted from Pellegrino et al. (2001).

learn about different manifestations of energy, a model that
describes all learning about manifestations as just one large
aspect is limited in its usefulness. In this way, the description of
students’ learning in the cognition corner forms the basis for all
further evidentiary reasoning and the evaluation of the validity
of the assessment.

The observation corner represents a description of the
features and affordances of tasks that are suitable to provide
evidence about students’ learning as specified in the cognition
corner. Correctly specifying these features and affordances is
critical to generating high-quality data that provides a maximum
of information regarding the aims of assessment.

Lastly, the interpretation corner represents how the data
generated when students engage in tasks is to be processed
and analyzed to provide that information about students’
learning. Thus, this corner represents the methods used to make
inferences from data, typically in the form of statistical models.

Overall, it is crucial that the components in the assessment
triangle align. Otherwise, the chain of evidentiary reasoning
will break and no valid inferences can be made about
students’ learning.

The assessment triangle as a model for evidentiary reasoning
in assessment serves as a conceptual basis for frameworks for
actually developing assessments. One such framework that has
been successfully used to develop high quality science and
mathematics assessments that align with the goals of modern
science or/and mathematics instruction expressed in standard
documents (e.g., National Research Council, 2012; Sekretariat
der ständigen Konferenz der Kultusminister der Länder in der
Bundesrepublik Deutschland, 2020) such as three-dimensional
learning (Harris et al., 2016) and knowledge-in-use (Harris et al.,
2019) is evidence-centered design (Mislevy et al., 2003).

Evidence-centered design

Robert Mislevy and his colleagues (see, e.g., Mislevy et al.,
2003; Mislevy and Haertel, 2007; Rupp et al., 2012; Arieli-
Attali et al., 2019) were instrumental in the development of
the evidence-centered design framework for the development

of assessments. It guides the process of evidentiary reasoning
through the delineation of three spaces: the claim, evidence, and
task space (Mislevy et al., 2003) that map onto the elements in
the assessment triangle. Figure 2 lays out the logic of evidentiary
reasoning as an assessment argument is developed by moving
through the design spaces. The journey of evidentiary reasoning
begins with the delineation of the claim space which requires
the specification of the claims that one wants to make about
the construct of interest, e.g., students’ learning. This involves
unpacking the complexes of knowledge, abilities, and skills
and any combination thereof that constitute competence in a
domain. Thorough unpacking and precise formulation of the
knowledge students are expected to have and how they are
expected to use it – based on a thorough analysis of the domain
and respective models of students’ learning – is most critical
in this step. Next, evidence statements are formulated. These
statements should describe as clearly and precisely as possible
the features of student performances that will be accepted as
evidence that a student has demonstrated the requirements to
meet a claim. Now, the form of tasks that are expected to elicit
the desired performances are specified in the task model. This
involves defining fixed features that tasks must or must not
have and variable features, i.e., features that may differ across
tasks addressing the same claim. This part of the procedure
leads to the design part of the assessment argument: precisely
formulated claims and evidence statements describing concrete
performances support the development of tasks that are strongly
aligned with the construct as specified in the claim space.

With developed tasks at hand, the next step is to define
an evidentiary scheme for the tasks, i.e., based on what
performances we expect to observe, how we will evaluate these
performances in the light of the evidence statements and how
these evaluations will be combined into evidence supporting (or
not supporting) the claims about the construct, e.g., students’
knowledge. This information then needs to be condensed into a
scoring guide and a (statistical) model that describes how scores
are eventually summarized into numbers that reflect to what
extent students are meeting a claim. This part can be considered
the use part of the assessment argument. Together, the use and
design part of the assessment argument aim to ensure an optimal
alignment of claims, evidence and tasks.

While evidence-centered design has been successfully used
to develop science assessment tasks (e.g., Harris et al., 2019)
and extensions of evidence-centered design that strengthen the
connection between learning and assessment have been made
(e.g., Kim et al., 2016; Arieli-Attali et al., 2019), these extensions
do not provide guidance on how to develop series of tasks that
function as a curriculum and also as assessment tasks. Arieli-
Attali et al. (2019), for example, when describing the extended
task model in their extension of evidence-centered design, focus
on integrating adaptive supports such as feedback or scaffolds
but do not discuss how to provide other functions of curriculum,
e.g., engaging students over time (Schneider et al., 2020). Thus,
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FIGURE 2

Simplified representation of evidence-centered design, adopted from Pellegrino et al. (2015).

current extensions of evidence-centered design remain relatively
assessment-centered and provide little guidance in how to
negotiate between the needs of assessment and crafting engaging
science and mathematics instruction.

Extending evidence-centered design
for learning progression analytics

In the past, evidence-centered design has been used to
develop assessment tasks. However, when we want to detect
learning, the tasks that students engage in will need to be
embedded in a learning environment, i.e., they need to fulfil
a range of criteria from both, an assessment and curriculum
or learning environment design perspective. This is reflected
in extension of the evidence-centered design in the ECD4LPA
model in Figure 3. It shows the central components in the
design and development of learning environments for learning
progression analytics and how they influence each other. The
relations between the claim space, the task space, and the
evidence space follow from the assessment perspective and
have been covered in the preceding sections. The instruction
space nexus represents principles for the design of effective
learning environments as well as affordances and constraints of
the (technical and social) context in which the actual learning
environment is implemented. The connections between the
three traditional evidence-centered design spaces and the
instruction space represent the constraints and affordances that
the learning environment imposes on the claim, evidence, and
task space and vice versa. Considering those contingencies is
what allows the development of not only assessment tasks

but rather learning tasks that still allow for a valid and
reliable assessment.

Claim space — Instruction space
The claim space determines which knowledge, skills, and

abilities should be targeted in what order and in what level of
detail in the learning environment. However, the requirements
of developing engaging instruction (Fortus, 2014; Schneider
et al., 2020), e.g., by following the principles of project-
based learning such as having a meaningful driving question
or establishing a need-to-know also need to be considered.
For example, this may result in adding skills or knowledge
elements that are not strictly necessary based on the domain
specific model articulated in the claim space but which are
necessary in order to develop a need-to-know for students
or for covering an engaging context. The benefit of explicitly

FIGURE 3

Extension of evidence-centered design for Learning Progression
Analytics (ECD4LPA).
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articulating such addition elements is that instead of ending up
as construct irrelevant sources of variance, these elements can
be incorporated into the claim space, effectively extending the
scope of the assessment.

Instruction space — Task space
The task space determines what features a task needs

to have from an assessment perspective. These requirements
need to be balanced with the features of effective learning
tasks in an engaging curriculum as specified in the instruction
space. For example, from a learning environment perspective,
a large variety of tasks that include diverse contexts may be
favorable whereas this variation provides a challenge from an
assessment perspective.

Instruction space — Evidence space
The learning environment defined in the instruction space

determines what types of evidence, i.e., data sources, will
be available and thus imposes constraints on the evidentiary
statements. For example, the modeling software used in a
learning environment may not allow the qualification of the
relation between objects in a model. Thus, there will be no
evidence available about this aspect of modeling or other ways
of finding evidence for this component will be required. On
the other side, the evidence model can guide and inform
the design of the learning environment, e.g., by mandating a
modeling software that allows to qualify the relation between
objects in a model.

A procedure for developing
learning environments for learning
progression analytics

In this section, we will describe how we applied the extended
evidence-centered design framework for Learning Progression
Analytics presented in the last section in a project that
aims at developing digital learning environments for physics-,
chemistry-, biology-, and mathematics instruction in German
secondary schools that allow automatic assessment of students’
learning. We will first introduce a procedure we developed to
support this process and then provide examples for each step.
Examples will focus on the physics and biology unit.

Figure 4 shows the central steps of the procedure. The
first step, unpacking the competence model, is in the upper
left corner. Here, the claim space is delineated by unpacking
the knowledge, skills, and abilities in the targeted domain. This
involves careful domain analysis and consideration of respective
domain specific models of learning (learning progressions).
Based on this process, learning performances are derived.
Learning performances describe the activities which students are
supposed to engage in to facilitate and demonstrate learning.

The physics learning environment, for example, focuses on
energy and core practices include constructing explanations,
developing models, and analyzing data. Based on an existing
learning progression (Neumann et al., 2013) and standard
documents (Ministerium für Bildung, Wissenschaft und
Kultur des Landes Schleswig-Holstein, 2019), learning
performances were defined or selected (e.g., Students analyze
and interpret data to compare different types of engines based
on their efficiency).

The next step is to define the learning environment, i.e.,
delineating the instructional space. This starts by articulating
core features of the learning environment. In the context
of our project, this included two important decisions: (1)
moodle (Dougiamas and Taylor, 2003) would serve as the
technical platform for the digital learning environment, and
(2) the choice of project-based learning (Krajcik and Shin,
2014) as the central pedagogy guiding the design process.
Project-based learning was chosen because it has proven to
be highly effective in promoting science learning (Schneider
et al., 2020). Further, procedures for the design of respective
instruction exist (e.g., Nordine et al., 2019; Reiser et al., 2021).
Project-based learning can be considered a form of guided
inquiry learning, aligning with the call for doing science or
knowledge-in-use reflected in modern science education (e.g.,
National Research Council, 2012). In project-based learning
(Figure 5), students engage in inquiry processes to answer
a driving question. During the inquiry processes, students
engage in multiple epistemic activities that reflect scientific
practices to generate the required knowledge to answer the
sub-driving questions.

Thus, the basic building blocks for the design of instruction
are epistemic activities that are modeled on scientific practices
and respective learning progressions (e.g., Osborne et al., 2016)
as well as structural models (e.g., McNeill et al., 2006). Scientific
practices can be considered as sequences of certain smaller steps,
e.g., constructing a scientific explanation involves formulating a
claim, identifying evidence supporting the claim, and providing
the reasoning for why the evidence supports the claim (CER
scheme, McNeill et al., 2006; see also Toulmin, 2008). This
leads to the following principle building blocks of instruction
(Figure 6): a series of interactions that reflect the steps of the
scientific practices which function as epistemic activities that
are combined to answer a sub-driving question in a lesson
set and finally a series of lessons sets that answer a unit level
driving question.

As a result of the choice of project-based learning as a
model for instruction, the next step is identifying contexts and
phenomena that motivate and allow for learning about the
derived learning performances. Next, a driving question and
storyline need to be developed. This is an iterative process
where we used the storyline planning tool (Nordine et al., 2019)
although other models for planning respective instruction can
also be used in principle.
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FIGURE 4

A procedure for developing digital learning environments that allow for the automated assessment of learning.

FIGURE 5

Instruction in project-based learning.

Figure 7 shows an excerpt of the resulting storyline
including the driving question for the physic learning
environment. Based on the complete storyline, we carefully
checked to what extent all learning performances specified in
the competence model were covered in the unit and whether
the phenomena, contexts or instructional requirements such as
developing a need-to-know introduced new knowledge, skills,
abilities, or learning performances and accordingly revised the
competence model and storyline until alignment was reached.

At this point, the major components in the claim space and
instruction space are settled, i.e., the elements in the dashed
box in Figure 4 have been defined and brought into alignment.
Thus, the next step is to delineate the evidence space and task
space and bring them into alignment. In addition, the task model
needs to reflect the affordances of the learning environment, that
is, alignment between the instruction space and task space is also
needed. The goal of this alignment process is to specify a model
for the development of tasks for the learning environment
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FIGURE 6

Building blocks of instruction.

FIGURE 7

Excerpt of the storyline for the physics learning environment.

that are both engaging opportunities for learning and reliable
opportunities for valid assessments. For this purpose, we used a
method called Fellowship of the Learning Activity and Analytics
(FoLA2, see Schmitz et al., 2022). The method is based on the
Design Cycle for Education (DC4E) model (Scheffel et al., 2019)
and emphasizes collaboration between different stakeholders
such as educators, instructional designers, researchers, and
technology specialists. Figure 8 shows an example from our
design process. The general idea is to break-up an instructional
sequence into so-called interactions (middle row of the board in
Figure 8) and to define for each interaction how technology can
be used in a learning enhancing way (top row of the board in
Figure 8) and what it is that one wants to learn about students’
learning from that interaction (bottom row of the board in
Figure 8; note that we focused on students’ learning but the

focus of what one wants to learn about could also be different,
e.g., teachers use of the technology or how the technology was
used). This structure maps very well onto the smallest building
block of instruction in Figure 6, i.e., the individual steps of the
scientific practices also called interactions.

In the context of our project, the curriculum designers
first defined the sequence of interactions of each scientific
practice needed for the inquiry process in project-based
learning (Figure 5). Next, they worked with partners with
strong backgrounds in the learning sciences and educational
technologies to find learning enhancing technologies and
consider what one could learn about students’ learning – as
delineated in the claim space in form of a competence model –
from these interactions. By delineating how learning enhancing
technologies can be used in the different interactions, the
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FIGURE 8

FoLA2 use example for the scientific practice of asking questions, red and green boxes indicate how FoLA2 supports alignment between
different spaces in evidence-centered design.

alignment between the task space and instructional space is
brought about, emphasizing the perspective of instructional
and learning support in task design (red boxes in Figure 8).
Respectively, by delineating what we can learn about students’
learning from these interactions, alignment between the task
space and evidence space is facilitated, emphasizing the
assessment perspective in task design (green boxes in Figure 8).
As a result, we were able to develop templates for task design for
each scientific practice that provide engaging opportunities for
learning and reliable opportunities for valid assessments. With
these templates and the previously developed storyline, we could
now develop the actual tasks for the learning environment. This
represents the culmination of the design part in the assessment
argument in the standard evidence-centered design model (see
also Figure 2).

What follows after the design part in the assessment
argument is the use part of the assessment argument. Here,
the central element is to author evidentiary statements as the
basis for rubric design and scoring. Regardless of what exactly
one wants to assess, i.e., what knowledge, skills, abilities, and
learning performances, what can in principle be assess has
already been delineated using the Fellowship of the Learning
Activity and Analytics method which greatly reduces the work
in authoring evidentiary statements. In the context of our
project, we authored evidentiary statements for each interaction
in an epistemic activity. Based on the interaction, it can in
principle provide evidence about students’ knowledge, skills,
abilities, and the extent to which they have met a learning
performance. Figure 9 shows an excerpt from an evidentiary
statement from an asking questions epistemic activity. The
excerpt shows the first three interactions of the epistemic activity
in the sources of evidence column: (1) asking potential research
questions, (2) formulating hypotheses, (3) selecting hypotheses

to investigate. Crosses indicate which of the constructs in the
evidentiary statement column can be assessed in a respective
interaction. Evidentiary statements are listed for different kinds
of constructs (learning performances, knowledge elements, and
skills) to be assessed. The bottom row provides information
about the modality of each data source. Finally, the color-coding
(yellow and green) of the cells with row counts of the crosses
in the sources of evidence column can be interpreted as a
baseline indicator of reliability. For example, in case of the first
learning performance (Students ask research questions about
differences of Guppys), there is only one cross in the sources
of evidence column resulting in a row count of one, i.e., this
learning performance is only assessed in one interaction. In
contrast, for the second learning performance (Students develop
hypotheses for their research questions.) the row count is two,
i.e., this learning performance is assessed in two interactions.
Thus, with more opportunities for measurement, an assessment
of the second learning performance can be considered more
reliable than an assessment of the first learning performance.
In this way, the evidentiary statements provide the foundation
and guidance for preparing scoring rubrics and developing
(statistical) models for the evaluation of students’ learning based
on the artifacts they produce when they engage with the digital
learning environment.

As our extension of evidence-centered design does not add
innovations to the remaining steps toward a working digital
learning environment for the automated analysis of students’
learning, i.e., developing rubrics, scoring student answers,
and developing automated scoring procedures, we end the
description of the procedure at this point. However, we note
that while the description of the procedure here has been fairly
linear, the overall process is iterative in principle and can involve
multiple cycles to refine the digital learning environment and,
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FIGURE 9

Evidentiary statement excerpt from an asking question epistemic activity [Tasks adapted from: Staatsinstitut für Schulqualität und
Bildungsforschung München (2016, 08. Mai). Aufgabe: Guppys sind unterschiedlich. https://www.lehrplanplus.bayern.de/sixcms/media.php/
72/B8_LB_5_Evolution_Guppy.pdf].

if necessary, adapt it to changes in the context of the larger
educational system (e.g., changes in educational standards,
student population, available technologies, etc.) it is used in.

Discussion

In the preceding sections, we have presented an
extension of evidence-centered design – ECD4LPA –that

adds a new perspective in form of the instruction space.
Considering the instruction space is needed to design
tasks that go beyond the requirements of assessment and
reflect the needs of engaging (science and mathematics)
instruction. Further, we have presented a concrete procedure
including examples that show how a digital science and
mathematics learning environment can be developed
that allows for the (automated) analysis of students’
learning.
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The presented framework goes beyond existing extensions
of evidence-centered design (e.g., Arieli-Attali et al., 2019) in
that it incorporates a prominent role for the affordances of
designing coherent curriculum and engaging instruction – the
instruction space. At the same time, the presented framework
also goes beyond existing frameworks for the development of
(science and mathematics) curriculum and instruction such
as storyline units (Reiser et al., 2021) which lack an explicit
assessment perspective.

From an assessment perspective, the challenges of validity,
reliability, and equity always warrant discussion. The question
of the validity of the assessments that result from the proposed
framework is addressed through the very process of evidentiary
reasoning that is foundational to evidence-centered design.
In other words, if the proposed framework is thoroughly
implemented and the alignment between all components
critically investigated and rectified if necessary, a strong validity
argument in the sense of Kane (1992) can be made. To address
the question of reliability, we have incorporated a notion of
reliability in how we author evidentiary statements, i.e., the
color-coding in Figure 9 designed to highlight constructs that
are only measured once and thus have potentially low reliability.
This provides a chance for revising the instruction so that more
opportunities for measuring the respective construct arise. If
this is impossible, it may also be warranted to exclude the
construct from the assessment. However, before, excluding the
construct alternative measures of reliability for single item
measures could also be explored (e.g., Ginns and Barrie, 2004).
The remaining issue of equity remains a challenge. While
inquiry-based instruction (as emphasized in our examples)
can contribute to equitable science and mathematics teaching
(Brown, 2017) and frameworks such as Universal Design for
Learning (Rose et al., 2018) can support the development
process of equitable assessments, anchoring such practices and
frameworks in the instruction, task, and evidence space can only
represent a first effort toward equity. It will require continued
effort in the form critiquing and revising the developed
learning environments to realize an equitable science learning
(Quinn, 2021).

Equity is also an issue in the context of the learning
analytics which are envisioned in the framework and procedure
here. Recent research has demonstrated and documented the
widespread range of equity issues in the context of machine
learning or artificial intelligence methods, i.e., learning analytics
techniques, more broadly (O’Neil, 2016; Benjamin, 2019; Cheuk,
2021; Crawford, 2021). While frameworks for addressing equity
issues in learning analytics exist (e.g., Floridi et al., 2018),
they rarely provide guidance for the concrete issues and highly
disciplinary affordances that designers face (see also Kitto and
Knight, 2019). As the extension of evidence-centered design
(ECD4LPA) and the procedure presented in this manuscript are
about designing learning environments and assessments, future
work will need to sharpen out how to provide guidance that

is helpful for designers in addressing equity challenges in the
context of the learning analytics component.

Another area for future work regards the range of
learning analytics techniques that are relevant in this
framework. In this manuscript, the examples provided
focused mostly on student generated text were the techniques
to apply are straight forward in principle [e.g., using
standard student modeling techniques (Pelánek, 2017) and
supervised machine learning for text answers (see, e.g.,
Maestrales et al., 2021)]. However, as digital tools used in
classrooms such as tablet computers offer increasingly more
data sources such as video, audio, acceleration, etc. multi-
modal learning analytics (Lang et al., 2017) are increasingly
feasible. For example, Spikol et al. (2018) recently used
multi-modal learning analytics to predict engagement in a
project-based learning environment. Thus, an avenue for
future work in learning progression analytics is to explore
the potential of these techniques and further extend the
presented procedure to provide respective support during
the design process.

Another avenue for future work regarding both the
procedure and the learning analytics components is to move
beyond the focus on cognitive constructs reflected in the
examples in this manuscript. While evidence-centered design
is not principally limited to cognitive constructs in the sense
of knowledge, abilities, and skills, it has rarely been applied to
assess affective constructs such as engagement. However, affect
and motivation are important in science learning (Fortus, 2014).
Here, learning analytics techniques such as sentiment analysis
or automated emotion detection could be helpful to detect
students’ affective and motivational states and thus provide
an even more detailed picture of students’ learning (see also
Grawemeyer et al., 2017).

Finally, the framework and procedure presented here have
originated in work with a focus on science education. However,
in principle there are no reasons why the framework and
procedure might not be applied in the humanities and social
sciences as evidence-centered design which is foundational to
the framework and procedure is domain general. Adopting the
framework and procedure to learning in other domains would
require to reconsider the science education specific choices, e.g.,
the domain specific models of learning or the overall pedagogy.
In fact, Hui et al. (2022) provide a compelling example of how
a digital work book is used in English language learning to
monitor and model students’ learning.

Conclusion

We have motived the need for an extension of evidence-
centered design by introducing the vision of learning
progression analytics, i.e., delivering individualized (science
and mathematics) learning at scale using digital learning
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environments enhanced with artificial intelligence. The first
step in realizing this vision is to develop digital learning
environments that allow to automatically assess individual
students’ learning. We hope that the framework and procedure
presented in this manuscript can provide guidance and
orientation in the respective development process. Future work
will need to consider the next step – after students’ learning has
been assessed – more closely where another layer of complexity
is added to the design process of learning environments:
designing adaptive support systems such as feedbacks or
scaffolds and presenting assessment information to teachers in
a way that allows them to act in learning supporting ways based
on that information.
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