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Removal of motion artifacts is a critical challenge, especially in wearable
electroencephalography (EEG) and photoplethysmography (PPG) devices that are
exposed to daily movements. Recently, the significance of motion artifact removal
techniques has increased since EEG-based brain–computer interfaces (BCI) and daily
healthcare usage of wearable PPG devices were spotlighted. In this article, the
development on EEG and PPG sensor systems is introduced. Then, understanding of
motion artifact and its reduction methods implemented by hardware and/or software
fashions are reviewed. Various electrode types, analog readout circuits, and signal
processing techniques are studied for EEG motion artifact removal. In addition, recent
in-ear EEG techniques with motion artifact reduction are also introduced. Furthermore,
techniques compensating independent/dependent motion artifacts are presented
for PPG.

Keywords: wearable devices, electroencephalography, photoplethysmography, motion artifact removal, EEG
electrodes, digital signal processing, in-ear EEG, PPG artifact compensation

1 INTRODUCTION

Wearable devices have made significant progress in the field of health care, fitness, and diagnosis over
the past few decades. Unobtrusive, user-friendly, and long-term usable fully integrated wearable
systems enable healthcare devices to monitor the human body condition continuously and to give
feedback to users (Dias and Paulo Silva Cunha, 2018). The advances of application-specific
integrated circuit (ASIC) technology reduce the size of electrical devices, thereby increasing the
availability of small-size devices in everyday life (Yin and Ghovanloo, 2007; Zou et al., 2008). In
addition, recent substantial developments in computation algorithms and wide-bandwidth wireless
communication technologies foster the everyday use of wearable devices (Aun et al., 2017; Beniczky
et al., 2020). Especially in 2020, the World Health Organization (WHO) proclaims the COVID-19
pandemic, which increases the global demand for in-home patient monitoring based on the
temperature, respiration rate, and blood oxygen content (Chamola et al., 2020; Hedayatipour
and Mcfarlane, 2020). To get through this era, many researchers are currently proposing wearable
biosensors as a solution to an epidemic prevention system against COVID-19 (Seo et al., 2020; Shan
et al., 2020; Zhao et al., 2021; LifeSignals, 2021).

Figure 1 shows several kinds of the current wearable healthcare devices measuring various bio-
signals such as electroencephalography (EEG), photoplethysmography (PPG), and
electrocardiography (ECG). EEG devices in Figure 1A, mostly worn on a head, are utilized for
attention training, sleep stage monitoring, machine controlling, and seizure detecting by analyzing
human brain activity. PPG signals, especially used in the sports field to monitor the amount of
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exercise, are also collected with wearable devices spread widely on
the body in the form of smartwatch, earphone, clothes, and patch
as depicted in Figure 1B. Moreover, the heart rate (HR) or
biochemical levels (e.g., glucose) can be analyzed as well by
using smartphone-linked wearable devices so as to help
diagnose diseases such as arrhythmia or diabetes in daily life,
as shown in Figures 1C,D.

As the demand for continuous monitoring bio-signals in daily
life greatly increases, many attempts have been made to
implement long-term robust recording of ambulatory bio-
signals. Especially, wearable EEG and PPG devices are
spotlighted owing to wide applications and prominent user
convenience. EEG can provide long-term real-time
neuromonitoring in a safe and noninvasive manner. Moreover,
compared with other bio-signals, EEG has been used for the
broader field of applications, including neurological disorder

management, emotional monitoring, and brain–computer
communication. In addition, PPG has received great attention
in the wearable healthcare market because PPG enables single
spot acquisition with convenient light-based devices, and
therefore possibly allows for daily life cardiovascular
monitoring for the management of major adult diseases. The
significance of PPG recently skyrockets owing to its possibility for
the early detection of COVID-19 (Guler et al., 2020).

However, unfortunately, the current wearable devices for EEG
and PPG recording cannot completely avoid issues coming from
motion artifacts. It is because motion artifacts typically are at least
ten times greater in amplitude than bio-signals. Particularly,
solving the artifact issues in EEG applications is a difficult task
due to its smaller amplitude and nonstationary waveform than
other bio-signals. For PPG monitoring, motion artifact caused by
sensor displacement is a major signal distortion source in

FIGURE 1 | State-of-the-art wearable healthcare devices: (A) EEG monitoring headset (EMOTIV, 2021; Cognionics, 2021; NeuroSky, 2021); (B) PPG devices in
the form of earplug (FreeWavz, 2021), watch (Apple, 2021), band (Humon, 2021), and socks (Owlet, 2021); (C) heart rate monitoring device (Wahoo Fitness, 2021; and
(D) skin contact sweat patch (Epicore Biosystems and Gatorade, 2021), continuous glucose monitoring system (Dexcom, 2021), and insulin management system
(Insulet Corporation, 2021).
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ambulatory conditions. In addition to motion artifacts, many
kinds of physiological artifacts and electromagnetic interference
are also challenging hurdles of accurate EEG and PPG
measurement in daily life.

While various articles rigorously review artifact reduction
schemes for EEG (Xu et al., 2017; Jiang et al., 2019; Shad
et al., 2020) and PPG (Periyasamy et al., 2017; Biswas et al.,
2019), this article covers cross-border EEG motion artifact
removal schemes that can be utilized at each part of the entire
acquisition system: from the recording front-end hardware to the
processing algorithm software, emphasizing the necessity of a
diversified approach on the artifact issues. Furthermore, in-ear
EEG researches that are actively studied in recent years are
carefully reviewed from a perspective of the motion artifact
removal. While a standard for classification of PPG motion
artifact compensation methods based on the dependency
relationship between motion artifact and PPG signals is
suggested, techniques using learning-based systems such as
deep learning and support vector machine are also included as
emerging strategies.

In the following sections, we review state-of-the-art solutions
tackling various motion artifacts in EEG and PPG wearable
devices. In Section 2, the background of EEG and PPG
including fundamentals, history, and research trends are
studied. In Section 3, methods to alleviate motion artifact
from EEG are reviewed in the aspects of the electrodes,
electric circuits, and signal processing. In Section 4, PPG
motion artifact compensation methods are presented with the
relationship between PPG signal and motion artifact, followed by
conclusion in Section 5.

2 FUNDAMENTALS OF BIO-SIGNALS

EEG and PPG are the most common bio-signals that are collected
by wearable devices for research and/or clinical purposes.
Therefore, in this section, the fundamentals of EEG and PPG
are studied.

2.1 Electroencephalography (EEG)
Electroencephalography (EEG) is the brain’s spontaneous
electrical activity recorded on the scalp surface in a
noninvasive fashion. It reflects the current flow during
synchronized excitation of multiple pyramidal neurons in the
cerebral cortex (Silva and da Silva, 2005; Teplan, 2002).
International Federation’s 10–20 system is used for standard
electrode placement in human EEG recording (Jasper, 1958).
The amplitude of scalp-recorded brain wave is approximately
20–200 μV and typically classified according to frequency:
alpha (8–13 Hz), beta (14–30 Hz), gamma ( > 30 Hz), theta
(4–7 Hz), and delta ( < 3.5 Hz) (Webster, 2009). EEG
provides useful information on human brain functions
including cognition (alertness and cognitive engagement),
disease (epileptic seizure and sleep disorder), and the effect
of drugs (Bickford, 1987).

Both applications and acquisition techniques of EEG have
been significantly developed, as shown in Figure 2A. After Hans

Berger (1873–1941) successfully obtained human EEG from the
scalp, clinical EEG studies related especially on epilepsy were
actively carried out by researchers including William G. Lennox
(1884–1960) and Frederick Gibbs (1903–1999) (Mecarelli, 2019).
Recently, the range of applications is being extended to sleep
research, brain–computer interfaces (BCI), neuromarketing,
neuroprosthesis, augmented cognition, and neurofeedback
(Wolpaw et al., 2002; Xu and Zhong, 2018; Abiri et al., 2019).
In addition to EEG applications, accurate and comfortable EEG
acquisition techniques have been evolved by decreasing the size of
EEG devices. Large EEG recording units should be located outside
of recording sites. As such, a long wire connection between the
recording unit and electrodes is mandatory. This results in
various problems including motion artifact, limited mobility,
cross-talk, and interference. However, recent small-form factor
energy-efficient integrated circuit (IC) chips for an amplifier, an
analog-to-digital converter (ADC), and a wireless transmitter
allow for miniaturized battery-operated EEG units.
Consequently, preparation process is much simplified, and
long-term recording becomes more feasible (Casson et al., 2008).

As EEG technology has advanced, researchers attempted to
record EEG from ear canals, called in-ear EEG (Looney et al.,
2011; Kidmose et al., 2012). In order to assess the validity of in-ear
EEG data, several well-known paradigms such as alpha
attenuation response (AAR) and auditory steady-state response
(ASSR) are widely utilized (Kidmose et al., 2013; Mikkelsen et al.,
2015). These paradigms confirm that temporal lobe EEG and in-
ear EEG contain similar information. Furthermore, themethod to
create an in-ear EEG forward model has been developed, which
enables mapping the brain sources to potentials in the ear
(Goverdovsky et al., 2017; Kappel et al., 2019a). In near future,
the in-ear EEGmethod is expected to analyze EEG and treat brain
diseases through both sound and electrical stimulation in real
time by adding in-ear EEG recording function into a currently
used wireless earphone.

2.2 Photoplethysmography (PPG)
Photoplethysmography (PPG) is a noninvasive photoelectric
technique detecting blood volume changes in the
microvascular bed of tissue (Challoner, 1979). The spectrum
of PPG ranges from 0.5 to 4 Hz (Carr and Brown, 1998),
while the amplitude of that heavily depends on transmitted
power via a light source including a light-emitting device
(LED). PPG signal is composed of slowly changing quasi-DC
baseline and pulsatile components. Quasi-DC baseline is mostly
induced by variation in reflection or transmission from the tissue,
bone, and sympathetic nervous system, while pulsatile
components are synchronous with the heartbeat (Utami et al.,
2013). The signal is recorded by a pulse oximeter which computes
peripheral oxygen saturation for clinical purposes using different
light absorption rates on oxygenated hemoglobin (Sabeti et al.,
2019). Heart rate monitoring based on PPG has become a popular
alternative to that based on ECG since PPG signal can be recorded
on a single spot of diverse body regions such as fingertips, wrists,
or thighs (Castaneda et al., 2018). PPG also contains various vital
information including cardiac output, arterial aging, endothelial
function, and autonomic function (Allen, 2007).

Frontiers in Electronics | www.frontiersin.org May 2021 | Volume 2 | Article 6855133

Seok et al. EEG/PPG Motion Artifact Removal

https://www.frontiersin.org/journals/electronics
www.frontiersin.org
https://www.frontiersin.org/journals/electronics#articles


The development of the PPG technique from the first blood
flow experiment to modern commercialized PPG products is
shown in Figure 2B (Wolling et al., 2019). The first real-time
blood flow assessment with early light bulbs was conducted in
the late 1800s. From 1977, when the first commercial PPG
device was successfully launched, the paradigm in
commercialized PPG products has shifted from clinical use
in medical industries to the use in the home environment
with the development of a self-contained pulse oximeter.
Also, the miniaturization allows for the usage of PPG devices
as wearable devices. As a result, the PPG industry has been
expanding beyond the existing nonambulatory applications
such as sleep apnea detection toward ambulatory
environments including personal monitoring devices in sports.

Especially, due to recent COVID-19, research interest in PPG
devices dramatically increases. Under silent hypoxia which is an
early stage of COVID-19, the oxygen saturation level of a patient
decreases to a specific deficient level (less than 60%) without any
symptom such as shortness of breath, leading to severe lung
damage (Guler et al., 2020). However, since the PPG technique
extracts oxygen saturation rate, a device continuously monitoring
PPG possibly detects silent hypoxia.

3 ELECTROENCEPHALOGRAPHY MOTION
ARTIFACT REMOVAL

EEG artifacts are undesirable inputs superimposed on measured
EEG. Motions, electrophysiological signals excluding EEG, and
electromagnetic interference, such as various sources, can cause
artifacts. In both clinical and daily life applications, artifacts are a
major hurdle in the interpretation of EEG signal since artifacts
reduce the accuracy of automated classification of signal
sequences for clinical diagnosis (Islam et al., 2020) and disturb
the operation of the BCI system (Guarnieri et al., 2018). In
particular, motion artifacts in wearable devices have been a
key challenge due to the inevitable body and device movements.

3.1 Understanding of
Electroencephalography Motion Artifact
Motion artifacts are unwanted electrical input induced by
physical movements of the body and measurement system.
There are two large categories of motion artifacts (Cao et al.,
2015). First, motions of the measurement system physically
disturb the signal path, which can be converted to motion

FIGURE 2 | History of bio-signals from its first experiment to modern commercialized products: (A) EEG (Blom and Anneveldt, 1982; g.tec, 2021; NeuroSky
MindWave, 2021; Kappel, 2018) and (B) PPG (Nellcor, 2021; Nonin Medical, 2021; Tamura et al., 2014; Poh et al., 2010)
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artifacts. Second, motions of subjects generate
electrophysiological signals such as electromyogram (EMG)
and electrooculogram (EOG), which is often superposed on
EEG signals as artifacts. While the source of physiological
artifacts is relatively clear, it needs to deeply study the main
causes of motion artifact coming from the movement of the
measurement system.

Figure 3 shows an electrical model of the EEG measurement
system, which helps understanding the origin of motion artifacts.
From the brain to the readout circuit, every body part and device
component are composed of different materials transferring the
brain signal from its source. Even distinguished parts are modeled
as electrical components such as resistors and capacitors (Chi
et al., 2010). A resistor Rbody represents the resistance of brain
tissues, cranium (skull), and inner layers of the skin. The electrical
properties of inner tissues are simplified to a single resistor, Rbody ,
since the resistance of the inner parts is relatively small and not
controllable.

Electrode–skin interface (ESI) is physical contact of the
outermost skin and the electrode. The impedance of ESI (ZESI)
describes electrical characteristics between Rbody and the
impedance of the electrode, ZE, and is strongly affected by the
type of contact (wet, dry, and noncontact). The impedance of the
outermost skin, called stratum corneum, is about 1MΩ||10nF
when the skin is dry. By applying the conductive gel or saline, the
impedance value is reduced to 100kΩ||10nF, so wet electrodes
minimize the signal attenuation (Shad et al., 2020). Other than
the impedance of the stratum corneum, pressure, electrode
structure, and skin environment factors such as sweat and
hairs also influence the impedance of ESI since the ESI

capacitance easily varies ranging from few pF to hundreds of
pF by the contact status (Chi et al., 2010; Yousefi et al., 2020). This
is the reason why dry and noncontact electrodes are much
vulnerable to motion artifacts. Unfortunately, however, for
wearable device applications, dry and noncontact electrodes
are preferable over wet electrodes owing to the possibility of
their long-term use and user convenience. Motions of the
measurement system swing the ESI impedance and result in
distortion and disturbance in EEG recording. The voltage gain
from Vsignal to Vin is

Vin � Zin.Amp.

Zpath + Zin.Amp.
Vsignal, (1)

where Zpath � RBody + ZESI + ZE . This formula emphasizes the
impact of ZESI variation, which directly changes the amplitude
of the output signal due to gain distortion (Song et al., 2014;
Dabbaghian et al., 2019).

In addition to the gain variation, the change of ESI capacitance
generates the unwanted current across the ESI, expressed in

iC(t) � C
dVC

dt
+ VC

dC
dt

, (2)

where C, VC , and iC are the ESI capacitance, the voltage across the
C, and the current flow through the C, respectively. If the ESI
capacitance changes while a voltage across the capacitor is
applied, the charges stored in the capacitance flow in order to
compensate for the capacitance change. Since the input
impedance of the readout circuits is high, the current is
converted into voltage and appears in the EEG signal as
drifting baseline (Mihajlović et al., 2013; Yousefi et al., 2020).

FIGURE 3 | An anatomical graphic of the EEG signal path and the corresponding electrical model (Chi et al., 2010; Shad et al., 2020). Vsignal : voltage signal from the
brain; Vin: readout circuit input signal; ZESI, Zgel , Vs.c, and ZE : impedance values of ESI, conductive gel, stratum corneum, and electrode, respectively; Zin.Amp: input
impedance of the readout circuit; Vhc: half-cell potential; Zc: contact impedance at ESI; Cgap: capacitance at the noncontact interface.
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Half-cell potential fluctuation is also a significant source of
motion artifacts. Figure 4 visualizes the electrical model of the
ESI with a pair of electrodes (wet or dry) collecting a differential
input. Even using two identical electrodes, half-cell potentials
may be different from each other, and the difference of half-cell
potentials slowly varies possibly due to movement. This is a main
culprit for large time-varying DC offset (wet electrodes: < 50mV ,
dry electrodes: < 300mV) (Liu et al., 2020). Moreover, the
impedance mismatch between two ESIs induced from
movements reduces the common-mode rejection ratio
(CMRR) of the differential recording. This is a significant
issue since the common-mode signal ((Vsignal1 + Vsignal2)/2) is
typically two or three orders of magnitude larger than differential
signal (Vsignal1 − Vsignal2)/2.

3.2 Methods to Reduce
Electroencephalography Motion Artifacts
For wearable applications, methods to alleviate motion artifacts
are especially important compared to clinical EEG applications
focusing on blocking electromagnetic interference and other
physiological signals such as ECG and EOG (McFarland et al.,
1997; Fatourechi et al., 2007). There is no single omnipotent
solution to solve all motion artifact issues. Various methods
applied to each part of the EEG recording system including
electrodes, readout circuits, and digital processing should be
studied altogether (Fatourechi et al., 2007).

3.2.1 Types of Electrodes
Shapes and materials of electrodes determine impedance and
stability of the ESI. Wet Ag/AgCl electrodes (Figure 5A) are
common in clinical EEG recording owing to its high stability, low
ESI impedance (≪ 100kΩ), and thus, low noise level (Li et al.,
2017). Dry electrodes (Figure 5B) have been utilized in wearable
EEG devices for better user convenience (Matsuo et al., 1973;
Taheri et al., 1994; Grozea et al., 2011). The ESI impedance of dry
electrode for one square centimeter is about 1MΩ at 10 Hz (Chen
et al., 2014), which is much bigger than that of wet electrodes.
While noncontact electrode possibly removes half-cell potential
variation, it could induce a significant baseline drifting.

Considering the stability of ESI and motion artifacts, dry
contact electrodes have been regarded as a gold standard for
long-term EEG wearable devices. As such, various shapes and
materials of dry electrodes have been suggested. Fingers of dry
electrodes were designed to avoid incomplete and unstable
contacts caused by hairs at the ESI (Figure 5C). To prevent
the movements at the contact interface and improve user
comfort, dry electrodes made of flexible materials (Figure 5D),
such as ethylene propylene diene monomer (EPDM) and
polydimethyl-siloxane (PDMS), were developed. Some dry
flexible electrodes modified from finger types show better
performance. Reverse-curve arch-shaped dry electrode
(Figure 5E) and bristle-type electrode (Figure 5F) have a
larger contact area and thus smaller ESI impedance, and the
flexibility of the material provides better user comfort.
Furthermore, to overcome the high impedance of dry
electrodes, microneedle array electrodes (MAE) were

developed. Microneedles penetrate the stratum corneum
(15 − 20 μm) and reduce the ESI impedance to the wet
electrode level (≪ 100kΩ) (Figure 5G) (Ren et al., 2020a, Ren
et al., 2020b).

On the other hand, another type called semidry electrodes
(Figure 5H) supply a minimal amount of conductive fluid/gel on
the interface by continuously supplying the liquid from its
reservoir. A semidry electrode maintains the interface to have
conductive fluid of tens of microliter (Li et al., 2020) so that the
amount of fluid is less than that of a wet electrode (1 − 2mL). For
this reason, the ESI impedance of semidry electrodes is about tens
of kΩ at 1kHz, and the short-term and the long-term stability are
comparable to those of wet electrodes (Li et al., 2017).

The structure and the physical properties of entire EEG
recording systems are also important for interface contact.
When the stable contact is supported by applying mechanical
pressure using springs, motion artifact occurrence is relatively
avoided (Chen et al., 2015). A flexible, thin, and light EEG-
recording system implemented with a flexible printed circuit
board (FPCB) and small IC technologies (Figure 5I) provides
tight contact to the forehead.

3.2.2 Active Electrode and Analog Circuits
Recent advances in IC technologies enable a bench-top recording
system to become wearable by locating integrated small-form
factor amplifiers directly on the electrodes. This architecture is
called active electrode (AE) and removes long wire connection
between electrodes and a recording system (Xu et al., 2017). By
minimizing the wire connection, this active electrode architecture
has various advantages over passive electrodes: 1) it shortens high
impedance connection which is very vulnerable to any
interference, 2) it allows the recording system to have
ultrahigh input impedance ( ∼ TΩ), 3) it minimizes motion
artifacts induced from wire tension, and 4) it enables wireless
wearable devices. To further reduce motion artifact effects, AEs
may contain additional circuitry to enhance input impedance,
eliminate DC offsets, and reduce the effect of ESI variation.

FIGURE 4 | Electrical model of the ESI and two electrodes: variability of
the ESI impedance and the half-cell potential causes motion artifacts.
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Impedance bootstrapping is a popular method to boost the
input impedance of AEs. The current supplied by a positive
feedback loop, Ifb, cancels the input current from an electrode Iin
to charge Zin, as illustrated in Figure 6A. When Ifb is equal to Iib,
input impedance seen from the electrode becomes infinite (Xu
et al., 2017). However, it is not easy to exactly estimate Zin.
Furthermore, the loop gain of the positive feedback should be less
than unity for stability. Therefore, fine-tuning of Zfb is necessary.
Several works achieve high input impedance ranging from
hundreds of MΩ to few TΩ (Chi et al., 2011; Xu et al., 2011).
Other methods increasing the input impedance have also been
suggested. The nullification of MOSFET parasitic capacitance by
a unity-gain buffer and active shielding of the input signal line
successfully minimizes the parasitic capacitance (Joshi et al.,

2016). In addition, in chopper-stabilized amplifiers, input
coupling capacitors are regularly switched, and pre-charging of
the input coupling capacitors by buffers before the chopping
phase also decreases the input capacitance (Chandrakumar and
Marković, 2016).

For the compensation of DC offset induced by the half-cell
potential variation by movement, an integrator is often inserted
in a negative feedback loop of the instrumentation amplifier, and
this loop is called a DC servo loop (DSL) (Figure 6B) (Song et al.,
2015). DSL sets the output DC voltage as a reference level via
negative feedback, regardless of the input DC level. It removes
frequency components below the integrator cutoff frequency that
is usually near 0.1 Hz. To attain low cutoff frequency, a GΩ range
resistance is required. In CMOS applications, resistor-emulating

FIGURE 6 | Various circuit techniques in active electrode architectures for motion artifact reduction. (A) Input impedance boosting, (B) DC offsets elimination, and
(C) motion artifact detection.

FIGURE 5 | Types of electrodes: (A) patch-type wet electrode, (B) dry electrode, (C) dry electrode with fingers (Liao et al., 2009), (D) flexible dry electrode
(Dätwyler, 2021), (E) reverse-curve arch-shaped dry electrode (Lee et al., 2015), (F) bristle-type electrode (Grozea et al., 2011), (G) microneedle electrode (Ren et al.,
2020a)), (H) semi-wet electrode (Wang et al., 2016), and (I) flexible EEG system (Dabbaghian et al., 2019).
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circuits such as pseudo-resistors, switched-capacitor resistors,
and switched-resistor resistors are adopted (Xu et al., 2017).
Since the time constant of the integrator is large, an active
electrode with the DSL often takes a long time for DC
settlement. Digitally controlled DC servo loop (DCDSL) can
relieve this issue by supplying instant large current when Vout

is outside a certain range (Schönle et al., 2013; Liu et al., 2020).
Figure 6C shows a technique that monitors the ESI variation

induced from movement and compensates for the effect of the
variation by controlling the gain of an amplifier, deleting
recorded data, or separating clean EEG signal from
contaminated data. For the ESI monitoring, an additional
sensor is required that monitors the ESI impedance. This
impedance sensor 1) injects current to the ESI and measures
voltage at the ESI (Bertrand et al., 2013; Song et al., 2014), or 2)
applies intentional DC bias to the ESI and measures amplified
current induced by movement based on Eq. 2 (Dabbaghian and
Kassiri, 2020). In addition, movement itself can be directly
detected by using a mechanical sensor (Goverdovsky et al.,
2014; Nordin et al., 2018). Based on the sensed information,
contaminated EEG data by motion are either recovered by
separating/offsetting motion artifact only, or ignored by not
transferring them to Dout .

3.2.3 Signal Processing Algorithms
Signal processing algorithms are powerful for EEG artifact
removal. Various processing methods including regression,
adaptive filtering, blind-source separation (BSS), single-
channel source separation, and machine learning have been
applied. For proper application of each method, the types of
targeted artifacts, the number of signal channels, and the
existence of artifact-referencing channels should be
considered. In many cases, two or more methods are used
together to obtain the optimum efficacy.

Regression subtracts artifacts from contaminated EEG signals
under an assumption that the measured EEG is the linear
combination of clean EEG and artifacts. The artifacts can be
estimated from artifact-referencing electrodes or raw
contaminated EEG signals. For EOG and ECG artifacts whose
origins are relatively clear, artifact-referencing electrodes provide
information on the artifacts (Fortgens and De Bruin, 1983;
Woestenburg et al., 1983). Adaptive filter (Figure 7A) is a
concept extended from regression, in which the weight for the
artifact subtraction is continuously modified by filter algorithms
such as least mean squares (LMS) (Marque et al., 2005).

Recent removal methods tend to avoid using any artifact-
referencing electrode or other prior information. Blind-source
separation (BSS) is a group of algorithms for separating artifact
components from multiple-channel EEG signals (Figure 7B),
such as independent component analysis (ICA) and canonical
correlation analysis (CCA) (Jiang et al., 2019). ICA finds a set of
signal components by decomposing multichannel EEG so that
each component has maximum non-Gaussianity. Artifact
components are manually or automatically selected among the
separated components and then removed, resulting in clean EEG
(Albera et al., 2012; Oliveira et al., 2016). CCA utilizes the
correlations among the dataset. Using the fact that EEG
typically has high autocorrelation coefficients while EMG has
low coefficients, CCA is able to effectively remove EMG artifacts
(Radüntz et al., 2017; Chen et al., 2018). Other physiological
artifacts having low autocorrelation coefficients are also possibly
removed by CCA.

Moreover, source separation techniques for single-channel
EEG based on wavelet transform (WT) and empirical mode
decomposition (EMD) are also frequently used. Wavelet
transform decomposes a signal into a sum of wavelet
functions, with coefficients encoding both time and frequency
domain information. Threshold method or total variation
denoising scheme filters out artifact components to restore the
clean EEG signal (Krishnaveni et al., 2007; Gajbhiye et al., 2019).
EMD is an algorithm to decompose a nonlinear and
nonstationary signal into a certain set of intrinsic mode
functions (IMF). EMD is used by itself or together with other
source separation methods such as ICA, CCA, andWT to remove
physiological artifacts and motion artifacts (Safieddine et al.,
2012; Bono et al., 2016; Chen et al., 2018). Furthermore,
machine learning algorithms such as supervised learning are
combined with the source separation techniques for detecting
and classifying artifacts automatically (Jafari et al., 2017; Radüntz
et al., 2017).

3.3 Methods to Reduce In-Ear
Electroencephalography Motion Artifacts
Even though EEG measurement technology has made great
progress on human brain monitoring, conventional EEG
devices have several drawbacks in using it in daily life,
including large volume, weight, and long preparation time.
Therefore, these EEG devices have been mostly used for
clinical and research purposes only. To tackle these difficulties,

FIGURE 7 | Signal processing schemes for EEG motion artifact removal: (A) adaptive filter and (B) blind-source separation.
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recent research trend is guided to implementing comfortable EEG
devices. One of the great examples is an in-ear EEG device, which
records EEG fromwithin the ear canal using embedded electrodes
on an earplug-shaped earpiece (Looney et al., 2011; Kidmose
et al., 2012), as shown in Figure 8.

There are some crucial advantages of in-ear EEG compared to
conventional EEG. First, earpieces are compact, unobtrusive, and
comfortable, enabling devices to become more portable and
wearable for everyday use (Looney et al., 2012; Kidmose et al.,
2013). Second, electrodes on earpieces are held firmly in place
owing to the tight fit between the earpiece and the ear canal,
resulting in fewer motion artifacts (Looney et al., 2012). Third,
any electromagnetic interference is significantly reduced because
conductive medium such as skin and tissue surrounds the ear
canal (Looney et al., 2011). Last, EEG recording modules
including artifact reduction schemes can be integrated in a
commonly used Bluetooth earphone, opening a window
toward a healthcare earphone in near future. By these
structural and electrical advantages, in-ear EEG is gaining
significant research interests. Especially, earpiece, electrode,
and circuit design to measure more accurate EEG signals as
well as to reduce motion artifacts are studied.

Early studies have mostly used customized earpieces which
fix electrodes in certain ear canal position tightly, minimizing
the effect of user movement (Kidmose et al., 2013; Bleichner
et al., 2015; Mikkelsen et al., 2015). Generic reusable earpieces,
however, are indispensable for commercializing the in-ear EEG
system that all users can use immediately in real life. Several
kinds of generic earpieces are developed by using memory foam
with Ag-coated cloth (Goverdovsky et al., 2016, Goverdovsky
et al., 2017; Nakamura et al., 2018), Ag spray-coated
polycarbonate (Kaveh et al., 2020), CNT/PDMS-based canal-
type ear electrode cap (CEE) (Lee et al., 2014), and silvered glass
silicone CEE (Dong et al., 2016). Viscoelastic flexibility and
pressure between earpiece materials and ear canal allow a device
to be held more softly and firmly, reducing both motion artifacts
and user discomfort.

In addition to changing materials of earpieces and electrodes,
circuit design techniques also significantly reduce motion
artifacts. Although in-ear EEG is more immune to eye
blinking, it is yet vulnerable to artifacts caused by jaw and
head movement because of its passive electrode with long wire
connection (Kappel et al., 2014; Kappel et al., 2017). Following
on-scalp EEG, dry and active electrode circuits using impedance
boosting, DC servo loop, and active shielding techniques are also
applied to the in-ear EEG system for motion artifact reduction
(Zhou et al., 2016; Kappel and Kidmose, 2018; Kappel et al.,
2019b; Lee et al., 2019). All of these circuit architectures can be
implemented by recent advanced integrated circuit (IC)
technology for miniaturization. Furthermore, measuring in-ear
EEG using wireless communication technology such as Bluetooth
low energy (BLE) is utilized to diminish the effects of wire
connections (Dong et al., 2016; Lee et al., 2019; Kaveh et al.,
2020). Therefore, it is possible to minimize the size of the device
and to transfer recorded EEG data to the mobile phones
wirelessly, enabling further reduction of motion artifacts.
Table 1 shows a comparison of the state-of-the-art in-ear EEG
studies.

4 PHOTOPLETHYSMOGRAPHY MOTION
ARTIFACT REMOVAL

PPG is also vulnerable to various artifacts. Here, factors of artifacts
and compensation techniques depending on the statistical
relationship between PPG and motion artifacts are presented.

4.1 Understanding of
Photoplethysmography Motion Artifact
A complete PPG signal can be simply modeled with the following
representations (Shaltis, 2008):

Input � Namb. + Nmech. + Nelec. + Nvas. + Svas., (3)

FIGURE 8 | Wireless in-ear EEG recording concept (Looney et al., 2012).
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where Input is a total PPG signal, while Namb., Nmech., Nelec., Nvas.,
and Svas. are the effects of environmental light, movement of PPG
sensors on skins, electrical noise from sensors, vascular dynamics
by physiological phenomena, and the signal of interest created by
blood pulsation, respectively. Eq. 3 can be simplified by excluding
Namb. and Nelec. with an assumption that these factors can be
minimized by proper circuit techniques such as chopping
stabilization and low-noise circuit design techniques. Nmech.

and Nvas. are related to motion, and thus, the sum of these
two factors can be considered as motion artifacts, as illustrated
in Figure 9. Motion artifact is a major hindrance in high-quality
recording of PPG signal (Poets and Stebbens, 1997; Hayes and
Smith, 1999; Rhee et al., 2001).

4.2 Methods to Reduce
Photoplethysmography Motion Artifacts
Conventional spectrum filtering methods have limitations on
compensating for motion artifacts since the spectrum of body
motions and that of PPG signal are partially overlapped (Rusch
et al., 1996). Therefore, methods have been developed to solve the
problem, depending on sources of PPG signal and motion
artifact.

4.2.1 Independence-Based Compensation
If the event of motion has no or limited impact on blood
pulsation, then PPG and motion artifacts are considered as
independent. Several compensation methods under the
assumption of the independence between PPG and motion
artifacts have been suggested. Among them, three important
techniques such as independent component analysis (ICA),
adaptive noise cancellation (ANC), and Fourier series analysis
(FSA) are studied.

One of the most representative source separation techniques
for independent variables is ICA, as shown in Figure 10A. The
purpose of the algorithm is to estimate unmixing matrix W to
separate n independent sources frommmixtures where mixtures
are assumed to follow Gaussian distribution, and usually, m � n
(Hyvarinen, 1999). To draw non-Gaussian sources from the
mixtures, an initial W is set at first. It is multiplied with the
mixture matrix (M), and the joint probability distribution
function of W ×M is obtained. Likelihood function l(W,M)
of the distribution function is estimated and partially
differentiated by W. Then, W is updated until l(W,M) gets
the extreme point where the Gaussianity of the joint probability
distribution function is minimized. Finally, independent m
sources are obtained through S � W ×M. To increase the

TABLE 1 | Comparison between recent in-ear EEG studies.

References Electrode material Contact type Channel/
earpiece

Electrode
area (mm2)

Wireless Earpiece
style

Artifact rejection

Kidmose et al. (2012) Ag Wet 2 20 N Custom —

Lee et al. (2014) CNT/PDMS Dry 1 — N Generic Standard–shaped Flexible earpiece
Goverdovsky et al.
(2016)

Ag-coated Nylon
cloth

Wet 2 40 N Generic Viscoelastic memory foam earpiece

Zhou et al. (2016) — Dry 2 0.8* N Custom Active electrode, DSL, impedance
boosting

Dong et al. (2016) Silvered glass silicon Dry 1 — Y* Generic Electrode with soft supporting material
Kappel et al. (2019b) IrO2 Dry 6** 9.6 N Custom Active shielding Flexible joint earpiece
Lee et al. (2019) — Dry 2 — Y Custom Wireless EEG Recording IC chip
Kaveh et al. (2020) Ag Dry 4 60 Y Generic Wireless neural Recording module

*Estimated.
**All electrodes on earpiece.

FIGURE 9 | Major factors for PPG recording: (A) environmental and vascular factors for PPG recording and (B) simplified model focusing on motion artifacts.
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performance of the ICA algorithm and to overcome information
loss, pre- and/or post-processors are used (Kim and Yoo, 2006;
Krishnan et al., 2010; Ram et al., 2013; Lo and Meng, 2016; Luke
et al., 2018). As an example of preprocessing, ICA-based
improved dual-tree complex wavelet transform (I2DTCWT)
(Ram et al., 2013) separates cardiac component first and
applies ICA algorithm to obtain motion artifact without losing
the respiratory information. Finally, by subtracting motion
artifacts from contaminated input, PPG signal with intact
respiratory data can be restored.

Figure 10B shows an adaptive noise cancellation (ANC)
scheme that is very useful when noise references are available
(Liang et al., 2015). For motion artifact reduction, noise
references reflect various motion information (Chowdhury
et al., 2018; Arunkumar and Bhaskar, 2020). By applying
an adaptive filter to input from noise references, Y(n) is
obtained. Y(n) should be as close to that of the original noise
component N(n) as possible. This is conducted by
iterative processes changing the weight coefficient of the
adaptive filter. The difference output E(n) finally becomes the
estimated clean PPG signal Ŝ(n) when the gradient of power of
E(n) crosses a zero point from negative to positive in iterative
processes. Owing to its simple algorithm, the speed of the ANC
algorithm is fast. The algorithm, however, is vulnerable when
S(n) andN(n) are spectrally overlapped (Zhang et al., 2015; Yang
et al., 2018).

Fourier series analysis (FSA) illustrated in Figure 10C
(Bracewell, 2000) is based on the Fourier theorem that any
periodic signal can be decomposed into a set of sinusoidal
waveforms including a fundamental frequency and its
harmonics. A contaminated PPG signal is first trimmed by a
preprocessor such as a bandpass filter to decrease noise. Then,
the fundamental frequency of PPG is determined by period-
detection algorithms, and Fourier coefficients of the
fundamental and representative harmonics are calculated
(Yang and Tang, 2014; Sadhukhan et al., 2018). By applying
inverse Fourier transform to these coefficients, a clean PPG
signal is reconstructed. In addition, techniques for FSA are
further improved (Reddy et al., 2009; Raj et al., 2019). For

example, the fundamental frequency is obtained by cycle-by-
cycle Fourier series analysis (CFSA) for a short time window to
overcome the quasiperiodicity of PPG.

4.2.2 Dependence-Based Compensation
Whether PPG and motion artifact are independent or not is an
ongoing controversial issue (Reddy and Kumar, 2007; Ram et al.,
2012; Agarwal et al., 2013; Raghuram et al., 2014; Nie et al., 2020).
The possibility that motion can affect arterial flow has been
increased (Yao and Warren, 2005; Lo et al., 2017). The arterial
volume variation in a stationary condition dAs

��→
and that in a

motion condition dAm
���→

were carefully studied, which insists that
the correlation between dAs

��→
and dAm

���→
is less than a half for every

event of motion. This means that motion might affect arterial
volume variation, and thus subsequently PPG signals. Therefore,
software-based techniques compensating dependent motion
artifacts have been actively developed. The algorithms are
mainly divided into two categories without/with learning-
based artificial intelligence systems, which is illustrated in
Figure 11.

For motion artifact reduction methods without learning-
based systems, analyses on time domain (Figure 11A) and
frequency domain (Figure 11B) are regarded. A signal-
subtraction method with two PPG channels is used for the
time-based analysis (Lee et al., 2016). Two PPG channels have
different light intensities, and thus PPG signals and motion
artifacts obtained from the two channels are different,
respectively. More importantly, the power ratio between two
PPG signals and that between motion artifacts are also different
since brighter light decreases the effect of motion artifact
(Branche and Mendelson, 2005). First, the two channels with
different light intensity measure PPG signals in stable
condition, and a gain of one channel is adjusted until the
difference of the PPG powers becomes zero. Then, in the
case of corrupted PPG signals, the gain is multiplied to the
one channel such that PPG signals from two channels become
identical, and the subtraction process follows. As a result, only
motion artifact with reduced amplitude remains. This
remaining motion artifact is calibrated to recover a clean

FIGURE 10 | Motion artifact reduction techniques applicable for independent sources: (A) schematic of the independent component analysis (ICA) method, (B)
schematic of the adaptive noise cancellation method (ANC), and (C) schematic of the Fourier series analysis method.
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PPG signal. In addition, a heuristic method in the frequency
domain is applied which estimates HR values for series of time
windows on the frequency domain with the assumption that
HR is not abruptly changed. HR of each time window is
determined based on the spectrum peaks of the window and
the previous HR value (Zhu et al., 2015).

On the other hand, learning-based compensation methods
are mainly classified into two categories by the output forms:
clean PPG waveform and HR. A signal recovery method shown
in Figure 11C uses artificial neural network (ANN) trained by
PPG features such as pulse width, pulse interval, and systolic
amplitude. To get a clean PPG signal, a contaminated PPG
signal is preprocessed such as bandpass filtering and baseline
drift removal. Furthermore, reference features of the PPG
signal are saved for post-processing. Inputs are processed by
trained ANN and dived to reconstruction process such as an
interpolation-based restoration algorithm (Ghosal et al.,
2020). Then, postprocessor such as glitch noise removal or
calibration using stored reference features is implemented to
enhance the quality of outputs. Moreover, a signal
reconstruction is sometimes conducted inside learning-

based systems. For example, a signal–noise interaction
modeling-based algorithm for motion artifact removal
(SniMA) utilizes a time-delay neural network (TDNN) to
generate a noise-free PPG vector using the information of
PPG and motion artifact at different timestamps (Xu et al.,
2020).

The learning-based noise removal technique cuts out
contaminated parts of PPG using classification processes as
shown in Figure 11D. The feature extraction of PPG signals
is pre-conducted and qualified to train the systems such as
ANN and support vector machine (SVM). ANN generally
shows better classification accuracy when training data are
given enough, while SVM achieves better classification
performance when data are not sufficient (Longjie and
Abeysekera, 2019; Liu S. H. et al., 2020). Various types of
training data are used to obtain clean PPG features (Chang
et al., 2019; Liu X. et al., 2020). For example, interpolated PPG
data estimated from ECG by the DeepHeart algorithm and
contaminated PPG are provided to train convolution neural
network (CNN) for enhancing classification performance.
Finally, corrupted and clean PPG features are separated by

FIGURE 11 |Overview of motion artifact compensation techniques regarding dependence relationship between PPG and motion artifact signals. (A) Time domain
compensation method, (B) frequency domain compensation method, (C) noise recovery which restores PPG waveform with the neural network system, (D) noise
removal which sorts out contaminated PPG with the neural network system and support vector machine.

TABLE 2 | Comparison between recent PPG studies.

References Target MA Compasation type Target output Compensation method Else devices Learning based

Raghuram et al. (2014) IDPa Recovery Waveform I2DTCWT — N
Reddy et al. (2009) IDP Recovery Waveform CFSA — N
Roy et al. (2018) IDP Recovery Waveform PCA/ANN — Y
Zhu et al. (2015) IDP/DPb Removal HR MICROST Accelerometer N
Chang et al. (2019) IDP/DP Removal HR Deepheart — Y
Xu et al. (2020) IDP/DP Recovery Waveform SniMA Accelerometer/gyroscope Y

aIndepdenent.
bDependent.
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trained ANN or SVM. Representative PPG compensation
methods are organized in Table 2.

5 CONCLUSION

This article reviews motion artifact removal techniques for
wearable EEG and PPG sensor systems with the basic
understandings of EEG and PPG technology and the origins
of motion artifacts. For EEG devices, diverse approaches are
applicable at each part of the acquisition system. Electrodes,
analog readout circuits, and additional signal processing units
are studied and recently applied to solve the EEG motion artifact
issues. In addition, earpiece materials and ASICs have been
developed for motion artifact removal in in-ear EEG. For PPG
motion artifact removal, several compensation methods such as
independent component analysis, adaptive noise cancellation,
and techniques without/with learning-based algorithms are
presented. The majority of modern artifact reduction methods
have adopted independence-based analysis, while the number of
dependence-based analyses is gradually increased. Artifact
reduction techniques are continuously being developed to
cover both independent and dependent motion artifacts.

Recent trends of wearable EEG and PPG device development
are miniaturization by improving energy efficiency for battery
size reduction. It is because miniaturization is one of the key

factors toward motion artifact reduction. Along with the
development of semiconductor and material engineering, in
the near future, the size of bio-signal sensors will further
decrease, and complex software-oriented processes along with
analog signal recording/stimulation are possibly developed on a
single chip. Furthermore, learning-based methods will be
consistently enhanced and be a great solution for challenging
motion artifact issues with the help of artificial intelligence.
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