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Organic field-effect transistors (OFETs) are at the forefront of next generation electronics.
This class of devices is particularly promising due to the possibility of fabrication on
mechanically compliant and conformable substrates, and potential manufacturing at large
scale through solution deposition techniques. However, their integration in circuits,
especially using stretchable materials, is still challenging. In this work, the design and
implementation of a novel structure for an integrated CMOS readout circuitry is presented
and its fundamentals of operation are provided. Critical for sensing applications, the
readout circuitry described is highly linear. Moreover, as several sources of mismatch and
error are present in CMOS and OFET devices, a calibration technique is used to cancel out
all the mismatches, thus delivering a reliable output. The readout circuit is verified in TSMC
0.18 μm CMOS technology. The maximum total power consumption in the proposed
readout circuit is less than 571 μW, while fully loaded calibration circuit consumes a power
less than 153 μW, making it suitable for sensors applications. Based on previously
reported high mobility and stretchable semiconducting polymers, this new design and
readout circuitry is an important step toward a broader utilization of OFETs and the design
of stretchable sensors.

Keywords: CMOS readout integrated circuit, organic field-effect transistors, biosensor, smart sensors, stretchable
materials, semiconducting polymers

INTRODUCTION

Microelectronic systems have changed many aspects of human life. They have revolutionized data
processing and telecommunications in volume and speed, which have provided solutions for
complicated issues. Particularly in the age of the Internet of Things (IoT), new and emerging
microelectronic are constantly developed, which include flexible monitors, health and environmental
monitoring systems and artificial skin for robotics. These new devices not only revolutionize
contemporary technologies, but also request additional functionalities that challenge electronic
engineers and materials scientists. (Murmann and Xiong, 2010). Among other, smart and
conformable sensors are particularly challenging to design and fabricate. (Senthamizhan et al.,
2019). A smart sensor should be capable of being exposed to the target analyte(s), sensing it,
producing a proportional signal, and measuring and amplifying it. (Uslu et al., 2004; Gonçalves et al.,
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2008; Velliste et al., 2008; Asplund et al., 2010; Rivnay et al., 2014;
Bhalla et al., 2017). Furthermore, next generation electronics and
sensors will not only need to be electrically reliable and
performant but will also need to be implemented on different
objects and shapes. (Gubbi et al., 2013; Zhan et al., 2014). Among
the different types of electronics to generate and achieve smart
sensors, organic field-effect transistors (OFETs) are particularly
promising given their chemical versatility, sensitivity and the
possibility of being implemented on conformable or stretchable
matrices. (Rogers and Bao, 2002; Sirringhaus, 2014). One of the
most important fields of application for OFETs is point-of-care
(PoC) systems, in which the test system should be exposed to
health indicator analytes. The result of this exposure is a signal,
which is amplified and transmitted to a digital processing unit, in
which, appropriate responses are produced. (Torsi et al., 2013).
These systems should be developed taking into consideration that
most users are inexperienced and non-professional individuals.
Therefore, the system should be simple and user-friendly. In
addition, PoC systems are most helpful when they can process
different health indicators in a single smart sensing unit,
preferably installed directly on the human body or sensing
environment conformably. (Hammock et al., 2013; Torsi et al.,
2013).

π-Conjugated semiconducting polymers have been attracting a
lot of attention for the design and fabrication of these next
generation electronics, mostly due to their good mechanical
properties (low Young’s moduli and good strain resistance),
crucial to access body-conformable devices and skin-inspired
electronics. (Zhao et al., 2015; Wen et al., 2017; Xu et al., 2017).
This is a critical advantage, as the more intimate the contact between
these devices and the surfaces fromwhich these signals originate, the
more optimal and sensitive the sensing capabilities. (Su et al., 2015;
Bae et al., 2016). Strategies for achieving organic materials with
molecular stretchability and skin-mimicking properties have been
summarized comprehensively in previous reports. (Ocheje et al.,
2017). In recent years, our group and others reported the synthesis of
molecularly stretchable and mechanically robust semiconducting
polymers with charge transport properties close to that of
amorphous silicon. (Mei and Bao, 2014; Oh et al., 2016; Wu
et al., 2016; Ocheje et al., 2018). These new mechanically robust
materials are particularly promising as active layer in sensors using
substrates such as plastic and can be suitable for applications such as
health monitoring, environmental monitoring, flexible displays,
artificial skins, and radio frequency identification (RFID). (Baude
et al., 2003; Someya et al., 2004; Kato et al., 2007; Feng et al., 2016;
Frick et al., 2016; Tang et al., 2016; Li et al., 2018).

The push for OFET-based CMOS readout circuits is driven by
the desire for devices with lower power consumption, lower cost,
that can be miniaturized; all the while being compatible with
existing electronic systems and thereby allowing for seamless
integration. (Lei et al., 2016). Although organic materials have
been investigated vastly and their functionality is proven in smart
sensor applications, the design of an effective readout circuit for
biosensors fabricated from organic thin film transistors, required
to convert the output of the OFET to appropriate format for the
digital backbone processing unit, has remained an important
challenge for various reasons. First, designing readout circuitry

for integration with OFETs often requires high voltages and
produces very small currents in response to the analyte
variations. This can partially explain why the OFET readout
circuits are still quite rare in the literature, and why OFETs are
often used in discrete circuits. The power consumption is also
another parameter often challenging to control. Finally, the
utilization of n-type organic semiconductors is still
underexploited in the literature due to their relative low
stability compare to their p-type counterparts.

To tackle these challenges, different circuit readouts for OFET-
based sensors have been proposed recently. Among others, Li
et al. reported a readout circuit for a low voltage OFET used for
pH sensing. (Li et al., 2018). The proposed readout circuit takes
the drain current of the OFET and delivers VDD and Vref. The
trans-impedance amplifier (TIA) converts the drain current to a
voltage and the programmable gain amplifier (PGA) adjusts the
dynamic range of the sensor. Ultimately, the processed data is
transmitted to a smart phone for display. A second approach
towards implementation of CMOS readout circuit for OFET
based sensors, has been proposed by Feng et al. (2016) where
a readout circuit implemented on PCB is proposed. Interestingly,
the sensor was shown to be able to detect NH3 concentrations of
5–25 ppm. Other examples of new readouts circuitry for OFET-
based sensors have also been proposed for sensing different
analytes, such as ethanol. (Frick et al., 2016). Despite being
efficient, these sensors require high power supply along with
high-power consumption. This significantly limits their
utilization for low-power, portable PoC applications, which are
usually powered by battery, and face serious power constraints.
Therefore, the challenge that limits the design of an integrated
readout circuit for low voltage OFET based sensors remains.

Herein, we report a new approach for OFET integration and
implementation toward a conformable circuitry based on
computational simulation and in silico modelling. This
theoretical and computation approach for circuit design
presents important advantages, including the possibility to
modify and fine-tune multiple parameters of the circuitry. The
fabrication of OFET requires various challenging steps, and the
design of high mobility n-type materials is still challenging.
Therefore, the utilization of computer simulation is a
particularly efficient approach to design novel circuitry,
especially for biosensor devices based on thin film transistors.
In this work, a universal readout circuitry was designed to address
important obstacles in OFET-based sensor implementation. The
new readout circuit was found to be able to detect very small
variations in the drain current of the OFET, as low as 100 nA, in
three different phases. While the reset phase does not consume
significant power, the calibration and exposure phases consume
almost all of the required power from the 1.8 V power supply in
0.18 µm CMOS technology. In fact, the highest power consumed
by the readout circuit is 571 μW, which is significantly lower than
other proposed readout based on these organic electronics. The
proposed readout structure is not only a promising candidate for
low-power, portable sensing applications, but the new
computational simulation approach used in this work
represent an important tool for the fabrication of new
advanced and functional electronics.
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RESULTS AND DISCUSSION

Organic materials, particular π-conjugated polymers, have
important advantages over inorganic semiconductors,
including low cost and high throughput fabrication enabled
through solution deposition. Organic semiconductors also
have low elastic modulus, particularly interesting for the
fabrication of skin-inspired stretchable and conformable
devices. These unique features have resulted in the significant
growth-rate of the use of organic materials in health care
applications such as organic thin-film transistors (OTFTs) for
biological marker detection, drug delivery, and neural recording
and stimulation. (Adhikari and Majumdar, 2004; Isaksson et al.,
2007; O’Connor et al., 2015; Schwartz et al., 2013; Irimia-Vladu,
2014; Liao et al., 2015). In these novel biosensors based onOFETs,
the readout circuitry, required to monitor the output of the
biosensor, is typically implemented using conventional CMOS
technology. Therefore, the integration of OFET with the CMOS
circuit is highly desirable.

There are three main characteristics that are important for
OFET integration. In CMOS technology, the maximum available
voltage supply is limited, so the OFET should be able to work
within these restrictions. Secondly, the small drain current of the
OFET is another issue which means the CMOS circuit should be
able to sense low current values and be able to amplify these
currents. Since sensor linearity is one important characteristic,
this amplification should be done in a linear manner. (Torsi et al.,
2013). Finally, the drain current of the OFET experiences small
variations during analyte exposure. Therefore, the CMOS
integrated readout circuit should be able to sense low current
variations on small biased drain currents. As shown in Table 1, an
OFET, which can work with voltages in the range of (0 to 1.8 V)
will deliver drain currents lower than 1 μA. Recently, Yan et al.
evaluated OFETs in several sensing applications and it can be
inferred that in different applications, the drain current
experiences variations in the range of (0.9*IDbl,1*IDbl) where
IDbl is the base line drain current of the OFET at the
operating point. This means that the integrated readout circuit
should be able to provide the above mentioned voltage range and
should sense currents as low as 0.1 μA. It is also important to note
that most materials used for sensing application are p-type
semiconductors. The design of OFET-based circuit readout

from n-type materials is highly desirable to complement the
current technology. In order to use PMOS transistors for the
readout circuit, due to their better noise performance, we
designed the proposed readout circuit using a n-type OFET.
However, it is important to note that the circuits can be
altered to be employed in p-type OFET sensing structures.

In a biosensor, the drain current of the OFET will fluctuate
with analyte exposure. Given that the concentration of the analyte
can be particularly low, the drain current variations can be small
and difficult to detect. (Lai et al., 2013). To address this challenge,
the sensing circuit has to be sensitive to small current variation
and able to linearly amplify these variations. In our
computational simulation, amplification of the output current
is performed by using a linear current amplifier integrated on a
simple integrator. Since the variations of the drain current of the
OFET are essential, our simulations use two OFETs to sense and

TABLE 1 | Operating voltages and output current range of recently reported low voltage OFETs.

Type Sensing materials VGS (V) VDS (V) ID (μA) Ref

Chemical sensor (Hg+) DNA Functionalized AuNP (0–6) (0–2) (0–0.2) Knopfmacher et al. (2014)

Biosensor (pH) Pentacene (0–1) (0–1) (0–2) Roberts et al. (2008)

Biosensor (pH) Pentacene (0–2) (0–2) (0–0.6) Roberts et al. (2008)

Biosensor (DNA) Single-stranded oligonucleotides (0–2) (0–2) (0–4) Lai et al. (2013)

OFET Bilayer C8-BTBT (0–4) (0–4) (0–3) Lee et al. (2015)

Pressure Sensor P(VDF-TrFE) (1–5) (1–5) (0–3) Ogunleye et al. (2019)

OFET PDPPTT (0.9–1.5) (0–1) (0–0.05) Faraji et al. (2015)

FIGURE 1 | Schematic of the proposed linear current amplifier based on
OFET device.
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amplify the current variations due to analyte exposure. The
current amplifier used in our computational analysis is shown
in Figure 1, and it is important to mention that the nature of the
analyte was kept broad given that multiple and diverse analytes
can be selected. The amplifier is composed of two main branches.
One branch is derived with a “sensing OFET”, which is exposed to
the analyte. The other is derived with an OFET which is called the
“reference OFET” and is not exposed to the target analyte. The
bias conditions of the two OFETs are identical. Since two OFETs
are identical and their bias conditions are the same, any difference
in drain currents of the OFETs will arise from analyte exposure.
The drain currents of the sensing OFET and reference OFET are
amplified in cascode current mirrors of M1-4 and M5-8,
respectively. The reference OFET drain current is mirrored in
M9, 10 and is subtracted from the amplified sensing OFET drain
current in node “X”. This configuration of current amplification
has a unique advantage. Regarding the operating region of M9,
the drain currents of the sensing and the reference OFETs feed
M2,5, respectively. These two transistors supply the drain current
of the M4,7 which in turn drive M3,8. The current which is drown
from the drain of M8 biases theM9 transistor in active region. The
current mirror ratios in Figure 2 for the two cascode current
mirrors are 348, while the mirror ratio for the M9,10 is equal to
unity, to subtract the current of the sensing and the reference
OFETs.

One of themain problems in organic transistors is that they show
significant hysteresis effect. It means that, during time and with each
cycle of operation, their I-V characteristic will change. The current
amplification scheme that is used here, applies two identical OFETs
which their drain currents experience similar variations. This
configuration along with the calibration technique that is
discussed later, will result in an almost hysteresis free sensor. The
new current amplifier amplifies currents between 100 nA and 1 uA
with an almost fixed gain of 350. The characteristic of this current
amplifier is shown in Figure 2. The operation of the circuit was

evaluated computationally under different process, voltage and
temperature (PVT) situations. As shown in Figure 2, the four
worst case scenarios in which the NMOS and PMOS transistors
show the extreme speeds are considered as FF (Fast NMOS, Fast
PMOS), FS (Fast NMOS, Slow PMOS), SF (Slow NMOS, Fast
PMOS), and SS (Slow NMOS, Slow PMOS). These four corner
situations are compared with typical situation (TT), where both
NMOS and PMOS transistors are working at typical speed. The right
sub-figure in Figure 2 shows the performance of the circuit in typical
situation (TT), and the four other corner cases along with the typical
situation are shown in the left sub-figure. From the results obtained,
we can conclude that this design does not suffer from PVT
variations. Therefore, this current amplifier has good
performance in different corner case situations, and the gain of
the amplifier experiences small changes and the linearity is retained.

The largest tensile deformations experienced on the human body
are approximately 30% elongation, meaning that conformable
devices laminated on the body can experience geometry changes
of similarmagnitude. Device performance and themeasured current
are highly dependent on the channel length and width and retaining
these are crucial to maintain the fidelity of a chemical sensor. Any
drop in current that is not due to the sensing of a target analyte could
render false results. Consequently, the ability to apply increasing
voltage in response to a strain-induced reduction in current is a
valuable feature for an OFET circuit. Therefore, it is important to
note that the gate electrode of the OFET presented in Figure 1 is
tunable, so the user can control its voltage to apply different voltages
through the digital backbone unit. In addition, the connections of the
drain and source electrodes are arbitrary; it is possible to apply a
desired voltage to one of them as long as the drain current of the
OFET is applied to the drain current of M2, 5 in such a way that
OFETdrain current variations can change the drain currents of these
twoMOSFETs.With such amethod, bothVGS andVDS of theOFET
are controllable and the desired bias point and operating region of
the OFET is achieved. In this case, and for proper operation of the

FIGURE 2 | Iout-IOFET graph illustrating characteristic of current amplifiers (A), and Iout-IOFET characteristic of current amplifier in different corner cases (B). The four
case scenarios in which the NMOS and PMOS transistors show the extreme speeds are considered as FF (Fast NMOS, Fast PMOS), FS (Fast NMOS, Slow PMOS), SF
(Slow NMOS, Fast PMOS), and SS (Slow NMOS, Slow PMOS). These four corner situations are usually compared with typical situation (TT), where both NMOS and
PMOS transistors are working at typical speed.
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amplifier, two resistors should connect the drain terminal of M2, 5 to
the ground. However, since in many sensing applications, it is not
necessary to bias the OFET in the saturation region, the scheme that
is used in Figure 1 is sufficient for placing the OFET-based sensing
applications. (Zhao et al., 2015).

The current of the current amplifier, which is a measure of the
exposed analyte, has to be integrated to produce a voltage that will
be delivered to the digital backbone for further storage and
processing. The RC circuit shown in Figure 3, is used in our
simulations for integration. This circuit integrates the received
current and deliver a voltage. The simulated readout circuit
contains three different working phases. Phase 1 (φ1), which is
called reset, sets the capacitor voltage to zero to make sure that no
previous sensor response remained in current sensing cycle.
Phase 2 (φ2), is a calibration phase in which the output
voltage is recorded while the analyte is not exposed to the
sensing OFET. In this phase any mismatch that is present
between the two OFETs or CMOS circuit will cause a current
difference which will produce a voltage at the output. This voltage
will be used in calibration circuit as is explained later to cancel-
out the mismatch effect. Phase 3 (φ3), so-called the exposure
phase, amplifies the output current of the sensing OFET during
analyte exposure and generates the corresponding output voltage.
This voltage is transferred to digital backbone for processing and
storage as the sensor response. The clocks are controlled in digital
backbone. Clock waveforms of the three control signals are shown
in Figure 3. The integration duration is equal to 2 μs, as the
integration duration should be high enough for the capacitance to
reach its steady state voltage. While being challenging to realize
on chip and a potential drawback, the integrating capacitance was
considered 100 μF in simulations for the proof-of-principle
design. This can also be implemented off-chip without
affecting the performance of the circuit.

CALIBRATION

One of the common problems in biosensors is due to remaining
analyte after one sensing procedure, or because of mismatches in
analog circuits. Mismatches may cause some sensing inaccuracies

even before sensing procedure starts. These two problems may
cause a non-zero sensor response when no analyte is exposed to
the sensor. This non-zero initial voltage usually alters the final
measured voltage of the sensing structure. The integrated circuit
should be able to cancel this non-zero response. There are two
main readout architectures for biosensors. One possible
architecture is the reference-less structure in which, there is
only one electrode which is exposed to the target analyte. This
architecture consumes less power, because of the minimized
number of sensing branches. The other architecture is a
referenced structure which employs a reference branch in
addition to the original sensing branch. Although such
structures consume more power because of the doubled
readout circuit, they are more advantageous in terms of
sensitivity and accuracy. (Couniot et al., 2016; Senevirathna
et al., 2019; Taheri and Mirhassani, 2021).

The new OFET-based referenced readout circuit includes a
calibration circuit which enables the sensor to cancel the output
offset. The calibration circuit uses a programmable current source
circuit, shown in Figure 4A, to withdraw the excessive charge on the
integrating capacitance, which has resulted in the offset voltage. This
calibration circuit is composed of four identical voltage comparators
which are sensitive to voltage differences as low as 1 mV. The
structure of voltage comparators are shown in Figure 4B,
whereas Figure 4C shows the voltage comparator performance.
Based on the value of the offset voltage, which is compared to four
reference voltages, the four branches of the calibration circuit are
activated. Each branch withdraws some charge from the integrating
capacitance, until the offset voltage is cancelled. The calibration
circuit is activated before sensing interval. As shown in Figure 4A,
the calibration circuit is composed of four sensitive comparators
which their output signals activate four current branches. If there is
any offset voltage larger than 1mV at the end of the calibration
phase, the comparators will activate an independent current source
which its output is applied to the sensing RC circuit. These extra
currents will set the output voltage of the RC circuit to zero; the offset
voltage will be cancelled, and the sensing circuit will be calibrated.
The proper connection node of the calibration circuit, which is not
going to have a great influence on its functionality, will be
investigated in future works. Using this calibration scheme the

FIGURE 3 | RC Integrating Circuit (A) and clock waveforms of φ1, φ2 and φ3 (B).
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output offset voltage of the sensor in minimized as much as possible
regardless of the sources of offset voltage. We tested our calibration
method for the offset of the sensor at different corner cases of the
technology. The resulting performance is shown in Table 2.
Importantly, the calibration scheme results in significantly
reduced offset voltages even for low values of the output offset.

CONCLUSION

In summary, a CMOS integrated readout circuit for OFET-based
smart sensors has been designed and results from simulation have
been discussed. Specifically, the analog circuit was designed to
receive and amplify the drain current variations of an OFET as a

result of the exposure to a targeted analyte. Importantly, the
proposed architecture measures the variations of the drain
current of the OFETs in three different phases so-called reset,
calibration, and exposure phase. Using these three phases, the
readout circuit is able to cancel out any offset due to remained
analytes.With a fully differential sensing structure, and the proposed
calibration circuit, the output offset, the common-mode based
errors, and the hysteresis of the OFET are minimized. With a
power consumption of 571 μW, the proposed structure is a
promising candidate for low-power, portable sensing applications.
Given the increased interest toward conformable and stretchable
sensors, the new sensor design also enables to accommodate any
change in channel geometry upon strain, which typically has to be
accounted for in conventional OFETs to get an accurate measure of
the charge mobility and drain current. The new circuit allows for a
facile change in the voltage applied, allowing to make up for the
drop-in current by simply varying the voltage in order to maintain
the current measured in the device. The results obtained from the
simulation are an important step toward the design of new smart
sensors capable of detecting a wide variety of analytes, including gas
and organic liquids, directly at the point of care.

EXPERIMENTAL PROCEDURE

The proposed readout circuit has been designed and simulated in
Cadence, using CMOS 0.18 μm process. Powered by a 1.8 V

FIGURE 4 | Diagrams of (A) the calibration circuit, (B) voltage comparator circuit, and (C) voltage comparator input (down) and output (up) voltage waveforms.

TABLE 2 | Calibration circuit performance at different corner cases, described as
FF (Fast NMOS, Fast PMOS), FS (Fast NMOS, Slow PMOS), SF (Slow NMOS,
Fast PMOS), and SS (Slow NMOS, Slow PMOS).

Corner case Output offset before
calibration (mV)

Output offset after
calibration (mV)

TT 2.892 0.146

FF 6.199 0.054

FS 4.259 0.014
SF 2.245 0.029

SS 1.610 0.017
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power supply, all of the circuits were designed and simulated
using custom designed MOS transistors, with minimized number
of control signals, to implement a fully integrated, autonomous
readout structure.
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