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Novel computing architectures based on resistive switching memories (also known as
memristors or RRAMs) have been shown to be promising approaches for tackling the
energy inefficiency of deep learning and spiking neural networks. However, resistive switch
technology is immature and suffers from numerous imperfections, which are often
considered limitations on implementations of artificial neural networks. Nevertheless, a
reasonable amount of variability can be harnessed to implement efficient probabilistic or
approximate computing. This approach turns out to improve robustness, decrease
overfitting and reduce energy consumption for specific applications, such as Bayesian
and spiking neural networks. Thus, certain non-idealities could become opportunities if we
adapt machine learning methods to the intrinsic characteristics of resistive switching
memories. In this short review, we introduce some key considerations for circuit design
and the most common non-idealities. We illustrate the possible benefits of stochasticity
and compression with examples of well-established software methods. We then present
an overview of recent neural network implementations that exploit the imperfections of
resistive switching memory, and discuss the potential and limitations of these approaches.

Keywords: resistive switching memories, memristor, in-memory computing, hardware non-idealities, artificial
neural networks, bayesian neural networks, probabilistic computing

INTRODUCTION

The recent success of machine learning has essentially arisen from breakthroughs in learning
algorithms, data availability, and computing resources. The latter benefited from the consistent
increase in the number of transistors in complementary metal-oxide-semiconductor (CMOS)
microchips and the development of highly parallel and specialized hardware (Reuther et al.,
2019) such as graphics processing units (GPUs) (Keckler et al., 2011) and tensor processing
units (TPUs) (Jouppi et al., 2017). Nevertheless, even with such optimizations, the traditional
computing architecture is inappropriate for the implementation of modern machine learning
algorithms due to the intensive data transfer requirement between memory and processing units
(Horowitz, 2014; Ankit et al., 2017; Sze et al., 2017). Novel architectures based on resistive switching
memories (RSMs) can take advantage of non-volatile in-memory computing (Mutlu et al., 2019) to
efficiently perform vector-matrix multiplications (VMMs) (Gu et al., 2015; Amirsoleimani et al.,
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2020), the most critical operation of neural networks (NNs)
inference. This technology is also an excellent candidate for
the implementation of membrane potential and activation
functions for brain-inspired spiking neural networks (SNNs)
(Xia and Yang, 2019; Wang et al., 2020a; Yang et al., 2020a;
Agrawal et al., 2021). Therefore, this emerging technology offers
an opportunity to tackle current limitations of traditional
computing hardware, such as energy efficiency, computation
speed, and integration footprint (Chen, 2020; Marković et al.,
2020; Christensen et al., 2021).

However, in the context of in-memory computing, RSM
technology is still in its infancy compared to the much more
mature CMOS technology at the heart of traditional von
Neumann computers. RSMs are subject to variability and
performance issues (Adam et al., 2018; Wang et al., 2019a;
Krestinskaya et al., 2019; Chakraborty et al., 2020; Zahoor
et al., 2020; Zhao et al., 2020; Xi et al., 2021), which currently
restrict their usage to small and noisy NN hardware
implementations that can solve only simple problems such as
classification of the MNIST digit database (Ambrogio et al., 2018;
Hu et al., 2018; Li et al., 2018; Wang et al., 2019b; Lin et al., 2019;
Liu et al., 2020b; Yao et al., 2020; Zahari et al., 2020).

Since a wide variety of resistive memory technologies are still
at an early stage of development (Zahoor et al., 2020; Christensen
et al., 2021), it may be that a better understanding of resistive
switching mechanisms combined with improvements in
fabrication processes in the future will rectify some of their
non-idealities (e.g., device-to-device variability and
programming nonlinearity). But, even with technological
maturity, other imperfections may remain due to their
inseparable relationship with the physics of the device/circuit
(e.g., programming variability and interconnect resistance).
Numerous methods have therefore been proposed to mitigate
the effect of these non-idealities for NN applications (Chen et al.,
2015; Lim et al., 2018; He et al., 2019; Liu et al., 2020a;Wang et al.,
2020b; Mahmoodi et al., 2020; Pan et al., 2020; Zhang et al., 2020;
Xi et al., 2021). Although a mitigation approach can significantly
increase the performance of RSM-based NNs, none of these
methods are able to achieve the accuracy of their software
counterparts. An alternative strategy consists in harnessing
device imperfections rather than fighting them, which would
enable highly efficient probabilistic and approximate computing
hardware. This strategy is particularly appealing since software
and biological NNs already take advantage of randomness to
enhance information processing (McDonnell and Ward, 2011).
The goal of this article is to review the latest progress in the
exploitation of hardware imperfections by RSM-based NNs.

PRIOR DESIGN CHOICES

Design choices can influence the overall performance of RSM-
based systems and induce different types and amounts of non-
idealities. Starting with the choice of resistive switching
mechanisms (Sung et al., 2018; Xia and Yang, 2019; Zahoor
et al., 2020; Christensen et al., 2021) (e.g., valence change,
electrochemical metallization, phase-change, ferroelectricity,

magnetoresistivity), which could all be implemented with
numerous materials and fabrication processes. For example,
magnetoresistive memories are known to be especially durable
[> 1014 cycles (Kan et al., 2016)], whereas ferroelectric memories
benefit from highly linear resistance programming (Tian et al.,
2020), and valence change memories usually offer a high on/off
ratio [> 107 (Chen et al., 2017)]. Despite these many options, an
ideal RSM that combines all of these desirable properties has yet
to be discovered. Until this is found, the design of an RSM-based
computing system will always involve a trade-off between non-
idealities (Siegel et al., 2020).

The design of the circuit architecture is also a critical step of
the system conception. RSMs are typically organized in the form
of an array when they represent the synaptic weights of a NN.
Therefore, the size of this array limits the dimension of the VMM
operation that can be computed in a single step. Large-scale
implementations have been reported (Mochida et al., 2018; Ishii
et al., 2019); for example, the system designed by Ambrogio et al.
(2018) contained 524 k cells and could implement 204,900
synapses of a fully connected 4-layer NN. There are at least
three strategies for selecting each of these cells (Chen and Yu,
2015; Wang et al., 2019a): 1) active selectors, 1-Transistor-n-
Resistor (1TnR), in which one transistor allows access to one or a
group of RSMs; 2) passive selectors, 1-Selector-1-Resistor (1S1R),
which is usually a diode vertically stacked with the resistive
material; 3) and no selector, 1-Resistor (1R).

Finally, the peripheral circuit used to address and control
each RSM must not be neglected, since it will constrain system
performance and impact the speed and energy efficiency (Li
et al., 2016; Kadetotad et al., 2017; Amirsoleimani et al., 2020; Li
and Ang, 2020). In particular, the limited resolution of the
digital-to-analog converter (DAC) and the analog-to-digital
converter (ADC) will restrict the input/output precision and
produce a significant energy overhead. This external circuit is
also used to send writing pulses using a specific programming
scheme that affects the performance (Woo et al., 2016;
Stathopoulos et al., 2017; Chen et al., 2020). A write-verify
scheme (Papandreou et al., 2011; Yi et al., 2011; Alibart
et al., 2012; Perez et al., 2017; Pan et al., 2020) typically
neglects energy consumption and memory lifetime for the
sake of accuracy.

NON-IDEAL CHARACTERISTICS

Device Level
Modern fabricated RSM-based systems are imperfect at many
levels (Figure 1). At the device level, one of the most critical
characteristics for NN applications is the resistance range (Yu,
2018), since this property constrains the possible values of the
model’s parameters. This metric is often expressed as the ratio
between the minimal and maximal resistance values. Moreover,
by considering the smallest writing value addressable with the
peripheral circuit, we can estimate the total number of
intermediate resistance states in the memory. This number can
vary from 2 states for binary RSMs (Wong et al., 2012; Bocquet
et al., 2018; Zahari et al., 2020) to more than 128 for the most
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accurate devices (Gao et al., 2015; Li et al., 2017; Ambrogio et al.,
2018; Wu et al., 2018). However, to estimate the quantity of
information that a RSM can store, only reproducible and
distinguishable states should be considered, which reduces this
number to around 64-level (equivalent to 6-bits) in the best case
(Li et al., 2017; Stathopoulos et al., 2017).

Thus, even with the best control circuit, it appears to be
impossible to program a resistance state under an arbitrary
precision threshold, usually between 1–5% of the resistance
range (Adam et al., 2018; Xia and Yang, 2019; Xi et al., 2021).
This writing variability is most likely attributable to the local
environment [room temperature (Abunahla et al., 2016; Bunnam
et al., 2020; Roldán et al., 2021), humidity (Messerschmitt et al.,
2015; Valov and Tsuruoka, 2018)] and the internal state of the
RSM at the atomic scale. In valence change memories, for
example, the conductive filament may break abruptly and
result in a state that is more resistive than expected (Gao
et al., 2009; González-Cordero et al., 2017; Wiefels et al.,
2020). The reading process is also affected by the variability,
and several phenomena such as random telegraph noise (Ielmini
et al., 2010; Lee et al., 2011; Veksler et al., 2013; Claeys et al., 2016)
and thermal noise (Bae and Yoon, 2020) can disturb the
measured resistance value and lead to inaccurate outputs.

The dynamics of the resistance programming can also pose a
challenge for NN training (Sidler et al., 2016; Woo and Yu,
2018). The same writing pulse can lead to a different outcome
depending on the current resistance value (programming
nonlinearity) (Jacobs-Gedrim et al., 2017) and the update
direction (programming asymmetry). However, if the

behavior of the RSM is well characterized, its programming
dynamics can be partially anticipated and taken into account
during the NN training (Chang et al., 2018; Lim et al., 2018; Pan
et al., 2020).

Finally, a RSM is never perfectly stable over time, data
retention can vary from a few seconds (Oh et al., 2019) to
more than 10 years (Wei et al., 2008), depending on the
resistive technology and the local environment (Gao et al.,
2011; Subhechha et al., 2016; Kang et al., 2017; Zhao et al.,
2019). Moreover, the number of writing operations is also limited
[up to 1010 (Yang et al., 2010)], each change in resistance will
slightly degrade the characteristics of the RSM, which will decay
until breakdown is eventually reached.

Array Level
To efficiently compute VMM, RSMs must be arranged in large
arrays surrounded by CMOS-based control electronics. Although
this structure takes advantage of the two terminals of this device
to maximize the integration density and offer a good scaling
perspective, this integration (whether in two or three dimensions)
faces technical issues (Li and Ang, 2020), including the inevitable
resistance of the interconnections (Mahmoodi et al., 2020).
Hence, even if two RSMs have the same internal state, the
resistance of the metallic lines will affect the total resistance
depending on the RSMs position in the crossbar. Furthermore, in
1R arrays (and to a lesser extent in 1S1R arrays), the sneak path
current could also be a concern (Cassuto et al., 2013; Chen et al.,
2021b). This phenomenon occurs when the electric current
follows an unexpected path, leading to corruption of the final

FIGURE 1 | Device-level non-idealities influence on RSM functional constraints and their possible usage for different NN architectures. The list of non-idealities and
functional constraints given here is limited to those reported in the literature for these use cases, thus the list is not exhaustive.
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output. These two technical challenges motivated the
development of tile-based architectures (Shafiee et al., 2016;
Nag et al., 2018), in which a crossbar is split into several
smaller ones.

The fabrication processes of RSMs typically induce significant
variability between devices, meaning that each characteristic
identified in Section 3.1 may differ for each RSM in a given
crossbar. In extreme cases, the resistive state may even be stuck at
its maximal or minimal value. The current best fabrication
techniques can approach a yield of 99% (Li et al., 2017;
Ambrogio et al., 2018). Although variability and faults will
strongly impact the performance of a NN in the case of ex-
situ (offline) training (Boquet et al., 2021), a NN trained in-situ
(online) can mitigate these imperfections to a certain extent
(Alibart et al., 2013; Li et al., 2018; Wang et al., 2019b;
Romero et al., 2019).

Writing and reading operations in a crossbar can also
induce unwanted disturbances in the resistance state of the
RSMs (Yan et al., 2017; Wang et al., 2018; Amirsoleimani et al.,
2021). The writing operation is usually achieved by applying a
tension V to the device we want to program, where V is the
threshold voltage required to change the resistance value.
However, the surrounding devices that share the bottom or
top electrode with the target receive a tension V/2, which can
alter the RSM state after a large number of these operations,
even though the tension is below the theoretical writing
threshold. The same side effect can be observed for the read
operation if the reading tension is not low enough to guarantee
no disturbance.

The device and array level non-idealities listed in this
section impact the overall quality of the NNs. The training
of these models typically relies on numerous parameter
updates, computed by gradient descent, which is strongly
affected by inconsistent writing operation. A NN trained on
such imperfect hardware will either reach a suboptimal state or
simply fail to converge to a solution. While the drift of
resistance in time and the non-idealities that damage the
read operation (Figure 1) will lead to inaccuracy during the
inference.

TAKING ADVANTAGE OF NON-IDEALITIES

Software Methods
With 32-bits floating-point variables, noiseless computation
and very large-scale integration, there are solid arguments for
using traditional computers for machine learning
computation. Nevertheless, this impressive accuracy
becomes a curse when the parameters of the model are so
numerous and precise that they are able to extract the residual
variation of the training data. This overfitting issue is a real
challenge for modern NNs, but fortunately, many solutions
now exist to mitigate this problem. Surprisingly, the most
common methods are similar to what we would consider non-
idealities in the field of RSMs.

The most popular approaches are probably dropout (Hinton
et al., 2012) and drop connect (Wan et al., 2013). These

regularization techniques consist in randomly omitting a
subset of activation units or weights during NNs training. This
turns out to be very effective to prevent complex co-adaptations
of the units that usually lead to overfitting. Another
counterintuitive but efficient strategy is to purposely add noise
at different stages of the training process (An, 1996; McDonnell
and Ward, 2011; Qin and Vucinic, 2018), in particular to the
gradient value (Neelakantan et al., 2015), activation functions
(Gulcehre et al., 2016), model parameters (He et al., 2019), and
layers input (Liu et al., 2017; Creswell et al., 2018; Rakin et al.,
2018). The injection of an appropriate level of noise can improve
generalization, reduce training losses, and increase the robustness
of these models against adversarial attacks.

The success of quantization techniques (Guo, 2018; Mishra
et al., 2020; Chen et al., 2021a) also indicate that very accurate
parameters are not mandatory to implement reliable NNs. Some
works have achieved compression from 32 to 16-bits without
sacrificing the final accuracy (Gupta et al., 2015; Micikevicius
et al., 2017), and down to 8 or 3-bits with acceptable
performance loss depending on the targeted application (Holt
and Baker, 1991; Anwar et al., 2015; Shin et al., 2015). This idea
can be extended to binarized parameters (Courbariaux et al.,
2015) and activation functions (Zhou et al., 2016), which
drastically reduce the computational cost although with a
significant loss of accuracy.

Although regularization methods based on stochastic
processes are now well-established in the machine learning
community, their implementation on von Neumann
computers is very inefficient, due to the serial and
deterministic nature of the hardware. In particular, the high
power consumption of random number generation (Cai et al.,
2018; Gross and Gaudet, 2019) with standard CMOS technologies
calls for the development of novel hardware that natively
implements stochasticity. In the next section, we will see that
RSMs have attracted much attention over recent years in this
regard.

RSM-Based Methods
RSM-based NNs have been successfully used on hardware to
solve simple data-driven problems. The state-of-the-art 1T1R
array can classify MNIST digits with >96% accuracy
(Ambrogio et al., 2018; Yao et al., 2020). Those high scores
are often made possible by mitigating the negative impact of
non-idealities with specific weight mapping schemes and
learning strategies (Chen et al., 2015; Wu et al., 2017; Gong
et al., 2018; Cai et al., 2020b; Wang et al., 2020b; Pan et al.,
2020; Zanotti et al., 2021), such as committee machines (Joksas
et al., 2020) or the write-verify update loop procedure. This
mitigating approach is promising, but does not seem to be
sufficient to fill the accuracy gap between the state-of-art RSM-
based NNs and their software counterparts [99.7% accuracy
(Ciresan et al., 2012; Mazzia et al., 2021) for the same task]. A
different strategy is therefore required to overcome this
limitation, one possibility is to accept the imperfections of
the hardware and take advantage of them. This can be done by
imitating software regularization methods or implementing
NNs that rely on stochastic mechanisms (Figure 1).
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Over the last decade, the unpredictable behavior of RSMs has
been demonstrated to be an efficient way to create true random
number generators (Shen et al., 2021; Gaba et al., 2013; Yang
et al., 2020b; Hu et al., 2016; Faria et al., 2018; Bao et al., 2020) that
can be used for security purposes (Khan et al., 2021; Pang et al.,
2019; Lv et al., 2020). For machine learning applications, the
Gaussian nature of the stochastic distribution turns out to be an
efficient way to implement probabilistic computing in hardware
(Table 1). Indeed, for multi-level RSMs, the programming error
around the targeted conductance state can be used as a

regularization method if the device encodes the synaptic
weights. Wang et al. (2019b) showed that a standard deviation
of 10 μS of Gaussian writing noise helped to avoid overfitting for
the MNIST classification task using a RSM-based convolutional
neural network (CNN). In the case of binary memories, a
consistent stochastic switch can be triggered by a
programming writing voltage that is below the device
threshold value. With such weak programming conditions, it
is possible to set a RSM from a high resistive state (HRS) to a low
resistive state (LRS) with a given probability of 50%. This

TABLE 1 | Summary of reported RSM-based NNs that exploit non-idealities in an explicit way to improve the accuracy or efficiency of the model. Sim. and Exp. stand for
Simulation and Experimental, Conductive-Bridging Random-Access Memory (CBRAM), Oxide-based Random-Access Memory (OxRAM), Magnetoresistive Random-
Access Memory (MRAM).

Ref Type of
Network

Non-idealities Exploited Benefits Sim.
Exp

RSM
Type

Training
Type

RSM
Usage

Lin et al. (2019) BNN Random Telegraph Noise; Read
variability

Energy-efficient stochastic sampling
giving adversarial robustness and
accuracy comparable to software
implementation

Exp. OxRAM Ex-situ Synapse

Yang et al. (2020b) BNN Thermal noise; Switching
stochasticity

Energy-efficient Gaussian random
number sampling

Sim. MRAM Ex-situ Synapse

Malhotra et al.
(2020)

BNN Programming variability Energy-efficient Gaussian random
number sampling

Sim. OxRAM Ex-situ Synapse

Dalgaty et al.
(2021a)

BNN; Bayesian
perceptrons

Programming variability Energy-efficient implementation of in-
memory Markov chain Monte Carlo
sampling

Both OxRAM In-situ Synapse

Dalgaty et al.
(2021b)

BNN Programming variability Native representation of complex
probability distribution that can be used to
quantify model uncertainty

Exp. OxRAM Ex-situ Synapse

Suri et al. (2015) RBM HRS and LRS programming
variability

Native stochastic activation function Sim. OxRAM In-situ Synapse
Neuron

Mahmoodi et al.
(2019)

RBM Thermal noise Implementation of scalable, versatile, and
efficient stochastic dot computation

Both OxRAM In-situ Synapse

Yu et al. (2013) Spiking NN Switching stochasticity Allows trading multi-state memory to
stochastic binary memory with
comparable performance

Sim. OxRAM In-situ Synapse

Wijesinghe et al.
(2018)

Spiking CNN Switching stochasticity Probabilistic activation function makes the
network more robust to synaptic non-
idealities

Sim. CBRAM Ex-situ Synapse
Neuron

Dalgaty et al.
(2019)

Spiking
Recurrent NN

Programming variability Neuronal intrinsic local plasticity for low-
power temporal data processing

Sim. OxRAM In-situ Synapse
Neuron

Bhattacharjee and
Panda (2020)

Deep NN Number of states; Programming
variability; Interconnect
resistance

Adversarial robustness 10–20% better
than software baseline

Sim. N/A Ex-situ Synapse

Wang et al.
(2019b)

CNN; long short-
term memory

Programming variability Natural regularization, reduced difference
between the training and the test accuracy

Exp. OxRAM In-situ Synapse

Suri and Parmar
(2015)

Extreme
Learning
Machine

HRS programming variability Low-power and low-footprint
implementation of the fixed hidden layer of
an ELM

Sim. CBRAM
OxRAM

N/A Synapse

Cai et al. (2020a) Hopfield NN Interconnect resistance;
Programming variability; Finite
ON/OFF ratio; I-V non-linearity

Improved convergence to optimal solution
for combinatorial optimization problems

Both OxRAM In-situ Synapse

Lin et al. (2018) Generative
Adversarial
Network

Programming variability;
Reading variability

Reasonable amount of noise increase the
diversity of generated patterns

Both OxRAM In-situ Synapse
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behavior has successfully been exploited to implement a neuron
activation function (Wijesinghe et al., 2018), a stochastic learning
rule (Yu et al., 2013; Payvand et al., 2019; Zahari et al., 2020), and
controllable weight sampling (Yang et al., 2020b).

Some types of NNs are particularly suitable to take advantage
of RSM non-idealities, and of these, Bayesian neural networks
(BNNs), restricted Boltzmann machines (RBMs), and spiking
neural networks (SNNs) have received special attention.

BNNs are difficult to use for real-world problems because of
their prohibitive computation cost on traditional computers,
which is mainly due to the expensive random sampling of
parameters. Nevertheless, the uncertainty measurement
provided by this NN is valuable for many applications, such as
healthcare (McLachlan et al., 2020) and autonomous vehicles
(McAllister et al., 2017). An array of RSMs can provide an elegant
solution to this issue by exploiting the writing (Malhotra et al.,
2020; Dalgaty et al., 2021a,b; Yang et al., 2020b) or the reading
(Lin et al., 2019) variability to efficiently sample the network
weights in parallel while computing the VMM in place at the
same time.

RBMs have non-deterministic activation functions, and
usually have a relatively small number of parameters, which
fits well with the small and noisy RSM crossbars that are
currently available. In the same way as BNNs, the probabilistic
aspect of RBMs is not very desirable for CMOS chips, whereas
RSMs offer new design perspectives (Kaiser et al., 2022). For
example, Suri et al. (2015) suggested using the HRS and LRS
variability to build a stochastic activation function an RBM and
Mahmoodi et al. (2019) experimentally demonstrated the benefits
of thermal noise to realize a stochastic dot product computation.

Finally, the spiking approach seems to be a promising
candidate for RSM-based NNs, as they naturally adapt to
variability (Maass, 2014; Neftci et al., 2016; Leugering and
Pipa, 2018). SNNs share many similarities with biological
NNs, which are known to rely heavily on stochastic
mechanisms (Stein et al., 2005; Deco et al., 2009; Rolls and
Deco, 2010; Yarom and Hounsgaard, 2011) such as Poisson
process or short-term memory. In this context, RSMs are well
suited to implement the synaptic weights (Yu et al., 2013; Naous
et al., 2016; Payvand et al., 2019; Wang et al., 2020a) and the
components of a neuron (Al-Shedivat et al., 2015; Naous et al.,
2016; Wijesinghe et al., 2018; Dalgaty et al., 2019; Li et al., 2020),
in particular, the membrane potential and the activation function.

DISCUSSION

In the early 2010’s, GPUs played an essential role in the rebirth of
artificial intelligence as a research field by offering an efficient
alternative to CPUs for VMM. Although RSM-based electronics
have the potential to give rise to a similar hardware revolution,
this transition is much more challenging since machine learning
models face new constraints. Several works have shown through
simulation and experimental results that harnessing the
imperfections of RSMs is a viable option for tackling this
problem and getting closer to the performance of software NNs.

However, this approach is subject to some limitations. While a
reasonable quantity of stochasticity can improve the robustness of
the model, larger amounts will be beneficial only to NNs that
intrinsically rely on stochasticity, such as BNNs, RBMs, or SNNs.
But, even in these cases, non-idealities must be kept under control
to obtain a specific probability distribution shape or a consistent
switching probability. The covariance between the resistance and
the standard deviation is one example of the constraints that must
be considered. To implement efficient probabilistic or
approximate computing on RSMs, we may have to use
unconventional approaches such as aggregating devices
(Dalgaty et al., 2021a) or applying continuous writing
operations (Yang et al., 2020b; Malhotra et al., 2020), which
will alter the global energy efficiency and reduce the device
lifetime.

Moreover, several RSM non-idealities have not yet been
exploited for non-conventional computing schemes, such as
device-to-device variability, sneak path current, state drift in
time, or read and write disturbances. Further studies should
explore novel circuit designs, encoding methods, and learning
techniques benefiting from these characteristics for future
hardware-based NNs.

The exploitation of non-idealities seems desirable, if not
necessary, to accelerate the development of large-scale artificial
NNs at state-of-the-art performance with competitive energy and
area efficiency. The benefits are twofold in the case of stochastic
(Dalgaty et al., 2021c) (BNNs and RBMs) or asynchronous event-
based (Wang et al., 2020a; Agrawal et al., 2021) (SNNs) models,
for which von Neumann CMOS computers are especially
inefficient. This approach could be combined with the
mitigation of harmful non-idealities, hardware-software co-
design, and optimization of fabrication techniques to reach the
full potential of RSM technology.
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