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Transformer networks have outperformed recurrent and convolutional neural networks in
terms of accuracy in various sequential tasks. However, memory and compute
bottlenecks prevent transformer networks from scaling to long sequences due to their
high execution time and energy consumption. Different neural attention mechanisms have
been proposed to lower computational load but still suffer from the memory bandwidth
bottleneck. In-memory processing can help alleviate memory bottlenecks by reducing the
transfer overhead between the memory and compute units, thus allowing transformer
networks to scale to longer sequences. We propose an in-memory transformer network
accelerator (iMTransformer) that uses a combination of crossbars and content-
addressable memories to accelerate transformer networks. We accelerate transformer
networks by (1) computing in-memory, thus minimizing the memory transfer overhead, (2)
caching reusable parameters to reduce the number of operations, and (3) exploiting the
available parallelism in the attention mechanism computation. To reduce energy
consumption, the following techniques are introduced: (1) a configurable attention
selector is used to choose different sparse attention patterns, (2) a content-
addressable memory aided locality sensitive hashing helps to filter the number of
sequence elements by their importance, and (3) FeFET-based crossbars are used to
store projection weights while CMOS-based crossbars are used as an attentional cache to
store attention scores for later reuse. Using a CMOS-FeFET hybrid iMTransformer
introduced a significant energy improvement compared to the CMOS-only
iMTransformer. The CMOS-FeFET hybrid iMTransformer achieved an 8.96× delay
improvement and 12.57× energy improvement for the Vanilla transformers compared
to the GPU baseline at a sequence length of 512. Implementing BERT using CMOS-FeFET
hybrid iMTransformer achieves 13.71× delay improvement and 8.95× delay improvement
compared to the GPU baseline at sequence length of 512. The hybrid iMTransformer also
achieves a throughput of 2.23 K samples/sec and 124.8 samples/s/W using the MLPerf
benchmark using BERT-large and SQuAD 1.1 dataset, an 11× speedup and 7.92× energy
improvement compared to the GPU baseline.
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1 INTRODUCTION

Transformer networks (or simply transformers) have continually
risen in popularity because of their capability to outperform
recurrent neural networks (RNNs) and convolutional neural
networks (CNNs), particularly for sequence-based tasks.
Different transformer network variants, such as BERT (Devlin
et al., 2018), ALBERT (Lan et al., 2019), Megatron (Shoeybi et al.,
2019), GPT3 (Brown et al., 2020), and XLNet (Yang et al., 2019)
currently hold the best performance in various natural language
processing (NLP) applications such as machine translation,
named entity recognition, and question answering.
Transformer networks are also applicable to other sequential
tasks such as audio (Boes and Van hamme, 2019; Yang S.-W.
et al., 2020; Wei et al., 2020) and video (Boes and Van hamme,
2019; Wei et al., 2020; Li et al., 2020b) applications. Transformer
networks have also recently been used in computer vision
applications (Dosovitskiy et al., 2020; Liu et al., 2021). The
transformer’s superior performance is attributed to the scaled
dot-product attention (SDPA) mechanisms that determine the
correlation between sequence elements. The attention
mechanism in transformer networks can achieve O (1)
complexity when completely parallelized and can better model
long-range dependencies, making them superior to CNNs
and RNNs.

Because of the transformer network’s capability to learn long-
range dependencies, the transformer network can better analyze
longer sequence lengths compared to CNNs and RNNs. This
leads to the increase in sequence lengths in NLP datasets (Rae
et al., 2019; Sharir et al., 2020). For example, in language
modeling, the Penn Treebank (Marcus et al., 1993) and
WikiText-103 (Merity et al., 2016) datasets, which are
obtained from news and Wikipedia articles, have an average
sequence length of 355 and 3.6 K words, respectively. On the
other hand, PG-19 (Rae et al., 2019), a newer dataset for language
modeling which is obtained from Project Gutenberg books, has
an average sequence length of 69 K words. The use of transformer
networks in image and video applications can also contribute to
the sequence length explosion. As transformer networks improve
and are used in more complex applications, the number of
parameters also continues to increase (Sharir et al., 2020). The
vanilla (original) transformer (Vaswani et al., 2017) began with
millions of parameters. Later, transformer network models, e.g.,
Megatron (Shoeybi et al., 2019) and GPT-3 (Brown et al., 2020),
contain billions of parameters. Recently, switch transformers
(Fedus et al., 2021) used trillions of parameters to account for
long-range dependencies in the language model of the PG-19
dataset.

Transformer networks are commonly implemented using
general-purpose graphical processing units (GPUs) to exploit
the parallelism inherent in the attention mechanism. However,
the complexity of implementing the attention mechanism in the
GPU is limited to O (dn2/c), where n is the sequence length, d is
the number of feature embedding dimensions, and c is the
number of parallel cores. Increasing the sequence length and
the number of parameters greatly increases the computation
latency, memory bandwidth, and energy requirements of

transformer networks (Vaswani et al., 2017) because of the
quadratic time and space complexity with respect to the
sequence length. Transformer networks with linear time
complexity have been proposed (Beltagy et al., 2020; Zaheer
et al., 2020), but incur the cost of additional space complexity,
causing increased memory demand. Moreover, large transformer
networks are severely limited by the memory bandwidth. For
example, Megatron (Shoeybi et al., 2019), one of the largest
transformer networks to date, only achieves 30% of the
theoretical peak FLOPS of a GPU because of the memory
bandwidth bottleneck.

Different techniques have been proposed to alleviate problems
associated with the explosion in memory and time complexity.
These techniques include model parallelism using multi-GPUs
(Shoeybi et al., 2019), caching attention weights (Beltagy et al.,
2020), cross-layer parameter sharing (Lan et al., 2019), model
compression (Zafrir et al., 2019; Li et al., 2020c), and
sparsification (Child et al., 2019; Kitaev et al., 2020; Fedus
et al., 2021). Model parallelism (Shoeybi et al., 2019) further
exacerbates the memory bandwidth bottleneck because of sparse
random memory accesses and communication between different
GPUs. Transformer network model compression is implemented
via cross-layer parameter sharing (Lan et al., 2019), quantization
(Zafrir et al., 2019), and pruning (Li et al., 2020c). Transformer
network sparsity can either be (temporal) locality-based (Child
et al., 2019; Beltagy et al., 2020) or content-based (Kitaev et al.,
2020; Roy et al., 2021). An example of content-based sparsity is
using locality-sensitive hashing (LSH), an approximate nearest
neighbor search algorithm that hashes nearby points to the same
hash signature. However, these techniques do not solve the
memory bandwidth bottleneck problem.

Processing-in-memory (PIM) (Mutlu et al., 2020; Sebastian
et al., 2020) has been proposed to solve the memory bandwidth
bottleneck by eliminating the communication overhead between
the compute unit and the memory. PIM has been used in various
applications such as few-shot learning (Ni et al., 2019; Ranjan
et al., 2019; Challapalle et al., 2020; Reis et al., 2021), DNA
assembly (Kaplan et al., 2018; Huangfu et al., 2018; Laguna et al.,
2020), and security (Reis et al., 2020b). In particular, PIM-based
attention mechanisms have been proposed using content-
addressable memories (CAMs) (Laguna et al., 2019a,b),
crossbar arrays (Ranjan et al., 2019; Challapalle et al., 2020),
and general-purpose computing-in-memory arrays (GP-CiM)
(Reis et al., 2020a). CAMs can perform fast parallel searches
in a single cycle, while crossbar arrays can perform matrix-vector
multiplications in a single cycle. GP-CiM can perform bitwise and
arithmetic operations in memory. However, PIM-based attention
mechanisms have primarily focused on recurrent and memory
augmented neural networks (MANNs). Transformer networks
that use SDPA have more parallelization opportunities than
recurrent and MANN-based attention mechanisms. The SDPA
used in transformer networks can be efficiently implemented
using crossbar arrays to perform matrix-vector multiplications.
CAM arrays can be used to implement content-based sparse
attention via LSH.

PIM architectures are either based on complementary metal-
oxide-semiconductor (CMOS) memories or emerging
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technologies (Jeloka et al., 2016; Kang et al., 2017; Zhang et al.,
2017; Reis et al., 2018; Ranjan et al., 2019; Yin et al., 2019). While
improvements in CMOS technology due to transistor scaling
have continuously reduced the cost of on-chip and off-chip
memories, PIM devices implemented in CMOS technology
have low density and high leakage power and require periodic
data refreshing. This makes it difficult to apply CMOS solutions
to large, data-centric workloads. Alternatively, non-volatile
memories (NVM) based on emerging technologies such as
ferroelectric field-effect transistors (FeFET), resistive memories
(ReRAM), and phase change memories (PCM) have high density,
consume low power, and are non-volatile. However, NVMs
require higher write times and energy than CMOS technology,
making them less ideal for high-write scenarios. FeFETs are
CMOS compatible and have been co-integrated in CMOS
platforms by GlobalFoundries (Beyer et al., 2020).

In this paper, we present iMTransformer, an in-memory
computing-based accelerator for transformer network inference.
iMTransformer employs a combination of crossbars and CAMs.
We also use algorithm-based techniques to improve the latency
and energy consumption of iMTransformer. iMTransformer
reduces the execution time by (1) mitigating the memory-
bandwidth bottleneck with processing-in-memory-based
hardware, (2) reducing the computational requirements via data
reuse using attention caches, and (3) maximizing the parallelism
that can be achieved with different types of attention mechanisms.
iMTransformer further improves energy efficiency by (1)
employing an attention selector that can implement masked
attention and locality-based sparse attention, (2) using CAMs to
implement content-based sparsity through LSH, and (3) using
non-volatile FeFET-based crossbars for high-read sublayers and
write-efficient CMOS-based crossbars for high-write sublayers.

The standard CMOS implementation of iMTransformer
achieves a delay improvement of 7.7× and an energy
improvement of 7.81× compared to the GPU baseline for a
sequence with length 512 by using PIM. After including model
parallelization, sparsity, and using CMOS-FeFET hybrid
implementation, iMTransformer achieves 8.96× delay
improvement and 12.58× energy improvement compared to
the GPU baseline. Furthermore, implementing BERT achieves
a delay improvement of 4.68× for the standard implementation
and 13.71× after including model parallelization, sparsity, and
CMOS-FeFET hybrid iMTransformer implementation. The
BERT energy improvement is 4.78× for the standard
implementation and 8.95× for the implementation with model
parallelization, sparsity, and using CMOS-FeFET hybrid
iMTransformer implementation. The hybrid iMTransformer
can process 2.23 K samples/s and 125 samples/s/W of the
SQuAD 1.1 dataset using BERT-large and achieves an end-to-
end improvement of 11× for the delay and 7.92× for the energy
compared to the GPU baseline.

2 BACKGROUND

Transformer networks (discussed in Section 2.1) currently hold
the state of the art accuracy in NLP, computer vision, and various

fields and have the capacity to model long-range dependencies
(Tay et al., 2020b). That said, the impressive results achieved by
transformer networks come with high computational and
memory costs as the sequence length increases. Algorithm-
based solutions that aim to reduce the space and the
computational complexity of transformer networks are
presented in Section 2.2. These algorithm-based solutions,
however, do not solve the memory-bandwidth bottleneck
problem. We propose using a PIM-based solution to remove
the need for massive data transfers. The PIM-based computing
kernels are presented in Section 2.3.

2.1 Transformer Networks
Transformer networks have outperformed CNNs and RNNs in
various tasks because of their ability to model long-range
dependencies through attention mechanisms. Because of this,
the transformer networks have been used in various applications
such as machine translation, text generation, and language
modeling. These different applications have led to different
transformer designs. Section 2.1.1 discusses a key component
of transformer networks: the attention mechanism, particularly
scaled-dot product attention (SDPA) and multi-head attention
(MHA). Section 2.1.2 then discusses the different types of
transformer networks, while Section 2.1.3 considers the
execution time distribution of transformer networks.

2.1.1 Attention
Attention, a crucial component of human intelligence, allows
humans to determine the most relevant parts of a sequence
(i.e., text) or object and pay less attention to less relevant
parts. Neural attention mechanisms work similarly to the
human attention mechanism, where more important regions
are given more attentional weights than less important ones.
Transformer networks rely on SDPA (Figure 1A) to determine
the relationship between sequence elements. SDPA uses a key-
value-based retrieval where each key corresponds to a value. The
query vector q is compared to a set of n key vectors K = {k1, k2, k3,
. . . , kn} to retrieve similar values in the set of n value vectors V =
{v1, v2, v3, . . . , vn}. The SDPA is then calculated as a linear
combination of value vectors weighted by the scaled probability
distribution of the similarity between q and each kj in K. To keep
the variance equal to one, the dot-product attention is scaled by
the number of dimensions of the key vectors dk.

attention q,K,V( ) � softmax
qKT��
dk

√( )V (1)

Transformer networks also introduced the concept of MHA
(Figure 1B) that allows the network to look at the input in
different subspaces. MHA allows transformer networks to
analyze the relationships among sequence elements in a highly
parallelizable manner. In MHA, the feature embedding is
projected into different subspaces (one subspace per head)
where the sequence elements can be attended in parallel. Each
head (or subspace) can reveal different information regarding the
input. The i-th head projects the query vector q′, the set of key
vectors K′, and the set of value vectors V′ by using projection
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matrices WQ
i ,W

K
i ,W

V
i before calculating the SDPA. The output

of the SDPA for each attention head is then concatenated and
projected by a linear layer.

2.1.2 Encoder and Decoder Layers of Transformer
Networks
The (original) vanilla transformer (Vaswani et al., 2017) is a
neural network model that uses an encoder-decoder architecture
(Figures 1C,D). The encoder layer (Figure 1C) accepts a
variable-length input and transforms it to a fixed-length
feature vector. The decoder layer (Figure 1D) accepts this
fixed-length feature vector and then transforms it into a
variable-length feature vector. This allows the network to
accept inputs of varying lengths. Sequence-to-sequence models
(Vaswani et al., 2017; Junczys-Dowmunt et al., 2018; Lewis et al.,
2019; Raffel et al., 2019) follow the encoder-decoder structure of
the vanilla transformer (Vaswani et al., 2017) and are commonly
used in machine translation tasks, question answering, and
summarization. Other applications, however, require different

topologies. Some applications (embedding to sequence), such as
text generation, only require decoder layers. Others, such as
language modeling and sentence classification (sequence to
embedding), only require encoder layers. Transformer
networks hence can be categorized into (1) sequence-to-
sequence models, (2) decoder-only (or auto-regressive) models,
and (3) encoder-only (auto-encoding) models.

Decoder-only transformer networks are naturally used in text
and image generation. Decoder-only (auto-regressive)
transformer models, such as GPT-2 (Radford et al., 2019) and
Transformer-XL (Dai et al., 2019), use masked MHA where the
attention scores of the current input are only based on attention
scores of past inputs and not on future inputs. Because of their
auto-regressive nature, caching the attention scores (keys and
values) can reduce the computational requirements of each time
step at the cost of higher storage demands (Dai et al., 2019).

Encoder-only transformer networks are usually used for
language modeling and sentence/token classification. Encoder-
only (auto-encoding) transformer models, such as BERT (Devlin

FIGURE 1 | Transformers use scaled dot product attention (A) and multi-head attention (B) to model long-range dependencies and use an encoder-decoder
architecture (Vaswani et al., 2017). The encoder (C) and decoder (D) layers are composed of multihead attention, feedforward and normalization sublayers. The
execution time distribution (E) shows the transformer networks becomes more dominated by the multi-head attention as sequence length increases. The execution time
(F) of transformers increases as the sequence length increases.
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et al., 2018) and ALBERT (Lan et al., 2019), do not use masking,
and each input is influenced by past and future inputs
(bidirectional). Due to their bidirectional nature, auto-
encoding transformer models can be greatly parallelized via
data and model parallelization (Shoeybi et al., 2019).

2.1.3 Transformer Network Execution Time
To investigate the execution time needed by different functions in
the encoder and decoder layers of transformer networks, we
profiled the Vanilla Transformer running on a Titan X GPU.
Figures 1E,F shows the resulting execution time distribution of
the transformer network. The encoder and decoder layers of
transformer networks are primarily composed of MHA,
feedforward, and normalization sublayers, as shown in Figures
1C,D. As the sequence length n increases, the execution time of
the transformer network increases quadratically O (n2) due to the
MHA. The feedforward layers only increase linearly O(n).
Because of this, the MHA dominates the execution time of the
transformer network as the sequence length increases, as shown
in Figure 1E.

In this work, we focus on accelerating MHA. In particular,
different types of transformer networks have different MHA
properties, which can be exploited when designing transformer
network accelerators. For example, decoder-only transformer
models require masked MHA. By not executing the masked
operations, the number of computations can be reduced. The
encoder-only transformer models use bidirectional MHA. By
exploiting model parallelism for bidirectional MHA,
transformer networks can be accelerated. We utilize these
transformer network properties in designing our transformer
network accelerator.

2.2 Algorithm-Based Transformer Network
Acceleration
Transformer networks have high computational and space
complexity because of the employed attention mechanism.
Transformer network GPU implementations are bounded by
the memory, particularly with longer sequences, because of the
O (dn + dn2) spatial complexity, where d represents the feature
embedding dimension, and n is the sequence length. A
transformer can also be computation-limited because of the
O (dn2) serialized time complexity of the MHA. The O (dn2)
complexity comes from each time step (sequence element)
attending to every other time step (sequence element).
However, an O (1) time complexity can be achieved with
adequate parallelism. The following sections review four types
of algorithm-based acceleration: quantization (Section 2.2.1),
attention caching (Section 2.2.2), model parallelism (Section
2.2.3) and sparse attention (Section 2.2.4).

2.2.1 Quantization
Reducing the representation precision by quantization can
alleviate the memory demand and reduce the time complexity
of transformer networks by reducing the amount of data transfer
required between the compute and memory units. FullyQT and
Q8BERT studied transformer quantization. FullyQT (Prato et al.,

2019) used k-bit uniform quantization. Transformer networks
quantized in 8-bits performed better in 21 out of 35 experiments
made in FullyQT, and there was minimal degradation on the
other experiments. Q8BERT (Zafrir et al., 2019) used
quantization-aware training and has shown that it performs
better than using dynamic quantization. Both FullyQT and
Q8BERT have found that 8-bit quantization is found to have
comparable accuracy to transformer networks at full precision.

Non-uniform quantization has also been proposed for
transformer networks (Chung et al., 2020) and has shown
better compression without sacrificing accuracy. These
proposed non-uniform quantization techniques decouple
feature vectors into a set of weights and binary vectors. These
binary codes are also more hardware-friendly than other
quantization methods.

2.2.2 Attention Caching
The decoder layer of the transformer is auto-regressive (i.e., the
current output is the next input). The attention keys and values
from previous time steps affect the current time step. These keys
and values have been computed in previous time steps and can be
reused instead of recomputing from scratch as implemented in
the vanilla transformer (Vaswani et al., 2017). Transformer-XL
(Dai et al., 2019) implemented attention caching and achieved up
to 1800× improvement during inference at a sequence length of
3.8 K. Attention caching improves the computational complexity
of the transformer during inference at the cost of higher space
complexity. Furthermore, attention caching allows the modeling
of a longer range of dependencies by using in conjunction with
sparse attention (Child et al., 2019; Dai et al., 2019). Sparse
attention is explained in detail in Section 2.2.4. We use attention
caching in designing our transformer network accelerator.

2.2.3 Model Parallelism
Model parallelism aims to distribute a neural network model into
multiple compute units to reduce time complexity and improve
compute unit utilization. Megatron (Shoeybi et al., 2019) used
model parallelism to split different attention heads into multiple
GPUs. By implementing model parallelism. Megatron improved
the GPU utilization from 30% theoretical peak FLOPS for a single
GPU to 52% theoretical peak FLOPS on 512 GPUs (Shoeybi et al.,
2019). Model parallelism is particularly beneficial in accelerating
encoder layers of the transformer network because of its
bidirectional properties. We utilize model parallelism in
accelerating the encoder layers of the transformer network
accelerator.

2.2.4 Sparse Attention
The SDPA mechanism described in Section 2.1.1 uses the full
attention mechanism where the query vector is compared to all
key and value vectors. The full attention mechanism is the most
accurate among different attention patterns and is ideal for
shorter sequences. However, because of the quadratic
computational complexity of the full attention pattern, it may
be necessary to use an attention pattern with less computational
complexity at higher sequence lengths. Introducing sparsity in the
attention layers has been one of the prominent algorithm
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optimizations to reduce the computational complexity of the full
attention mechanism. Sparse attention only attends to the keys
and values relevant to the query. Two major types of sparse
attention have been proposed: locality-based sparsity and
content-based sparsity. We use both types of sparsity in
designing our transformer network accelerator.

Locality-based sparsity uses fixed/random patterns based on
the query’s relative position to the current time step. The type of
data determines the choice of attention pattern, and each
attention pattern has its strengths and weaknesses. Longformer
(Beltagy et al., 2020) proposed the sliding window and dilated
sliding window attention patterns and achieved state-of-the-art
results for character modeling tasks. The sliding window
attention, obtained by focusing on sequence elements tsld time
steps away, is ideal for data with high spatial locality. The sliding
window can also be dilated where it only pays attention to every
other tsld time step. Sparse transformers (Child et al., 2019)
proposed strided attention and strided + sliding window
attention patterns and achieved equal or better accuracy
compared to full attention mechanisms while reducing the
number of operations. Sparse attention is used for music and
image generation and machine translations of text. Strided
attention is obtained by skipping tstr time steps and performs
well in repeating or oscillating sequences such as audio or video
data. A combination of strided global attention with sliding
window attention is recommended for long documents
(Beltagy et al., 2020) where there may be a correlation in texts
that are farther away.

Content-based sparsity is another type of sparsity and is based
on the similarity of key-value attention pairs with the query.
Content-based sparsity uses the similarity of the current time step
with the previous time step to determine the sparsity. The outing
transformer (Roy et al., 2021) uses k-means clustering while
Sinkhorn network (Tay et al., 2020a) uses sorting to determine
sparsity. Reformer (Kitaev et al., 2020) uses angular locality-
sensitive hashing (LSH) to accelerate the transformer for long
sequences. Angular LSH uses random hyperplanes that pass
through the origin, and the angle of a point is determined by
its position with respect to the different hashing hyperplanes. By
using LSH to hash, the complexity of the SDP attention is reduced
from O (n2) to O (n log n). We use angular LSH to introduce
content-based sparsity in iMTransformer.

LSH is an approximate nearest neighbor search (NNS)
approach for alleviating the curse of dimensionality when
searching a large number of data points, thus, allowing for a
fast NNS. This is accomplished by hashing similar items with the
same binary signature. To perform an NNS, the binary signature
of a query is compared to the binary signatures of the keys using a
Hamming distance. LSH attention has been used in multiple
attention-based neural network architectures (Kaiser et al., 2016;
Kitaev et al., 2020).

2.3 In-Memory Computing Based Hardware
Kernels for Acceleration
To accelerate transformer networks, iMTransformer leverages
crossbars to implement the SDPA and CAMs to realize

content-based sparsity using LSH. Crossbars and CAMs are
described in detail in Section 2.3.1. Crossbars and CAMs can
be implemented in CMOS or non-volatile devices based on
emerging technologies such as FeFET. These devices are
discussed in Section 2.3.2. Finally, we review attention and
transformer network accelerators in Section 2.3.3 based on
crossbars and CAMs using CMOS and FeFET devices.

2.3.1 Circuits
The transformer network attention mechanism uses linear layers
and SDPA, requiring matrix-vector multiplications. Crossbars
can accelerate matrix-vector multiplications, and have been used
in a variety of DNN applications such as CNNs (Shafiee et al.,
2016; Chen P.-Y. et al., 2018) and MANN (Ranjan et al., 2019). A
crossbar (Gokmen and Vlasov, 2016) is an array-like circuit
structure where each input is connected to every output, and
vice versa as shown in Figure 2A. To perform matrix-vector
multiplications, the matrix must be encoded as conductances
stored in the crossbar crosspoints gi,j, and the vectors as input
voltagesVi. The output of the matrix-vector multiplication is read
as currents Ij at the columns using analog-to-digital converters
(ADCs). The ADCs, typically, consume the majority of the energy
(58%) and area (81%) of crossbar arrays (Roy et al., 2020). This
energy and area consumption also increases exponentially with
increased precision (Shafiee et al., 2016). NeuroSim, a DNN
simulator (Chen P.-Y. et al., 2018), uses crossbars to
benchmark convolutional and multilayer perceptron-based
neural networks.

Content-addressable memories (CAMs) have been used to
accelerate attention mechanisms for MANNs (Ni et al., 2019;
Laguna A. F. et al., 2019). CAMs are a special type of memory
that can perform fast parallel searches across the entire memory
(Figure 2B). Different CAM designs have been proposed for
accelerating various search operations. Binary CAMs (BCAMs)
store either a logic “0” or logic “1” in each cell while Ternary
CAMs (TCAMs) can store an additional don’t care value “X,” to
signify that the bit can match to either a logic “0” or a logic “1.”
Hamming distance is the most straightforward metric for
approximate search in BCAMs/TCAMs. CAMs, which are
traditionally used in routers and caches (Karam et al., 2015;
Yin et al., 2020), have been gaining popularity in data-intensive
applications such as nearest neighbor search (Kohonen, 2012;
Kazemi et al., 2020, 2021b), bioinformatics (Laguna et al., 2020),
neural networks (Chang, 2009; Wang et al., 2010; Li C. et al.,
2020, Li et al., 2021 H.; Kazemi et al., 2021a), etc. CAMs also
have been used in implementing LSH-based attention (Ni et al.,
2019).

2.3.2 Devices
Crossbars and CAMs can be implemented using CMOS or non-
volatile memories (NVMs) based on emerging technologies such
as resistive RAMs (ReRAMs) and FeFETS. CMOS-based
crossbars and CAMs have low write latency and energy,
making them ideal for transformer sublayers requiring many
write operations. However, CMOS-based circuits have high
leakage power (Jerry et al., 2018) which is detrimental for
storing static weights.
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Unlike CMOS-based memories, NVMs, such as ReRAM and
FeFET devices, can store static weights without periodic refreshes.
Moreover, NVMs also have a higher density compared to CMOS-
based memories. ReRAMs offer good density and fast reads,
making them a good candidate for applications requiring a large
number of read operations. However, ReRAMs can suffer from
cycle-to-cycle (C2C) variation and small Gmax/Gmin ratios (Jerry
et al., 2018). Moreover, ReRAMs have low endurance (106)
compared to CMOS-based devices (1016) putting them at a
disadvantage for write operations (Yu and Chen, 2016).

FeFET based crossbars and CAMs are also great candidates for
high-read operations because of their high density and fast read
operation. FeFETs have acceptable Gmax/Gmin and observe lower
C2C variations compared to ReRAMs (Jerry et al., 2018). As
shown in Figure 2C, FeFETs have a similar structure to the metal-
oxide-semiconductor field-effect transistors (MOSFETs) in
standard CMOS. The only difference between the two is the
extra layer of FE oxide deposited in the FeFET’s gate stack.
Because of this similarity, FeFETs can be integrated into the
CMOS fabrication process (Beyer et al., 2020). This enables us to
consider a combination of FeFETs and CMOS devices in our
architecture to realize better performance. One of the
shortcomings of FeFETs (as well as other emerging devices) is
device variation. In order to alleviate device variation, we need to
use write-verify programming schemes (Sharifi et al., 2021) which
increases the write time. FeFET devices also have lower
endurance (1010) than CMOS devices (Yu and Chen, 2016).
This makes the use of FeFETs challenging for applications that
demand a high number of write operations. Transformer
networks also may require large-scale memories. Large-scale
FeFET memories have been demonstrated (Beyer et al., 2020).

2.3.3 Attention and Transformer Network Accelerators
Different attention-based accelerators have previously been
proposed utilizing CAMs (Laguna A. et al., 2019; Challapalle
et al., 2020; Laguna A. F. et al., 2019), crossbar arrays (Challapalle
et al., 2020; Ranjan et al., 2019), and GP-CIMs (Reis et al., 2020a).
These accelerators were used to accelerate the attention
mechanism for MANNs and RNNs. However, the attention

mechanism for transformer networks has different properties
than the ones in MANNs and RNNs. Existing attention
accelerators (Laguna et al., 2019a,b; Reis et al., 2020a) use k-
nearest neighbors, which are not applicable for the transformer
network since the attentional weights need to be passed to the
next layer. The transformer network also uses MHA, which can
be highly parallelized and has not been utilized in existing
attention accelerators. An increase in parallelism can also be
achieved by exploiting the autoregressive and bidirectional
properties of the MHA. These properties have not been
considered in existing attention accelerators.

A ReRAM-based transformer (ReTransformer) (Yang X. et al.,
2020) has been proposed to accelerate SDPA using ReRAM-based
crossbars. ReTransformer uses matrix decomposition to avoid
writing the intermediate results. ReRAM has lower endurance
compared to CMOS and FeFETs; hence writing in the crossbars
must be minimized (Yu and Chen, 2016). However, attention
caching (Dai et al., 2019), which necessitates writing in the
crossbars, has been shown to improve the execution time of
transformer networks for long sequences by reducing the number
of operations. The low endurance of ReRAMs makes them
undesirable as memory devices for attentional caches.
Compared to the GPU approach, ReTransformer achieves a
speedup of 23.21× with a 1086× power reduction.

3 METHODOLOGY

To eliminate the limitation from memory bandwidth and exploit
transformer networks’ high degree of achievable parallelism as
sequence length increases, we propose an in-memory computing-
based transformer network architecture referred to as
iMTransformer. iMTransformer follows a hierarchical design
style. Section 3.1 presents an overview of iMTransformer.
Transformer networks have three types of MHA: bidirectional,
masked, and encoder-decoder. Each of these MHA types has
different characteristics that can be exploited to improve the
latency and energy performance of iMTransformer. The mapping
of attention mechanisms for different types of MHA is

FIGURE 2 | (A) Crossbars are array-like circuit structures where each input is connected to every output typically by a resistor at their crosspoints. (B) CAMs can
perform fast parallel searches in their memory. (C) FeFET devices are CMOS compatible devices that provide non-volatility, high density, and low power consumption.
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expounded in Section 3.2. The computational complexity of
transformer networks can be reduced by introducing either a
content-based or locality-based sparsity. Section 3.3 aims to
reduce energy consumption by utilizing sparsity. Energy can
also be improved by utilizing FeFETs for sublayers with high
read rates and CMOS for sublayers with high write rates. This
technology-level mapping is explained in Section 3.4. Finally, we
summarize the circuit and device level mapping in Section 3.5.

3.1 In-Memory Transformer Network
Architecture
iMTransformer is organized in a hierarchical pattern of banks,
tiles, and mats as shown in Figure 3. This hierarchical pattern
follows existing memory hierarchies and the hierarchical pattern
of transformer networks as shown in Figure 1. The transformer
network is composed of encoder layers and/or decoder layers.
Each encoder or decoder layer is composed of MHA, FF, and
normalization layers. The MHA then can be greatly parallelized
into multiple attention heads.

The encoder and decoder layers of transformer networks have
different properties which can be exploited to increase parallelism
and reduce the number of computations in implementing
transformer networks. Hence, iMTransformer uses two types
of banks: encoder banks and decoder banks. For an encoder-
decoder transformer network, the information first flows through
the encoder banks (i.e., Enc Banks 1–6 in Figure 3A) before being
processed by the decoder banks (i.e., Dec Banks 1–6 in
Figure 3A). Enc Banks processes data one after another. The
output of the final Enc Bank is then passed to all the Dec Banks as
the stored key-value pairs of the SDPA. These key-value pairs are
then processed in parallel. Because the decoder layers are

autoregressive, the input query of Dec Bank 1 is the output of
Dec Bank 6.

As shown in Figures 1C,D, each encoder and decoder layer of
the transformer network consists of multi-head attention,
feedforward, and normalization sublayers. The iMTransformer
banks (Figures 3B,C) are hence composed of a normalization
unit (NU), the feedforward tile (FF Tile), and the multi-head
attention memory tile (MHA Tile). The NUs execute the layer
normalization using additions and shift operations. Since no
weights are stored in the NUs, they are shared between
sublayers. The FF Tile is composed of two crossbar sub-arrays
and performs feedforward layer operations with ReLu activation
in between. Encoder banks (Figure 3B) have one MHA tile while
decoder banks (Figure 3C) have two MHA tiles. To follow the
information flow in Figure 1C, the encoder bank (Figure 3B)
passes the information to theMHA tile and then to the NU. Then,
the NU passes the information to the FF tile and then back to the
NU for the output. To map the decoder layer in Figure 1D to
iMTransformer, the decoder bank’s input (Figure 3E) is passed to
one of its MHA TilesⒶ. The attention vector from the MHA tile
is then passed to the NU Ⓑ. The normalized attention vector
from the NU is then passed to a different MHA tileⒸand back to
the NUⒹand then to the FF TileⒺ. The final attention vector is
then passed to the NU for output Ⓕ.

The MHA (Figure 1B) splits the input into queries, keys, and
values and passes them to different attention heads. The different
attention heads are then concatenated together using a linear
function. Since each attention head can be executed in parallel
with each other, we decompose each attention head into multiple
attention memory mats ➊ (AH Mat), where each mat represents
an attention head. The encoder MHA tile (Figure 3D) also
groups multiple AH mats to take advantage of the

FIGURE 3 | The iMTransformer follows a hierarchical memory structure. The iMTransformer (A) is composed of encoder (B) and decoder (C) banks. The encoder
bank is composed of an encoder MHA tile (D) and FF tiles and normalization units. The decoder bank is composed of two decoder MHA tiles (E), an FF tile and a
normalization unit. The encoder (D) and decoder (E) MHA tiles are composed of AH Mats (F) and an aggregator unit.
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bidirectional property of encoder MHA. The details for this are
further discussed in Section 3.2. Afterward, the aggregator unit
(AU) in the MHA Tile (Figure 3D ➋) computes a linear
combination of the different attention heads.

Each attention head of the MHA is mapped onto an AH Mat.
The AH Mat (Figure 3E) is composed of three projection units
(PU), two caching units (CU), a hashing unit (HU), a sparsity unit
(SU), an attention selector (AS), and a softmax lookup table
(LUT). As shown in Figure 1B, each MHA head is composed of
three linear layers that project the query, key, and value into a
different subspace. These linear layers are implemented by PU-Q,
PU-K, and PU-V, which store the projection matrices of the
linear layers (WQ, WK, WV) to project the input to different
feature spaces. These projection matrices have static weights
during inference. The projected query q � WQqt′, obtain from
PU-Q, is then compared to the present and previous projected
keys K = {kt, kt−1, kt−2 . . . }. and values V = {vt, vt−1, vt−2 . . . }
obtained from PU-K (kt � WKkt′) and PU-V vt � WVvt′
respectively. ➀ The PUs (shown in green boxes as in
Figure 3F) process the input in parallel. The output of the
PUs represent the input to the SDPA, which are implemented
using the CUs and the softmax LUT (shown as dark blue boxes in
Figure 3F ➁–➅).

The SDPA is mapped to the CUs and the softmax LUT.
Specifically, the keys and values are cached in crossbars (CU-K
and CU-V, respectively) for reuse to reduce computation ➁. The
outputs of PU-K (kt � WKkt′) and PU-V vt � WVvt′ are written
to a column of CU-K and a row of CU-V, respectively. During
inference, CU-K and CU-V are constantly written to, while PU-
Q, PU-K, PU-V have static weights. ➂ The output by PU-Q q is
used as the input to CU-K. ➃ The output of CU-K, qKT, passes
through the softmax LUT. The dot product scaling (1/ ���

dk
√ ) is

implemented by dropping the three least significant bits for a dk =
64. This is equivalent to dividing 8. [dk = 64 is used in most
transformer network (Vaswani et al., 2017; Devlin et al., 2018)].➄
The output of the softmax unit is then used as the input to CU-V.
➅ CU-V produces the final output of the AH Mat. To combine
the outputs of AH Mats, the AU concatenates and pools the
output of each AH Mat in an MHA Tile. The AU stores the
weightsWO which are static during inference, and ➋ outputs the
final multi-head attention score.

The iMTransformer stores a pre-trained transformer network
model. Hence, the sizes and number of crossbar arrays for the
PUs and HU can be set to exactly store the trained weights.
However, the sequence length of each input is variable. Hence the
size of the crossbars in the CUs and CAMs in the SU cannot be
fixed. Since the keys are stored column-wise, increasing the
number of keys (increasing the sequence length) will only
require crossbar arrays that are implemented in parallel. On
the other hand, as the sequence length increases, the values
will require more rows. This will also require more crossbar
arrays where each crossbar array outputs a partial sum that needs
to be aggregated. We limit the sequence length to 512 to prevent a
large number of partial sums and use content-based sparsity for
sequence length n > 4096. The CAMs are also designed to hold up
to sequence lengths up to n = 4096. Beyond this, a replacement
algorithm must be designed to determine which sequence

elements can be removed from the memory. We have not
explored this replacement algorithm in this research, and it is
a topic for future work.

3.2 Multi-Head Attention Operation
Mapping
As discussed in Section 2.1.3, transformer networks are heavily
dominated by MHAs. Hence iMTransformer focuses on
accelerating MHA, which relies primarily on matrix-vector
multiplications. Transformer networks have three different
types of attention: bidirectional MHA, masked MHA, and
encoder-decoder MHA. Each type has different properties,
which are exploited by iMTransformer to improve the time
and energy consumption of transformer networks. The
bidirectional MHA can be parallelized during inference as the
entire input sequence is available and does not need to be
computed. On the other hand, the energy consumption of the
masked MHA can be reduced by turning off columns in the CUs.
Finally, encoder-decoder MHA can parallelize the computation
of the projected keys and values across different layers. In this
section, we discuss the operation mapping for the masked MHA
(Section 3.2.1), bidirectional MHA (Section 3.2.2) and the
encoder-decoder MHA in Section 3.2.3.

3.2.1 Masked Multi-Head Attention
The masked MHA uses a decoder MHA tile and does not use
model parallelism (Figure 4A). The transformer’s decoder layer is
autoregressive by nature (i.e., the input is a delayed version of the
output) and uses masked MHA. The masking is essential to
prevent a backward information flow (i.e., the future affects the
past). The masked MHA computes the projection layers and
SDPA for each sequence element before computing the next
sequence element.

We utilize an AS, a SU, and a HU to implement masking and
sparsity (i.e., locality-based sparsity and content-based sparsity).
When masking is implemented, the AS disables the rows of the
CU-V that represent future time steps when selecting the values
for the SDPA. The AS is a configurable circular shift register that
allows different types of locality-based sparsity based on the
stored pattern in the register. More details regarding locality-
based sparsity and the different attention patterns are discussed in
Section 3.3.1. The HU is a crossbar array that hashes the keys
using LSH based on random projection and stores the hash
signatures H(K) in the SU. Content-based sparsity mapping is
further expounded in Section 3.3.2.

3.2.2 Bidirectional Multi-Head Attention
The encoder layer uses bidirectional MHA to attend to each
sequence element’s previous, current, and future values. The
bidirectional MHA can be parallelized by duplicating weights
in the PUs. Figure 4B shows the operations for each time step.
(Step 1) The PU-K and PU-V of all AH Mats in the same tile
perform matrix-vector multiplications in parallel. (Step 2) The
first AHMat then broadcasts the computed key-value pair (k1, v1)
to other AH Mats. (Step 3) Each AH Mat then writes (k1, v1) to
the CU-K column-wise and CU-V row-wise. Steps 2-3 are
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repeated for (k2, v2) and so on, until the whole sequence is
processed. For a sequence length of n and the degree of
parallelism p (Step 2n/p to 2n/p+5), each AH Mat performs the
SDPA operation (qKT) for each sequence element. However, the
MHA still has anO(n) complexity because of the number of writes.
The complexity of the SDPA is reduced to O(n) for n ≤ p (p = 3 in
Figure 3). If n > p, the time complexity of the SDPA is O (n/p).

However, the increased parallelism requires more AH Mats and
thus a higher peak power. As such, the attention parallelism is
limited by the total memory size and/or the thermal design power.

3.2.3 Encoder-Decoder MHA
The encoder-decoder MHA (Figure 1D) is implemented by the a
decoder MHA tile Ⓒ in a Dec Bank (Figure 1C). The key-value

FIGURE 4 | The timeline of implementation for the different types of MHA namely masked MHA (A), bi-drectional MHA (B) and encoder-decoder MHA (C). The bi-
directional MHA uses model parallelism across multiple AHUs while the encoder-decoder MHA parallelizes the computation of the keys and values across different
decoder banks.
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pair inputs of the MHA tiles (K′, V′) all come from the output of
the last encoder bank (Enc Bank 6). Hence the encoder-decoder
MHA requires communication between the encoder and the
decoder banks. Instead of serializing the computation of the
keys and values per decoder layer as in the standard
iMTransformer implementation discussed in Section 3.1, the
computation of the projected key-value pairs (K, V) can be
parallelized for all decoder banks (Dec 1–6) in Figure 3A. The
encoder-decoder MHA processes the decoder sequence query

one element at a time as shown in Figure 4C. However, the keys
and values do not need to be recalculated.

3.3 Sparse Attention for iMTransformer
A full self-attention mechanism (Figure 5A) computes for the
global correlation between elements in a sequence. However,
computing for the full self-attention mechanism can be costly as
the sequence length increases (Child et al., 2019). Introducing
sparsity in the attention mechanism can reduce the transformer

FIGURE 5 | The full attention (A) and masked attention pattern (B) have high computational complexity. To improve the computational efficiency, different locality-
based sparse attention patterns can be used to improve the computational efficiency. Examples of these attention patterns are strided (C), sliding window (D), dilated
sliding window (E) and strided (F) sliding window attention. The configurable attention selector (G) uses a circular shift register which contains a pre-defined attention
pattern based on the type of attention matrix used.
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network’s computational complexity without sacrificing
accuracy. ADCs in a crossbar array consume most of the
energy in performing matrix-vector multiplications (Roy et al.,
2020). By introducing sparsity, the ADCs in a crossbar that does
not contribute to improving the accuracy can be turned off to
reduce energy consumption. As discussed in Section 2.2.4, there
are two main types of sparse attention: locality-based sparse
attention and content-based sparse attention. Locality-based
sparse attention (Section 3.3.1) focuses on the temporal
locality between sequence elements while content-based sparse
attention (Section 3.3.2) focuses on the similarity between
sequence elements.

3.3.1 Locality-Based Sparse Attention
Locality-based sparse attention focuses on the sequence elements
based on their position relative to the query. Different attention
patterns have been proposed that allow more efficient
computation of attention for longer sequences without
sacrificing accuracy. Examples of supported attention patterns
include: strided attention (Figure 5C), sliding window attention
(Figure 5D), dilated sliding window attention (Figure 5E) and
strided sliding window attention (Figure 5F). It is also possible to
combine masking with any of these attention patterns.

iMTransformer uses a configurable AS (as shown in
Figure 5G), which consists of a circular shift register to store
a predefined attention pattern for determining the crossbar
columns to be activated. The shift register is configurable to
implement different sparsity patterns. We use a 128-bit circular
shift register to control a 64-column crossbar (Figure 5). The first
64 bits determine the crossbar columns to be activated. The last
64 bits function as a buffer necessary to implement certain
attention patterns and masking. The shift register is shifted to
the right by 1 bit at every time step. The stored pattern in the AS is
different for each attention pattern, as shown in Figure 5G. The
AS has all 1’s in its register for the full attention pattern. The
strided attention activates every other c column. For the 128-bit
circular shift register, c must be a factor of 128. The sliding
window width can be configured by setting the number of 1’s
stored in the AS.

3.3.2 Content-Based Sparse Attention
Another type of sparsity is based on the similarity of the query
with the keys, or content-based sparsity. Content-based sparsity
can be implemented using LSH. LSH reduces the number of
attention computations for CU-K and CU-V. We implemented
angular LSH using random hyperplanes to represent cosine
distance. To implement an LSH-based attention mechanism,
the keys need to be hashed to a binary signature, where each
bit in the signature is hashed using equation H(q) = (sign (q · r) +
1)/2. The logic “0” or “1” determines if the point is in the left or
right of the hyperplane, respectively.

In iMTransformer, the hash function H(q) is implemented by
the HU using crossbars. The binary signature of the queryH(q) is
compared to the signature of keys H(K), using a CAM-based SU.
The SDPA, implemented by the CU-K and CU-V, is only
implemented on the keys with m most similar buckets as
H(q). By only focusing on the most similar keys and values

with the query, we reduce the required multiplications that are
more computationally expensive. The hashing function
introduces an additional latency and energy overhead when
computing the signature. However, it can reduce the softmax
computations and value comparisons as the sequence length
increases. Thus, LSH-based sparsity is only beneficial when the
computational savings associated with avoiding comparisons
with all key-value pairs exceeds the hashing overhead. A study
of the effect of the hashing overhead and the effect of increasing
sequence length is later explained in Section 4.3.4.

3.4 Device-Level Mapping
Different devices have different properties that make them ideal
for certain operations. CMOS devices, for example, are ideal when
the devices need to perform a large number of write operations
because of their low write energy and high endurance. However,
CMOS devices also have high leakage power, making them
undesirable when weights must be stored for extended periods.
Alternatively, FeFETs, are non-volatile and have low leakage
power. However, FeFETs have much lower endurance
compared to CMOS devices. Thus, CMOS devices are better
for operations tasks that require a high number of write
operations, while FeFETs are better when there are minimal
writes and non-volatility is important.

To determine which devices are good fits for iMTransformer,
we examine the usage of IMC kernels for iMTransformer.
iMTransformer employs crossbars for two different reasons: (i)
to store attentional (in PUs and AU) and feedforward weights (in
FF Tiles), and (ii) to serve as attentional caches to store
intermediate activation (in CUs). The PUs, AU, FF Tiles, and
CUs perform different operations and require different
properties. The weights in PU, AU, and FF Tiles, once trained,
do not change. Hence, they do not require additional write
operations and would benefit from using NVMs such as
FeFET devices. Alternatively, CUs require frequent write
operations and would benefit from memories with lower write
times and energy and higher endurance, such as CMOS devices.
Therefore, iMTransformer employs FeFET-based crossbars for
attentional and feedforward weights because of the FeFET’s non-
volatility and CMOS-based crossbars as attentional caches
because of the CMOS’s low write energy and high endurance.
The FF Tiles and AU also use FeFET-based crossbars as they also
do not require writes and can benefit from FeFET’s non-volatility.

FeFET-based crossbars have been proposed in Chen X. et al.
(2018). However, this crossbar design stores binary weights and
performs XNOR operations. To utilize FeFET-based crossbars,
we use a binary-code-based quantization technique introduced
for transformer networks (Chung et al., 2020). The binary-code-
based quantization uses non-uniform quantization and decouples
a feature vector into a scaling factor and a binary vector. Scaling
can be done in the crossbar’s ADCs, and only bitwise XNOR
operations are necessary.

3.5 Summary of Mapping
To summarize the mapping of the iMTransformer architecture,
Table 1 shows the functional units of iMTransformer and their
mapping to circuits and devices. The PUs, HUs, AUs, and FFUs
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are implemented using FeFET-based crossbars, while CUs are
implemented using CMOS-based crossbars. On the other hand,
the SU is implemented using CMOS-based CAM, and AS is
implemented using a CMOS-based shifter.

4 RESULTS AND EVALUATION

This section discusses the evaluation of executing transformer
networks using iMTransformer. We follow a bottom-up
approach beginning with an array-level evaluation in Section
4.1 and experiment setup in Section 4.2. The latency and energy
evaluation of using MHA is then shown in Section 4.3. For the
evaluation in Section 4.3, we only assume CMOS-based
crossbars. An end-to-end accuracy, latency, and energy
evaluation are then presented in Section 4.4. We also show
the effect of using CMOS-FeFET hybrid iMTransformer
implementations where CMOS-based crossbars are used as
attentional cache, and FeFET-based crossbars are used to store
static weights in Section 4.4. Finally, we compare iMTransformer
using the MLPerf Inference benchmark for edge devices in
Section 4.5.

4.1 Array-Level Evaluation
iMTransformer relies heavily on crossbars and CAMs in
implementing transformer networks. We consider crossbars
and CAMs implemented in a 14 nm technology node. Both
CMOS and FeFET devices are used for crossbars, while only
CMOS devices are evaluated for CAMs. We used Neurosim to
obtain the energy and delay results for reading and writing in
crossbar arrays. For the 64 × 64 crossbar arrays, each synapse has
8-bit precision (8 SRAM cells). Each crossbar has one 8-bit ADC
per 8 columns, and their overhead is accounted for in the results.
We obtained the CAM results using SPICE simulations based on
the model used in Yin et al. (2017). Based on our estimation, the
interconnects between the arrays add about 20% overhead to
latency and energy of the overall architecture. We calculated the
interconnection delay by estimating the length of the longest wire
in the interconnections. We used the 22 nm design rules (wire
width and pitch) to calculate the capacitance and resistance of the
longest wire. Using the calculated numbers, we simulated the RC
model for the wires and calculated the delay of the longest wire
using SPICE simulations.

Table 2 shows the latency and energy results for 64 × 64
CMOS-based and FeFET-based crossbars as well as the 64 × 64
CMOS-based CAM array. The write latency and energy shown
is a write for a single row, while the read latency and energy
are for the whole array. CMOS-based crossbars have
lower latencies than FeFET-based crossbars. Alternatively,
FeFET-based crossbars have 4.12× lower read energy than
CMOS-based crossbars. CMOS-based crossbars have faster
writes and lower write energy than FeFET-based crossbars.
However, these array-level evaluations do not consider the
leakage current necessary to store the weights in a CMOS-
based crossbar. FeFET-based crossbars are superior for this
figure of merit.

4.2 Experiment Setup
We use the following as our baseline hardware for comparison:
an Intel Core i7-10750H CPU (2.60GHz, 2592 Mhz, six cores)
with a Titan RTX GPU (672 GB/s memory bandwidth
and peak performance of 130 TFLOPS). To measure the
latency and energy of the baseline implementation of the
vanilla transformer (Vaswani et al., 2017), we use NVIDIA
NSight and python line-profiler. We use nvidia-smi to collect
the operating power while the transformer network runs.
The average power is then multiplied by the average latency
to obtain the energy. We use 8-bit quantization for both
the GPU and iMTransformer using quantization-aware
fine-tuning (Zafrir et al., 2019). 8-bit quantization is the
lowest quantization for both weights and activations and
achieves acceptable accuracies (Zafrir et al., 2019; Li et al.,
2020c).

Using the python line-profiler, we obtain the number of
operations executed in each stage and map them to the

TABLE 1 | Summary of hardware mapping of Transformer Network to iMTransformer.

Transformer network iMTransformer Crossbar CAM Shifter CMOS FeFET

Linear Unit PU-Q ✓ ✓
Linear Unit PU-K ✓ ✓
Linear Unit PU-V ✓ ✓
Attention Cache CU-V ✓ ✓
Attention Cache CU-K ✓ ✓
Hash Function HU ✓ ✓
Hash Table SU ✓ ✓
Sparsity AS ✓ ✓
Linear Layer AU ✓ ✓
Feedforward Layer FFU ✓ ✓

TABLE 2 | Latency and energy array-level results for CMOS and FeFET crossbars
and CAMs.

Latency (ns) Energy (fJ)

CMOS Crossbar Read (whole array) 17.06 78270
Write (single row) 1.04 2.5

FeFET Crossbar Read (whole array) 17.39 1900
Write (single row) 175 118

CMOS CAM Read (whole array) 0.181 441
Write (single row) 0.25 1570
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number of operations in iMTransformer. The total number of
operations varies depending on the sequence length, the number
of layers, the embedding size, and the number of heads in the
MHA. We then calculate the latency and energy of
iMTransformer from the number of operations and the
corresponding array level results.

4.2.1 Transformer Models and Datasets
In our experiments, we use three transformer models: the Vanilla
transformer, the BERT-base, and BERT-large. The vanilla
transformer has six encoder and six decoder layers. The
vanilla transformer also has 512-dimensional embedding and
eight attention heads in each MHA. The BERT-base has 12
encoder layers, with each layer having 12 heads in each MHA.
In comparison, BERT-large has 24 encoder layers with 16 heads
in each MHA. The multihead attention model used in Section
4.4.1 uses a 512-dimensional embedding (similar to the Vanilla
Transformer). We use the Vanilla transformer and BERT-base
parameters in Section 4.4.2. The maximum sequence length is
not restricted. BERT-base is then used to evaluate the GLUE
dataset in Section 4.4.3. MLPerf inference edge uses BERT-large,
hence, it is used when comparing accelerators in Section 4.5.

We simulated various sequence lengths by truncating a large
passages of text to a specified sequence length to obtain the delay
and energy metrics in Sections 4.3, 4.4.1, 4.4.2.

Section 4.4.3 uses the General Language Understanding
Evaluation (GLUE) benchmark, which is a collection of NLP
datasets for various NLP tasks. The GLUE dataset is composed of
the Stanford Sentiment Treebank (SST-2), the Microsoft
Research paraphrase Corpus (MRPC), the Quora Question
Pairs (QQP) dataset, the Semantic Textual Similarity
benchmark (STSB), Multi-Genre Natural Language Inference
(MNLI) Corpus, Question Natural Language Inference (QNLI)
dataset, Recognizing Textual Entailment (RTE), Winograd
Natural Language Inference (WNLI) Schema Challenge.

To evaluate and compare with other hardware
implementations, Section 4.5 uses the setup of MLPerf, an
industry-standard machine learning benchmark to evaluate
hardware devices in a myriad of machine learning tasks.
MLPerf Inference Edge, in particular, specifically evaluates
machine learning systems in edge devices during inference.
One of the categories in MLPerf Inference Edge is the
language processing task that uses BERT-large and the
Stanford Question Answering Dataset (SQuAD) 1.1. The
QNLI dataset of the GLUE benchmark is derived from the
SQuAD dataset. The SQuAD 1.1 dataset is a reading
comprehension dataset consisting of 100k + question and
answer pairs where the answers to the questions can be
obtained from a set of 500 + Wikipedia articles.

4.3 Multi-Head Attention Evaluation
This section presents the multi-head attention evaluation of
iMTransformer compared to the GPU baseline. The input
sequence length affects the computational demands of
transformers. By using crossbars and attention caches,
iMTransformer can improve the execution time of
transformers, particularly the MHA, as the sequence length

increases (Section 4.3.1). Furthermore, bidirectional MHA can
be parallelized to achieve higher speedups (Section 4.3.2). Energy
consumption can be further improved by using locality-based
sparsity (Section 4.3.3) and content-based sparsity (Section
4.3.4). We assume a CMOS-based crossbar in this evaluation.

4.3.1 Effect of Increasing Sequence Length
We first evaluate the unparalleled MHA with respect to the GPU
baseline. The unparallelized MHA implementation reduces the
memory transfer overhead via PIM, reduces the number of
computations by caching the keys and values, and increases
parallelism by using crossbars. Figures 6A–C shows the
improvement of implementing MHA in iMTransformer when
running a bidirectional transformer for inference. At a sequence
length of n = 64, the standard speedup (shown as red bars in
Figure 6A) of running the transformer using crossbars is 10.6×.
The GPU fully utilizes the memory and compute units at this
sequence length and achieves optimal performance.

As the sequence length n increases, the GPU’s memory
bandwidth and the compute limitations are reached. At n =
256, the execution time of the baseline starts to grow quadratically
by approximately n2/256. By caching the keys and values and
using crossbars, iMTransformer only grows linearly. Caching the
keys and values reduces the required number of matrix-vector
multiplications for WQ, WK, and WV by n, thus reducing the
delay by n. Since the PUs contains static weights, their execution
time still grows by n, as we need to compute the projection of the
q′,K′, andV′ for each segment. The number of required columns
increases for K while the number of required rows increases forV
as n increases. Since the columns in the crossbars can be treated
independently, �n/64� 64 × 64 arrays can be used to compute the
matrix-vector multiplications for K in parallel. Increasing the
number of rows in V requires adding partial sums from the
crossbars, incurring additional latency. This additional latency,
however, is still not significant at n = 4096. Hence, the complexity
of iMTransformer is O(n). Thus, iMTransformer achieves a
speedup close to n/256 compared to a GPU-based solution as
shown by the red bars in Figure 6A.

4.3.2 Improvement due to Model Parallelism
For the encoder layers, latency can be improved by introducing
more parallelism via duplicating the crossbars in each head by p
(Section 3.2.2). The projection operation is parallelized but is
bottlenecked by the write operation. SDPA, on the other hand,
results in p× additional improvement in the execution time. By
using crossbars and parallelization (p = n), we can reduce the time
complexity of the projection to O(n) and SDPA to O (1).
Accounting for the projections and SDPA, the latency
improvement is shown as yellow bars in Figure 6A.

Memory and power, however, are bounded. As an example, we set
the memory size of each attention head to 15MB, shown as blue bars
in Figure 6A as bidirectional MHA BM (Bounded Memory). Once
the memory limit of iMTransformer is reached, the execution time
returns to O (n/p), where p is the number of AH Mats used to
represent a single attention head to achieve attention-level parallelism
through duplication. At n = 64, this speedup equates to 682× speedup
(in which ≈ 10 × speedup is from computing in-memory in
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crossbars, and around ≈ 64 × speedup from parallelization). At n =
4096, a speedup of five orders ofmagnitude is achieved (×10 from the
standard implementation, 100× from duplicating the crossbars, and
100× from attention duplication).

However, duplicating crossbars increases the number of writes
and requires communication between AH Mats, resulting in
lower energy improvements. In the parallel scenario
(Figure 6B), increasing attention-level parallelism with respect
to sequence length n also requires n×more writes (because p = n),
resulting in a significant degradation in energy improvement. If
n < p, only n×more writes are required. If n ≥ p, there are p×more
writes. The memory requirement also increases by a factor of n.

Having more parallelism results in a higher speedup but lower
energy gains. However, per Figure 6C, increased parallelism translates
to better EDP owing to the exponential decrease of delay
improvement despite the linear increase in energy improvement.

4.3.3 Improvement due to In-Memory Locality-Based
Sparse Attention
Different transformer models have used different attention
patterns to reduce the space and computational complexity of
the transformer networks. In iMTransformer, the computation of
attention scores is highly parallelized. Therefore changing the
attention pattern does not reduce latency. However, because of
fewer parallel computations, energy consumption is reduced.
Figure 6D shows the energy improvement of using full,
masked, strided, sliding window, dilated, and sliding window +
strided attention patterns as compared to the full attention pattern
implementation in the GPU.

Compared to the full MHA (red bars in Figure 6D), the
masked MHA (orange bars in Figure 6D) reduces the number of
rows in CU-V that needs to be queried by 2× regardless of the
sequence length. This is equivalent to turning off the ADCs in
CU-K. Masked MHA achieves a speedup of 1.9× and 2×
compared to the full SDPA at a sequence length 512 and
4096, respectively. The energy consumption of the strided
window MHA (shown as yellow bars in Figure 6D) depends
on the stride length. (In our example, it is 4). Hence, it can achieve
up to 4× energy improvement than the full MHA. For sequence
lengths of 512 and 4096, sliding window attention (shown as
green bars in Figure 6D) achieves energy improvements of 3.43×
and 3.91×, respectively. The sliding window MHA achieves
higher energy improvement as the sequence length increases.

The sliding window MHA only focuses on w sequence
elements for each iteration, where w is the sliding window
length. Hence, the sliding window attention increases linearly
as the sequence length increases. Compared to the full MHA,
sliding windowMHA results in an energy improvement of 13.92×
at a sequence length equal to 512, and energy improvement of
106× at a sequence length equal to 4096. As some sequence
elements are skipped, the dilated sliding window has a small
improvement against the sliding window MHA and achieves
energy improvements of 15.51× and 118.14× for sequence lengths
of 512 and 4096, respectively. Strided MHA consumes more
energy than the sliding window MHA and dominates the sliding
window + strided MHA. The dilated sliding window attention
pattern shows the highest energy improvement, followed by the
sliding window attention pattern among the six different patterns

FIGURE 6 |Comparison between CMOS-based iMTransformer and GPUBaseline in terms of the speedup (A), energy (B) and EDP (C) evaluation results for multi-
head attention (with and without parallelism) for varying sequence length. Energy improvements of MHA without parallelism for locality-based (D) and content-based (E)
sparsity.
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shown. However, as stated before, which attention pattern should
be used is application-dependent.

4.3.4 Improvement due to In-Memory Content-Based
Sparsity
The accuracy of using LSH followed by SDP (LSH + SDP) is
dependent on signature length. We have found that comparable
accuracies with SDP can be achieved when using a signature
length of 1024 bits with a k-nearest neighbor of k = 16 on the
General Language Understanding Evaluation (GLUE) dataset
(Wang et al., 2018). This setup is also similar to using 64
buckets of four hashes each or 1024 = 64 · 24 bits for the
angular LSH used in the Reformer network (Kitaev et al.,
2020). A pre-trained BERT (Devlin et al., 2018) is used for
evaluation. The GLUE dataset is a common benchmark used
in transformers (Devlin et al., 2018; Lan et al., 2019).

Since we are only appending the LSH in a pre-trained network,
an 11% (1.11×) increase in delay is incurred because of the CAM
search. LSH reduces the number of dot-products required as the
sequence length increases. Latency overhead still outweighs
latency improvement due to fewer attention computations that
must be performed at a sequence length of n = 4096. However, as
CAM searches require fewer numbers of bits and are more
energy-efficient than searching via dot-product on crossbars,
this results in an exponential improvement in energy as the
sequence length increases (Figure 6E). The bars below the
dashed line (speedup = 1) have worse execution times,
representing a slowdown. LSH is only advisable for longer
sequence lengths (greater than 256).

4.4 End-to-End Evaluation
We evaluate the end-to-end accuracy, delay, and energy of
iMTransformer in implementing the transformer network.
Section 4.4.1 considers the end-to-end energy and delay
evaluation of iMTransformer. Section 4.4.2 discusses the
improvement in energy consumption by iMTransformer using
FeFET-based crossbars for high-read operations, and CMOS-
based crossbars for high-write operations. Finally, Section 4.4.3
reports the effect of device-to-device resistance variation on
application-level accuracy.

4.4.1 Energy and Delay Evaluation
Figures 7A,B shows the delay and energy improvement of
feedforward and MHA with parallelism and LSH enhancements
on the Vanilla and BERT-based transformer at sequence lengths n =
512 and n = 4096. The standard implementation (without attention-
level parallelism) achieves a speedup of 16× and 6.4× for the vanilla
transformer and BERT, respectively, when n = 512. This increases to
305.6× and 167.2× at n = 4096. For the vanilla transformer, only the
encoder layers can be parallelized, as opposed to bidirectional
transformers such as BERT, where all layers can be parallelized.
Therefore, as the sequence length increases, the speedup gained from
attention parallelization is smaller for vanilla transformers than
bidirectional transformers. LSH slows down the iMTransformer as
shown in Figure 7A because of the additional hashing operation
achieving a 456× speedup for Vanilla transformer and 39.49K×
speedup for BERT for n = 4096.

The energy improvement of the standard implementation of
iMTransformer for the vanilla transformer is 16.84× at n = 512.
This increases to 56.78× at n = 4096 because of fewer number of
computations due to caching compared to the GPU
implementation. For the standard implementation of BERT,
the iMTransformer has an energy improvement of 6.78× at
n = 512 which increases to 31.16 × n = 4096. The parallel
implementation is faster than the standard implementation but
requires hardware duplication, thus, consuming more energy.
LSH improves the energy consumption to 40.18× at n = 4096
compared to the GPU implementation.

By including layer normalization as shown in Figure 7C,
iMTransformer can achieve a delay improvement of 9.01× for
Vanilla Transformer at n = 512, 13.71× for BERT at n = 512, 76×
for Vanilla Transformer at n = 4096 and 199× for BERT at n =
4096. iMTransformer also achieves an energy improvement of
5.83× for Vanilla Transformer at n = 512, 1.49× for BERT at n =
512, 60.4× for Vanilla Transformer at n = 4096 and 33.6× for
BERT at n = 4096. Algorithmic replacements for layer
normalization that are more hardware friendly are needed to
improve the iMTransformer accelerator further.

4.4.2 Improvement due to Using Emerging Technology
Based on the data in Table 2, CMOS-based crossbars are 1.02×
faster than FeFET-based crossbar. On the other hand, FeFET-
based crossbars have 4.12× lower read energy than CMOS-based
crossbars. CMOS-based crossbars have faster writes and lower
write energy than FeFET-based crossbars. As discussed before,
CMOS crossbars also have higher endurance than FeFET-based
crossbars. Because of this, we utilize CMOS-based crossbars for
crossbars that require a high number of write operations and
FeFET crossbars for crossbars that do not require write
operations. In the CMOS-FeFET hybrid iMTransformer,
CMOS is used for attentional caches, while FeFETs are used to
store trained weights.

Figure 7D shows the end-to-end latency and energy
improvements of iMTransformer using CMOS, FeFET and
CMOS + FeFET hybrid iMTransformer implementations when
implementing the Vanilla Transformer at n = 512. The CMOS-
based iMTransformer achieves an end-to-end speedup and
energy improvement of 9.01× and 5.83×, respectively. In
contrast, the FeFET-based iMtransformer achieves 4.68× end-
to-end latency and 12.03× end-to-end energy improvements. The
CMOS-based iMTransformer performs 1.93× faster than the
FeFET-based iMTransformer. However, the FeFET based
iMTransformer has 2.06× lower energy consumption than the
CMOS-based transformer.

For the CMOS + FeFET hybrid iMTransformer
implementation, we can achieve an 8.96× speedup, which is
close to the latency improvement of the CMOS
iMTransformer implementation (9.01×). The CMOS + FeFET
hybrid iMTransformer implementation achieves a 12.57× energy
improvement, higher than either the CMOS or the FeFET
iMTransformer implementation. This is because we utilize
CMOS crossbars (which are more energy efficient for write
operations) for attentional caches and FeFET crossbars (which
are more energy efficient for read operations) for storing trained
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weights. Thus the CMOS + FeFET iMTransformer
implementation exhibits a much better energy-delay-product
than using a CMOS or FeFET iMTransformer
implementation alone.

4.4.3 Accuracy Evaluation
Device programming methods for writing specific values to
FeFETs can result in different stochastic variations of the stored
resistance in crossbars. We evaluate the effect of the resistance
variation in the crossbar array on the accuracy of the GLUE dataset
using the BERT-base model. Crossbar resistance variation is
usually modelled as a log-normal distribution (Li P. et al., 2021;
Lastras-Montaño et al., 2021) Rd2d = Rideale

θ where θ � N (0, σ2).
The resistance variation of crossbars can affect the accuracy of
implementing the transformer network in iMTransformer.
Figure 7E shows the effect of the resistance variation on the
GLUE benchmark. At σ < 0.3 (equivalent to 12.7% either below
or above the mean), we achieve iso-accuracy for almost all the
datasets in the GLUE benchmark. The accuracy then continues to
drop until σ> 0.5 or at 19.15% either below or above themean. This
means that the maximum allowable resistance variation in the
crossbar must be below ±12.7%.

4.5 Comparison With Other Accelerators
To provide a comparison with GPU baselines and PIM-based
accelerators for transformer networks, we use the MLPerf
Inference Single Stream setup. The MLPerf uses BERT-Large
and the SQuAD 1.1 dataset. The SQuAD 1.1 dataset has a
maximum sequence length of 384, with most of the questions/
answers in the dataset in the 100–200 sequence length range.
Table 3 shows the comparison between results from the best

MLPerf baseline, the GPU baseline ReTransformer, and the
CMOS-based and CMOS-FeFET hybrid Transformer baselines.
The MLPerf Inference Edge results represent the best Single
Stream (batch size of one) results1 as of the time of this
writing. It uses Intel® Xeon® Platinum 8358, NVIDIA A100-
SXM-80GB using TensorRT 8.0.1 and CUDA 11.3. The Titan X
GPU (the GPU used in this paper as the main baseline)
throughput is obtained by averaging all dataset samples. The
ReTransformer results are obtained from the best latency
performance (81.85 GOps/s), and energy efficiency (467.68/s/
W) reported in Yang X. et al. (2020). The iMTransformer results
are obtained by the hardware implementation for BERT-Large
model parallelization and attention caching. iMTransformer did
not use sparsity because the SQuAD 1.1 dataset has short
sentences (low sequence length); hence, sparsity will not
improve the results significantly.

As shown in Table 3, the MLPerf Inference Edge achieves an
average throughput of 649.35 samples/sec. The Titan X GPU
baseline has a slower GPU and slower memory bandwidth
leading to a 204.84 samples/sec throughput. The
ReTransformer also has smaller operations/second than
MLPerf GPU (A100) and Titan X GPU hence the smaller
throughput of 2.73 samples/sec. However, this implementation
for ReTransformer is not optimized for BERT and does not utilize
the available parallelism of Transformers. The iMTransformer
uses model parallelization and attention caching which are not
present in the ReTransformer. The iMTransformer achieves a
throughput of 2.25 K for the CMOS iMTransformer

FIGURE 7 | Latency (A) and energy (B) improvements of evaluating the MHAwith and without model parallelism (MP) and sparsity and Feedforward units of Vanilla
transformers and BERT with sequence length of 512 and 4096 using CMOS-based iMTransformer compared to GPU Baseline. End-to-end improvement (C) of CMOS-
based iMTransformer for Vanilla transformers and BERT with sequence length of 512 and 4096 compared to GPU baseline (D) End-to-end improvement of
iMTransformer for Vanilla transformers with sequence length of 512 using CMOS, FeFET and CMOS + FeFET iMTransformer implementation compared to the GPU
baseline. (E) Effects of crossbar resistance variation on the accuracy the GLUE dataset.

1Results taken 15 February 2022
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implementation and 2.23 K for the CMOS-FeFET hybrid
iMTransformer implementation, which are about 11× better
than Titan X and 3.43× improvement over the current MLPerf
state of the art results.

The energy results are summarized in Table 3. The energy
results are not available for the MLPerf Inference Edge baseline
and hence are not reported in Table 3. The Titan X does not
achieve its peak compute utilization and uses an average dynamic
power of 13W (peaking at 35W) to run the transformer network,
giving a throughput/W of 15.76 samples/s/W and throughput/J of
3.23 K samples/s/J as shown in Table 3 iMTransformer reduces
the memory transfer overhead by using in-memory computing
compared to Titan X and reduces the computation via attention
caching compared to ReTransformer. iMTransformer achieved
around 1.5× energy improvement compared to Titan X and
ReTransformer. The CMOS-FeFET hybrid iMTransformer
achieves an additional 5.31× energy improvement leading to
125 samples/s/W. Given in-memory computing, model
parallelization, attention caching, and using a CMOS-FeFET
hybrid iMTransformer implementation, we achieve 278K
throughput/J, which is 5.26× better than the CMOS
iMTransformer and 86× better than the Titan X (the
baseline GPU).

5 DISCUSSION

In this work, we introduced iMTransformer, an in-memory
computing-based transformer network accelerator
(iMTransformer) that uses FeFET-based and CMOS-based
crossbars and CAMs to accelerate transformer networks,
specifically the multi-head attention computations.

iMTransformer achieves latency and energy improvements by (1)
reducing the memory bottleneck via computing-in-memory, (2)
reducing the number of computations by storing reusable data in
crossbars, and (3) maximizing the parallelism for bidirectional MHA
and encoder-decoder MHA. Computing-in-memory alleviates the
memory transfer bottleneck by reducing the need to move data from
thememory to the compute unit and vice versa. By using crossbars as
attentional caches, we can keep data computed from previous time
steps to be reused for succeeding time steps. Finally, different types of
MHA have parallelism characteristics that can be exploited, such as
the bi-directionality of encoder MHAs and parallelizing the

computation of encoder-decoder keys and values across different
layers.

Furthermore, iMTransformer improves energy efficiency
by (1) using an attention selector, (2) exploiting content-
based sparsity using CAMs, and (3) using CMOS and FeFET
devices. The attention selector allows masking and locality-
based sparse attention. The attention selector reduces the
number of computations and activation of unnecessary
ADCs based on the attention patterns. CAMs are employed
to implement LSH for realizing content-based sparsity.
Though the LSH computations incur latency overhead, they
significantly reduce energy consumption as the sequence
length increases. Finally, non-volatile FeFET-based
crossbars are used for crossbars that involve highly
frequent read operations in the feedforward tile and
processing unit. Because of their high write requirements,
CMOS-based crossbars are used for the attentional
caching units.

For the Vanilla Transformer at sequence length of 512, Figure 8A
shows a delay improvement of 7.7× for the standard implementation
compared to the GPU baseline. Including model parallelization
further improves the end-to-end delay by 1.17× or an end-to-end
improvement of 9.01× compared to the GPU baseline. Introducing
sparsity does not improve the delay while using the CMOS-FeFET
hybrid iMTransformer reduces the end-to-end improvement to
8.96×. The end-to-end energy improvement of the standard
implementation is 7.81× compared to the GPU implementation.
Because of the increase in the write operations, the energy is reduced
to 5.71× and slightly improves with sparsity at 5.83× compared to the
GPU baseline. The standard implementation achieves a 60.17× EDP
improvement while adding all the enhancements improves the EDP
by 112.66× compared to the GPU.

Figure 8B shows the delay, energy, and EDP improvement of
BERT for a sequence length of 512. The standard implementation
of iMTransformer achieves a 4.68× energy improvement
compared to the GPU implementation. Because of its bi-
directional nature, BERT greatly benefits from model
parallelism and achieves 13.76× energy improvement (a 2.94×
increase) compared to the GPU baseline. Introducing sparsity
and using the hybrid iMTransformer slightly reduces the
improvement to 13.71×. The standard implementation has an
energy improvement of 4.78×. Because of the additional energy
due to writes and greater utilization of model parallelism, the

TABLE 3 | Comparison of the leading MLPerf Inference - Edge results, the Titan X baseline, ReTransformer and the CMOS-based and Hybrid iMTransformer using MLPerf
setting. MLPerf uses BERT-large and the SQuAD 1.1 dataset with a maximum sequence length of 384.

Accelerator Throughput (Samples/s) Throughput/W (Samples/s/W) Throughput/J (Samples/s/J)

MLPerf (Best delay) 649.35 Not available Not available
Titan X (Baseline) 204.84 15.76 3.23 K
ReTransformer 2.73 15.60 42.59
iMTransformer-CMOS 2.25 K 23.48 52.83 K
iMTransformer-Hybrid 2.23 K 124.8 278 K
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implementation with model parallelism achieves a 1.78×
improvement while adding sparsity further reduces the
implementation to 1.49×. However, introducing the use of
hybrid transformer improves the energy to 8.95× when
compared to the GPU. The standard implementation achieves
a 22.34× EDP improvement while adding all the enhancements
improves the EDP to 122.65× compared to the GPU baseline.

For both Vanilla and BERT, introducing model parallelization
improves the delay. However, because BERT is an encoder-type
transformer, it can benefit frommodel parallelization more than the
Vanilla transformer. However, model parallelization comes at the
cost of more energy usage. Using FeFET devices for static weights
slightly slows down the iMTransformer but greatly improves the
energy. The results in Figure 8 are only for a sequence length of 512.
Greater improvements can be achieved at longer sequence lengths.
Using theMLPerf benchmark, the hybrid iMTransformer can query
2.23 k samples/sec at 125 samples/s/W as shown in Table 3.

In this paper, we have introduced iMTransformer, an in-
Memory computing Transformer Network accelerator. We
have been able to greatly improve the delay and energy
consumption of the transformer’s attention mechanism and
feedforward layers. Transformer networks are evolving, and
different variants for various applications have been developed
in the past few years. Transformer network accelerators must
adapt to different types of attention mechanisms and transformer
network configuration. This work is catered to the original
transformer network, where the input is a sequence. This
makes transformer networks ideal for NLP applications.
Because of the transformer’s ability to model long-range

dependencies, the sequence length can continue to increase
and require more sophisticated algorithms and accelerators.
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