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The constant miniaturization of IoT sensor nodes requires a continuous reduction in battery
sizes, leading to more stringent needs in terms of low-power operation. Over the past
decades, an extremely large variety of techniques have been introduced to enable such
reductions in power consumption. Many involve some form of offline reconfigurability
(OfC), i.e., the ability to configure the node before deployment, or online adaptivity (OnA),
i.e., the ability to also reconfigure the node during run time. Yet, the inherent design trade-
offs usually lead to ad hocOnA and OfC, which prevent assessing the varying benefits and
costs each approach implies before investing in implementation on a specific node. To
solve this issue, in this work, we propose a generic predictive assessment methodology
that enables us to evaluate OfC and OnA globally, prior to any design. Practically, the
methodology is based on optimization mathematics, to quickly and efficiently evaluate the
potential benefits and costs from OnA relative to OfC. This generic methodology can, thus,
determine which type of solution will consume the least amount of power, given a specific
application scenario, before implementation. We applied the methodology to three
adaptive IoT system studies, to demonstrate the ability of the introduced methodology,
bring insights into the adaptivity mechanics, and quickly optimize the OfC–OnA adaptivity,
even under scenarios with many adaptivity variables.
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1 INTRODUCTION

Over the last decade, we have witnessed the explosion of Internet-of-Things (IoT) applications and
devices. With 11.7 billion connected IoT devices at the end of 2020, it is expected that this number
will keep growing to about 30 billion in 2025 IOT Analytics (2020). This has surged the demand for
devices that show both improved functionality and better energy efficiency, to enhance their
embedded nature and increase their sustainability. At the core of these IoT devices are
integrated circuits (ICs), enabling the sensor node to sense, process information, and
communicate with other nodes in the network Alioto (2018). Improving the overall energy
efficiency of IoT devices is, thus, directly related to an increase in the energy efficiency of ICs.
In that regard, since the formalization of Moore’s law, the main contributor to the reduction of
energy consumption in ICs has been the advancement of IC technology, enabling to a large extent the
100 × energy reduction per decade we observed Alioto (2017). However, drastic improvements in
energy efficiency cannot rely on technological advancements anymore, as it is estimated that they will
contribute to reducing energy only by 4 × in the next decade Alioto (2017). Novel design approaches
are required to continue the energy reduction for the next generation of IoT nodes.
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A popular methodology to increase the node’s energy
efficiency and increase battery life is known as context-aware
adaptivity Chatterjee et al. (2019). We define adaptivity as the
ability to change the way of operating the sensor node based on
the perceived context, i.e., based on external or internal changes
over time. An external change (also called environmental change)
is, for example, the increase of background noise of speech
recognition sensor nodes, requiring a higher-effort operating
mode in the sensor node. An internal change is, for example,
a low battery supply, preferring a lower-effort operation mode in
the sensor node. Context-aware adaptation has been successfully
developed for digital systems, such as processors, sensor nodes, or
wireless communication nodes Meghdadi and Bakhtiar (2014),
Sen et al. (2014), Cao et al. (2017), Fallahzadeh et al. (2017),
Chatterjee et al. (2020), Maroudas et al. (2021). Moreover, ICs are
subjected to increasing design constraints. More advanced
fabrication technologies increase the susceptibility of ICs to
numerous variations (manufacturing, aging, etc.), increasing
the design margin for resiliency. As a result, complex design
trade-offs are necessary to obtain an optimal design, calling for
the use of automated and generic methodologies.

In that regard, a critical challenge is precisely the large variety of
methods applied, which are typically bound to a given circuit and
target application. Amore generic approach has been conceptualized
as energy-quality (EQ) scalability, where quality represents how well
a certain task is performed Alioto et al. (2018). Commercial ICs are
typically based on a “worst-case” design, which implies that margins
are taken such that the circuit would work in the worst conditions;
i.e., it is designed for a (fixed) maximum quality. In practice, this
worst case will almost never be encountered; hence, the quality
demanded by the application will be almost constantly lower than
this maximum. Essentially, the EQ scalability can thenmake use of a
given quality slack, which represents the difference as illustrated in
Figure 1A. It includes margins according to the application or task,
the current usage (the same application may require several quality
levels), or the dataset (different inputs of the same application and
context may require different quality levels), which can be traded off
against energy in context-aware adaptivity. EQ scalability methods

have already been applied to numerous designs, e.g., sensor nodes
(Badami et al., 2015; Cao et al., 2017; Ieong et al., 2017; Xin et al.,
2018; De Roose et al., 2020), digital circuits, (Moons and Verhelst,
2014; Rizzo, 2019), and edge Artificial Intelligence (AI) hardware
Peluso and Calimera (2019). It has also been identified among key
factors to enable the next-generation IoT nodes and
communications nodes for 5G and 6G Mahmood et al. (2020);
Shafique et al. (2020).

Yet, one remaining issue is that with most adaptive strategies, it
is not possible to easily assess if and howmuch gain, resp. overhead
they would lead to in the final system before implementing it. The
quality ismeasured differently for each system and application, and
the optimal settings are issued from complex relationships between
the different performances to be adapted and the tuning settings.
Assessing the effectiveness of a proposed adaptation methodology
prior to any design would enable system designers to benchmark
potential adaptive strategies and their gains/overhead in various
scenarios or evaluate the reuse of the hardware platforms for
several applications. Moreover, it allows the designers to make
an educated choice on what strategy to choose, before investing in
the strategy.

To solve this issue, we propose to take a step back and analyze
adaptivity from a more theoretical point of view. In particular,
our objective is to develop an adaptation methodology that is at
the same time generic and predictive; i.e., the results can be
generated prior to any design of the associated circuitry, as shown
in Figure 1B. Taking foundations in the EQ scalability concept,
we will study adaptivity in several ways, constituting the main
contributions of this work:

• Analyzing the costs and benefits of generic adaptivity in
energy-limited sensor nodes, first from a general design and
manufacture point of view and then zooming into technical
specifications such as power and quality scalability

• Creating a methodology to quickly estimate the potential
power savings by enabling adaptivity prior to hardware
development and comparing it to the added power
consumption cost of adaptivity

• Applying these principles first to a theoretical use case,
followed by three SotA-adaptive IoT systems taken from the
literature Cao et al. (2017); Ieong et al. (2017); De Roose
et al. (n d), to show its potential

This article is structured as follows: Section 2 starts with
discussing the state of the art, followed by Section 3, which
analyzes the high-level costs and benefits of adaptivity. Next, in
Section 4, we use mathematics to estimate benefits stemming from
adaptivity. Finally, in Section 5, the proposed methodology is
deployed on three adaptivity studies from the SotA, where we
benchmark our outcomes against the reported results of these works.

2 TAXONOMY OF ADAPTIVE CIRCUITS
AND STATE OF THE ART

The term adaptive is a broad term that comes with various
connotations in the literature on low-power electronic systems.

FIGURE 1 | (A) The concept of quality slack, adapted from the work of
Alioto (2017), and (B) overview of the proposed methodology.
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Surveys have been conducted on various viewpoints of adaptivity,
e.g., the work of Chatterjee et al. (2019) about context-aware IoT
systems, the work of Eldash et al. (2017) about on-chip
intelligence, the work of Rizzo (2019) about adaptive design
methodologies for digital ICs, and the work of Alioto et al.
(2018) on energy-quality scalable systems. This diverging
landscape is rooted in the fact that the adaptation strategy can
be conducted for several physical layers—from network protocols
to hardware implementations—and at different development
phases—before, during, and/or after deployment. In this
section, we attempt to present a taxonomy of adaptivity
methods in micro-electronics, extending the work of Andraud
and Verhelst (2018), with a focus on circuit-level adaptivity. This
taxonomy will be illustrated with representative works from the
related literature.

2.1 Proposed Taxonomy of Adaptive
Circuits
Essentially, we discriminate between two crucial factors when
designing an adaptive circuit: 1) the adaptation strategy, i.e., what
part of the quality stack is targeted and how, and 2) the adaptation
level, i.e., defining the amount of decision taken on the chip.

2.1.1 Adaptation Strategy
In the paradigm of the previously explained EQ scalability
concept, plenty of design solutions have been presented, often
named as context-aware adaptation or hierarchical systems. First,
any adaptation strategy must consider which part of the quality
slack will be tackled. The quality slack contains not only design
resiliency (margins for process, voltage, or temperature
variations) and margins for operating in several contexts (the
wireless link quality, etc.) but also the task at hand and current
system workload. Based on this observation, we can build EQ-
scalable systems, which intend to consume (part of) the quality
slack under current quality requirements to minimize energy, or
conversely maximize the quality under a given energy constraint.
Second, we can set the adaptation strategy. Typically, EQ
scalability can be seen by dividing the possible operating
conditions into a set of environments, measuring the current
environment through sensors, evaluating the quality slack in this
environment, and optimizing the operation of the circuit
accordingly. To realize this, a large number of techniques have
been presented for IoT nodes Cao et al. (2017); Teo et al. (2020),
processors Gligor et al. (2009); Moons and Verhelst (2014), health
monitoring Anzanpour et al. (2017); Ieong et al. (2017), sensor
interfaces Trakimas and Sonkusale (2011); Badami et al. (2015);
Teerapittayanon et al. (2016); Fallahzadeh et al. (2017); Giraldo
et al. (2019); De Roose et al. (2020), or wireless transceivers
Banerjee et al. (2017).

2.1.2 Adaptation Level
The amount of decisions that are taken on chip (i.e., where does
adaptation happen) is the other crucial criterion to consider when
designing an adaptive circuit. This adaptation level is important,
as it is directly linked to the number of resources necessary to
perform the adaptation. We will distinguish four general

categories along this axis, ordered by a growing amount of on-
chip resources.

2.1.2.1 Fixed
System settings are not tunable. In this case, settings are fixed at
design time and never change so that no decision is taken on chip.
An example of such a design is given in the study by Chen et al.
(2012). We can refer to this as level zero.

2.1.2.2 Offline Configurable (OfC)
In OfC designs, as illustrated in Figure 2, system settings are
tunable, but all are pre-defined before run time. During
operation, the system does not switch between settings. This
brings the benefit of efficiently using a single flexible hardware
platform across multiple applications. An example of OfC designs
is given in the study by Huang et al. (2014), where several sensors
are integrated into a configurable biomedical platform and
sensing front end. The user can select the sensors that are
activated and configure a unique interface to measure each
sensor. Other sensors could be also integrated into this
platform using the same interface, hence reducing the design
cost and time.

2.1.2.3 Online Adaptivity (OnA)
In OnA designs, as shown in Figure 2, the system is run time
tunable, with a programmed adaptation strategy that is optimized
offline, before run time. For instance, De Roose et al. (2020) in
their study used offline optimization based on evolutionary
algorithms that automatically derive optimal behavioral trees,
which are then executed online. These behavioral trees contain
the conditions necessary to migrate the circuit to a given mode
and the associated optimal settings corresponding to this mode.
Fallahzadeh et al. (2017) in their study used an adaptive
compressed sensing scheme in the context of activity
recognition. Here, the compression settings are changed for
each activity using pre-optimized settings stored in a look-up
table. OnA designs have also been applied to radio frequency
transceivers, for instance, in the studies by Sen et al. (2012) and
Meghdadi and Bakhtiar (2014). The general principle is to derive
the optimal settings of some circuit-tuning parameters to achieve
the best trade-off between power and performance over multiple
channel conditions. These settings can be biased or power supply
voltages of the main circuit blocks, different communication
protocols, or digital control blocks. Process variations can also
be integrated into the loop (Sen et al., 2014) to compensate for a
greater part of the quality slack.

2.1.2.4 Online Learned
The system is tunable and able to figure out the best adaptation
strategy fully on chip at run time; i.e., no pre-computation of
parameters are necessary. The range of illustrative techniques is
very large, from compensating one specific variation (one time),
compensating for variations when the system is not in use (on-
idle times), or continuously monitoring and optimizing the
circuit while running (self-learning). One-time OnL has been
demonstrated in, e.g., self-calibration circuits, such as in the work
of Lee et al. (2018), which measure and calibrate their
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performances against process variations on chip. On the other
end of the spectrum sits the self-learning transceiver developed by
Banerjee et al. (2017), where the objective is to learn, in an
unsupervised way, the optimal power versus performance trade-
off according to multiple channel conditions. The current
operating condition is either associated with a given cluster
with available optimal settings, or the system is trained for
this new condition using embedded machine learning, forming
a new cluster. This strategy could, for instance, run in an
embedded processor. While OnA optimizes only before
deployment, OnL can further optimize at run time, adapting
better to knowledge and data trends that are gathered after the
start of the deployment.

3 ADAPTIVITY: COSTS AND BENEFITS

According to the previous taxonomy, this work will focus on EQ
systems adapted during run time and will compare and optimize
the possibilities offered by OnA and OfC, assuming theoretical
complete knowledge of the application. OnL can be seen as an
extension to OnA that is closer to this theoretical complete
knowledge. The costs of OnL, however, will not be discussed
further in this article, as its strategies are typically very diverse and
application dependent, while we intend to propose a unique
methodology and optimization framework applicable to
virtually any IoT application. Before entering into the details
of the proposed mathematical framework, we will review the
requirements, advantages, and disadvantages of adaptivity in this
section.

3.1 Adaptivity Requirements
Adaptivity relies on three main functionalities, flexibility,
awareness, and control, as depicted in Figure 3. We define
these parameters as follows:

• Flexibility is the ability of a node to change its settings, here
denoted as tuning knobs (TKs), which have an impact on
both the quality and power consumption of the system. An
example of flexibility is changing the sampling frequency in
an IoT sensor node.

• Awareness is the ability to detect changes in the
environment and/or its own state. An environmental
state is defined as a set of transient sensor data
characteristics that are correlated with the difficulty of
the sensory task. For example, in a speech recognition
application, environments differ in terms of signal-to-
noise ratio (SNR).

• Control is the programmable brain of adaptivity. It links all
environments and/or internal states to their respective
optimal TK settings, for example, the decision to slow
down instead of maintaining or speeding up processor
clock frequency when a temperature sensor detects
overheating.

3.2 Benefits of Adaptivity
The benefits of adaptivity can be assessed for both the simpler
OfC and the complete OnA approach.

FIGURE 2 | The difference between offline configurability and online adaptivity: a flexible platform is used for both OnA and OfC. Before deployment, static settings
are configured for OfC, while an adaptive strategy is programmed onto the flexible platforms for OnA. During employment, the settings of OnA can, hence, change, based
on a changing environment.

FIGURE 3 | Building blocks of adaptivity.
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3.2.1 Offline Configurability Benefits
OfC enables reusing a flexible hardware platform across many
applications if designed generally enough Huang et al. (2014).
Hence, the design costs of such a platform can be split over
multiple projects. Furthermore, the production cost of micro-
electronics decreases per chip when the production volume
increases. A single platform used across multiple applications
allows for higher volumes, reducing production costs per unit.
Second, flexible hardware platforms steeply reduce the time-to-
market for an application, as the design of an ASIC (application-
specific integrated circuit) usually takes months or years. Third,
the risk of attempting to find new applications using the same
hardware platform steeply decreases, as the design of a new
hardware platform is usually the main contributing cost in
these cases.

3.2.2 Added Online Adaptivity Benefits
OnA allows finer control over the power/quality trade-off at run
time, as demonstrated by several recent works, e.g., the work of
Peluso and Calimera (2019); De Roose et al. (2020); and Teo et al.
(2020). When a minimum required quality is more easily met in
specific environments, it allows for less-power-intensive settings
(Figure 4). Furthermore, distinct environments can have
different optimal settings, improving quality or decreasing
power consumption compared to fixed settings. Therefore,
OnA benefits are mainly expressed in terms of power savings
(or quality gains).

3.3 Costs of Adaptivity
The costs of adaptivity can also be categorized into OfC and
OnA costs.

3.3.1 Offline Configurability Costs
Creating a flexible hardware platform entails over-designed
specifications for some targeted applications, leading to an
overhead for OfC (Figure 4). Examples are excessive memory,
digital hardware that is optimized for speed to reach a worst-case
specification instead of being optimized for leakage, analog
transistors with increased drive strength, etc. These excessive
specifications increase the power consumption floor, leading to

higher power consumption for lower quality. Figure 4
conceptually shows how a well-designed flexible hardware
platform needs to scale its power consumption with quality,
over as wide a range as possible to be able to be power
efficient over multiple applications. This means minimizing
leakage and other constant power consumption blocks (e.g.,
digital clock distribution) to lower the power consumption
floor as much as possible (Figure 4) while still balancing with
moderate- or high-quality capabilities. An example of a flexible
block is a sensor + ADC block with minimized leakage and
tunable sample frequency that can reach moderate/high sample
frequencies for IoT applications Xin et al. (2018, 2019). Creating
scalable flexible hardware designs is a skill of its own and requires
additional design time cost for a single platform, yet as mentioned
before, it can then be split across multiple applications. A last
contribution to the OfC costs is the tuning of the settings of a
flexible hardware platform for every application, which requires
optimization time costs for each application. Yet, this
optimization is also needed in a non-flexible fixed design,
where this optimization is carried out at design time, not at
program time.

3.3.2 Added Online Adaptivity Costs
First, OnA requires an additional power-consuming awareness
and control block present within the electronic system leading to
OnA power overhead (Figure 4). This block both creates a design
time cost and adds to the design size (e.g., chip area and FPGA
usage). Moreover, designing this block requires expert knowledge
of suitable environments in the application and how to efficiently
detect them. Second, switching tuning knobs (TKs) online can
create transient effects (e.g., batched processing with half a batch
pre-processed with one setting and half a batch pre-processed
with a different setting De Roose et al. (2020), delays when
switching supply voltages Park et al. (2010), or clock
frequencies), which might impact the quality negatively or
increase power consumption. This effect is very application
dependent and normally very minor. Third, adaptivity enables
different TK settings in different environments, increasing the
offline optimization complexity and time cost. This article
proposes an approach to minimize this optimization time by
introducing a generally applicable methodology.

4 MATHEMATICAL OPTIMIZATION OF ONA
AND OFC

When designing an IoT sensor node and faced with the decision
of whether to implement OnA andOfC (and ultimately OnL), it is
important to have all information on costs and benefits available
to make an informed decision. The methodology that we adopt
(Figure 5), described in the next subsections, enables us to
gradually evaluate the benefits of having multiple online
settings for adaptation (OnA), compared to using only one
pre-configured setting (OfC). As circuits operate in multiple
changing conditions, we define an environment as a small
cluster of similar operating conditions. The whole range of
conditions experienced by the circuit then creates several

FIGURE 4 | Trade-offs of fixed vs. OfC vs. OnA.
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environments, and OnA intends to optimize the hardware
platform for each of them.

The mathematical optimization aims to quickly quantify the
power-related benefits of OnA compared to OfC while
maintaining the same average quality requirements. This
requires the ability to quantify quality, as a measure of how
well the platform is performing in a specific application scenario.
This could, for example, be the classification accuracy for human
activity-recognition application of a smartwatch. The
optimization process intends to find the best OfC, resp. OnA
operating conditions for multiple quality/power trade-offs,
leading to a quality/power Pareto front, as illustrated later.
Going from OfC to OnA will include a power penalty, linked
to the power costs of the awareness and control center required
for OnA. The objective of the optimization is as such to quantify
the net power savings we can expect from implementing OnA
over OfC, to be able to compare this to its power penalty.

A prerequisite for adaptivity benefits is that the quality is a
function of the N TKs and external factors, which define the
environments. Assuming that every environment Envi of the m
experienced environments has a probability Pri to occur, we can
express our system as

Q uality( ) � fQ TK1, TK2, . . . , TKN, Env( )
P ower( ) � fP TK1, TK2, . . . , TKN( )
fQ,Envx � fQ TK1, TK2, . . . , TKN, Env � x( )
PrEnv,a � TEnva/ TEnva + TEnvb +/ + TEnvm( ). (1)

According to this initial definition of the problem, we evaluate
the OfC optimality, i.e., the achievable Q–P points when only using
one optimal setting (TK1, TK2, . . . , TKN) for the system, across all
possible environments 1..m. Then, we compare OfC results to a
best-case OnA, where we assume that the OnA would perfectly be
able to detect the different environments (to reduce the problem
complexity) and use the optimal settings for each environment
individually while consuming no extra power. This enables us to
evaluate if OnA can achieve power reduction compared to OfC for
equal quality, without having yet to think about howOnA could be
implemented and its related cost overheads. Finally, if gains are
possible, we perform a real-case OnA analysis, where we consider
the specific costs of the adaptivity as well. This analysis can be

carried out with power estimates of the necessary blocks at first and
then be refined with real circuit implementations in Section 5. This
enables us to quantify the potential benefits of OnA in a real-life
scenario. As such, these benefits assume that online environmental
detection is perfect. Therefore, the framework proposes the most
optimistic estimation, which is a quick way to decide on developing
OnA further for designers. If such a development decision is taken,
the environmental detection needs to be realized at a later stage,
and both the power consumption of the environmental detection
and the use of sub-optimal settings in wrongfully classified
environments may deteriorate the results to a certain extent and
further analysis would be needed. Including the optimization of
power and the effect of the accuracy of the environmental detection
into a more holistic optimization for OnA adds another layer of
complexity that is not yet covered in this work. The whole flow to
quickly estimate OnA feasibility is shown in Figure 5.

4.1 Offline Configurability Optimality
The first step is to find the optimal OfC TK setting, as a reference
point to compare to OnA. For OfC, the general problem
definition is to optimize the TK variables for the power
objective, given a constraint of minimum target quality:

Minimize P( ) with Q>Qmin for TK1..N

Q � fQ,Enva TK1 , TK2 , . . . , TKN( ) · PrEnva
+fQ,Envb TK1 , TK2 , . . . , TKN( ) · PrEnvb +/
+fQ,Envn TK1 , TK2 , . . . , TKN( ) · PrEnvm

P � fP TK1 , TK2 , . . . , TKN( ).

(2)

Redefining the minimum target quality will lead to different
solutions that all lie on a power-quality Pareto front. We first
solve the problem of Eq. 2 continuously using Lagrange
multipliers and later take discrete TKs in consideration:

∇fobjective � λ∇fconstraints, fconstraints � 0
→∇fP � λ∇fQ,Q − Qmin � 0.

(3)

FIGURE 5 | Conceptual flow of the methodology to quickly assess OnA
feasibility.

FIGURE 6 | When the ratio of the power and quality derivatives to the
TKs are not equal, a better solution is possible.
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This translates to

zfP

zTK1
� λ

zfQ,tot

zTK1
, . . . ,

zfP

zTKN
� λ

zfQ,tot

zTKN

λ �
zfP

zTK1

zfQ,tot

zTK1

�
zfP

zTK2

zfQ,tot

zTK2

� . . . �
zfP

zTKN

zfQ,tot

zTKN

. (4)

Thismeans that if the ratios of the power and quality derivatives to
all TKs are equal, an optimal solution is found. Intuitively, we show
this in Figure 6. If the ratios are not equal, an iterative optimizer can
take one step in 1 TKwith a higher ratio and then subtract one step in
another TK with a lower ratio to arrive at a better solution, until all
partial derivative ratios converge.

4.2 Best-Case Online Adaptivity Optimality
Themain benefit of online adaptivity is that it allows changing the
values of the TKs based on the environment. At first, we will
explain an ideal scenario evaluating the potential benefits of OnA
over OfC, assuming the OnA system perfectly recognizes all
environments, and switch to the TK combinations designed
for these environments. This means now the optimization
problem has N TKs with m values for all m environments and
m · N variables. The problem can be stated as

Minimize P( )with E>Emin for TK1a..Nn

Q � fQ,Enva TK1a, TK2a, . . . , TKNa( ) · PrEnva
+fQ,Envb TK1b, TK2b, . . . , TKNb( ) · PrEnvb +/
+fQ,Envm TK1m, TK2m, . . . , TKNm( ) · PrEnvm

P � fP TK1a, TK2a, . . . , TKNa( ) · PrEnva
+fP TK1b, TK2b, . . . , TKNb( ) · PrEnvb +/
+fP TK1m, TK2m, . . . , TKNm( ) · PrEnvm.

(5)

We can once again apply Lagrange to this optimization
problem, with the same general problem statement as Eq. 3,
but now with n times more variables, accounting for all
environments. This leads to an equivalent of Eq. 4:

λ �
zfP,tot

zTK1a

zfQ,tot

zTK1a

�
zfP,tot

zTK2a

zfQ,tot

zTK2a

� . . . �
zfP,tot

zTKNa

zfQ,tot

zTKNa

�

. . . � . . . � . . . � . . .

�
zfP,tot

zTK1m

zfQ,tot

zTK1m

�
zfP,tot

zTK2m

zfQ,tot

zTK2m

� . . . �
zfP,tot

zTKNm

zfQ,tot

zTKNm

.

(6)

This can be further elaborated as

zfQ,tot

zTK1a
� z Pra · fQ,Enva +/ + Prn · fQ,Envm( )

zTK1a
� Pra

zfQ,Enva

zTK1a
zfP,tot

zTK1a
� z Pra · fP TKEnva( ) +/ + Prn · fP TKEnvm( )( )

zTK1a

� Pra
zfP TKEnva( )

zTK1a
,

(7)
and the same goes for all other TKs. Eq. 6 now becomes

λ �
zfP TKEnva( )

zTK1a

zfQ,Enva
zTK1a

� . . . � . . . �
zfP TKEnvm( )

zTKNm

zfQ,Envm
zTKNm

. (8)

Analyzing Eq. 8 essentially means that, to have an optimal
point, all ratios of the power and quality derivative of all TKs in all
environments need to be equal.

4.3 Mechanics of Adaptivity
The end results of the OnA and OfC optimality from Eqs 8 and 4
give us some interesting theoretical insights into the mechanics of
adaptivity and the nature of environmental and TK dependencies
of quality. As defined in Eq. 1, quality is a function of TKs and
Env.We can further split this theoretically into a function g that is
only a function of TKs, a function k that is only a function of the
environment, and a cross function h:

Q � fQ TKs, Env( )
� g TKs( ) + h TKs, Env( ) + k Env( ). (9)

In the solutions of OnA (Eq. 8) and OfC (Eq. 4), only the
derivatives to the TKs matter, meaning that the k part of the
function drops out of the equation since it is not a function of TK
and, therefore, the derivative is zero. This corresponds to the
influence of the environment we have no impact on using TKs.
Furthermore, we can see that if the h function is zero, the solution
only becomes a function of g, meaning it is only a function of the
TKs, leading to identical solutions for OnA and OfC and, hence,
no improvement stemming from OnA. This leads to the
conclusion that the h function, namely, the different influences
of TKs on the quality in different environments is the driving
force of run-time adaptivity, and it stands to reason that the
higher this impact, the more benefits OnA can offer over OfC. In
future research, the adaptive functionality of this h function can
be delved deeper upon.

4.4 Improvement of OnA
4.4.1 Estimate Improvement of OnA Upon OfC
We target an estimate of improvement from OfC to OnA based
on the ratios of derivatives, as depicted in Figure 6. We will
illustrate this with a simple non-optimal single TK OnA case with
two environments, a and b. We estimate the possible difference in
power consumption, enforcing equal quality using derivatives as a
form of first-order approximation:

ΔP ≈ zfP/zTK1a · ΔTK1 + zfP/zTK1b · ΔTK2

ΔQ ≈ zfQ/zTK1a · ΔTK1 + zfQ/zTK1b · ΔTK2 � 0{
ΔP ≈

zfP

zTK1b

zfQ

zTK1b

−
zfP

zTK1a

zfQ

zTK1a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ zfQ

zTK1b
ΔTK1b.

(10)
We will further denote the ratios of the partial derivatives by

fPQ,TKXy
′ �

zfP

zTKXy

zfQ,Envy

zTKXy

. (11)
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Here, we see the approximation of ΔP—the amount of potential
power savings of OnA relative to OfC—is a function of both the
partial derivatives and ΔTK1b. Yet, as the partial derivatives are
themselves also influenced by ΔTK1b, it is not straightforward to
assess the step size that can be taken on ΔTK1b to reach the equal
ratios of partial derivatives and, thus, the power optimal solution. This
means the estimation cannot be performed in a single step, and
instead, an iterative approach is required to update the partial
derivatives, which is the concept of an optimizer. This leads us to
the following methodology (Figure 5) to find a quick estimate of the
improvement OnA: first, we optimize the simpler OfC solution and
then use it as a starting point for an OnA optimization where the
quality is kept equal. This minimizes the optimization time and
allows for a fair comparison of power reduction of OnA compared to
OfC, which can later be weighed against the overheads of OnA.

4.4.2 Equal-Q Optimizer
Our methodology requires optimizing the OnA solution starting
from the OfC solution while keeping the quality equal. This
requirement comes for easier comparison between OnA and OfC,
i.e., the quality is the same and only the power varies between both
approaches. This can be achieved using a constrained optimizer
Jimenez et al. (2002); Sun et al. (2022). Generally, in this case, Q
would be constrained to be equal to or bigger than the Q of the OfC
solution, as the optimal power solution will likely be reached when
lowering Q all the way to the constraint. Yet, the main requirements
for our optimizer are 1) to keep Q as equal as possible for OfC and
OnA and 2) to enable fast convergence toward a point that is better
than OfC (if such a point exists). This is directly related to the general
task of the optimizer: get quick estimates of the potential benefits of
OnA. Only in a later stage, OnA is completely implemented and
optimized, including the environmental detection block. We have
built a custom-designed optimizer, whose goal is to make the ratio of
all derivatives fPQ,TKXy

′ equal and find an OnA solution close to the
Pareto front in as few iterations as possible while keeping quality
equal. The first step is to find fPQ,TKXy

′ variables that are far away
from the average value of all fPQ,TKXy

′ , denoted as fPQ,avg′ , and pull
them toward fPQ,avg′ . We calculate the average ratio and compute a
delta ΔfPQ,TKXy

′ for each:

fPQ,TK1a
′ ≠ . . .≠ fPQ,TKNa

′ ≠ . . .≠ fPQ,TKNm
′

fPQ,avg′ � 1
N

1
m

∑N
x�1

∑m
y�a

fPQ,TKXy
′

ΔfPQ,TKXy
′ � fPQ,avg′ − fPQ,TKXy

′ .

(12)

Next, we use the derived ΔfPQ,TKXy
′ to update the TKs to the

direction that makes the fPQ,TKXy
′ equal. We use a derivative of

the fPQ,TKXy
′ ratios to estimate how they change with

changing TKs:

fPQ,TKXy
″ � fPQ,TKXy

′
zTKXy

ΔTKXy ~
ΔfPQ,TKXy

′
fPQ,TKXy
″ .

(13)

This gives the direction in which the TKs have to evolve to go
toward the optimum and an estimated step size. Next, we balance

out the quality of all these TK changes, so that we converge
toward an OnA solution with equal quality and lower power, for
easy comparison. To do this, we split the TKs into 2 groups: one
group with ΔTK that increases quality and one group with ΔTK
that decreases quality.

ΔQ ≈
ΔfPQ,TKXy

′
fPQ,TKXy
″

zfQ,Envy

zTKXy
> 0 → TKposQ

Xy

ΔQ ≈
ΔfPQ,TKXy

′
fPQ,TKXy
″

zfQ,Envy

zTKXy
< 0 → TKnegQ

Xy .

(14)

We balance these two groups such that the overall quality
change after changing all TKs remains close to zero:

ΔQpos ≈ ∑N
X�1

∑m
y�a

zfQ,Envy

zTKpos
Xy

ΔTKpos
Xy

ΔQneg ≈ ∑N
X�1

∑m
y�a

zfQ,Envy

zTKneg
Xy

ΔTKneg
Xy

ΔQ ≈ ΔQpos − ΔQneg � 0.

(15)

We balance out the increase in quality with the decrease in
quality by scaling all ΔTKpos and ΔTKnegwith respective constants
Cpos and Cneg.

ΔTKpos
Xy � ΔfPQ,TKXy

′
fPQ,TKXy
″ Cpos

ΔTKneg
Xy � ΔfPQ,TKXy

′
fPQ,TKXy
″ Cneg.

(16)

We can then calculate the value of these constants Cpos and
Cneg from balancing Eq. 15:

ΔQpos
est � ∑N

X�1
∑m
y�a

zfQ,Envy

zTKpos
Xy

ΔfPQ,TKXy
′

fPQ,TKXy
″ Cpos

ΔQneg
est � ∑N

X�1
∑m
y�a

zfQ,Envy

zTKneg
Xy

ΔfPQ,TKXy
′

fPQ,TKXy
″ Cneg.

(17)

Also, the constant values can be related to Qest:

Cpos � ΔQpos
est

∑N

X�1∑m

y�a
zfQ,Envy

zTKpos
Xy

ΔfPQ,TKXy
′

fPQ,TKXy
″

Cneg � ΔQneg
est

∑N

X�1∑m

y�a
zfQ,Envy

zTKneg
Xy

ΔfPQ,TKXy
′

fPQ,TKXy
″

.
(18)

We know from Eq. 15 that ΔQpos = ΔQneg, but the actual value
is not determined. This absolute value can be made bigger or
smaller, which will increase all step sizes of the TKs. In many
optimizers, the step size is large in the beginning and decreases
with subsequent iterations. Because the positive and negative ΔQ
are only approximations, the Q is bound to shift a little. In the
next iteration, this shift can be counterbalanced by equaling the
positive and negative ΔQ to the negative shift:
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ΔQ ≈ ΔQpos + ΔQneg � −ΔQshift. (19)
This optimizer is capable of changing all TKs every iteration,

converging to an equal Q solution with balanced fPQ′ s in a few
iterations.

4.5 Real-Life Complications
In real-life applications, quality and power are not perfectly
smooth continuous functions, which brings a few
complications to the mathematical framework described above.

First, usually, a TK is not continuous and can only take a
limited amount of discrete values.

TK1 ∈ TK1
1, TK

2
1, . . . , TK

S
1{ }. (20)

Derivatives can as such no longer be computed with
infinitesimally small increments, but only with discrete steps:

zf TKi
1, . . .( )

zTK1
� f TKi+1

1 , . . .( ) − f TKi−1
1 , . . .( )

2
. (21)

Therefore, there will be a discretization error on the partial
derivatives.

A second practical complication is thatfPQ,TKXy
′ could become

negative, meaning that a decrease in power can lead to an increase
in quality. These are counterintuitive TK relations, but they do
exist. For example, machine learning applications that overfit can
increase quality and reduce power by reducing the model size.
Practically, we evolve this TK first to a more Pareto optimal point,
before other optimizations take place.

Third, TKs have upper and lower bounds, dictated by the design
specifications of the flexible hardware. During optimization, the
optimizer might want to push the TK further, but it is blocked by
the hardware platform’s tuning capabilities. The optimizer then stops
optimizing the bounded TK and focuses on optimizing other TKs.
Also, when approaching the bound of a TK, the optimizer takes into
consideration how much room the TK has left by rescaling Cpos and
Cneg. To do this, the algorithm first calculates Cpos or Cneg and checks
if any ΔTK hits a TK boundary. If so, the optimizer plugs in the
limiting TK change into Eq. 16 and calculates the maximum
corresponding Cpos or Cneg from it. The other constant is
subsequently scaled with the same diminishing factor, for balance.

Fourth, the ΔTKs for all TKs are calculated continuously and,
hence, do not necessarily correspond to a discrete step that this
TK can precisely take. Therefore, each TK is changed to the
nearest lower discrete TK step it can take. Because ΔTK could
potentially be lower than the discretization step (hence, TK would
never change), the continuous value subtracted by the taken
discrete TK step is stored and added to the ΔTK of the next
iteration.

All these complications deteriorate the operation of the
optimizer in real-use cases, but they do not block the
optimizer from functioning, as we will show in the following
parts of this article.

4.6 Theoretical Test Case
To test the convergence speed and the resilience to discretization
and TL limits of the equal-Q optimization algorithms, we first
deploy it on a simple conceptual use case defined by a
mathematical continuous function where increased power
consumption yields less and less increase in quality, with two
TKs and two environments:

fQ � 5
����
TK1

√ · Env4 + 2
����
TK2

√ · Env4 + 3 · Env
fP � 2TK2

1 + 5TK2
2

0 <TK1 < 10, 0<TK2 < 10

Env ∈ 1, 2{ }. (22)

FIGURE 7 | Applying the optimization algorithm of Section 4 to a
theoretical use case, with increasing discretization step size.
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In Figure 7, the achievable Pareto front for OfC operation is
plotted in blue, and the best-case OnA Pareto front is in orange.
Here, both are obtained by evaluating all possible settings with a
brute-force method, as a way to establish a ground truth in this
test. Across the different subplots in Figures 7A–C, results are
plotted for increasing TK discretization, only allowing limited
and discrete TK values. This results in a Pareto front with a
coarser granularity and also makes the optimization more
difficult.

It is possible to analytically solve the optimization of these OfC
and OnA systems, given the mathematics described in the
previous section. However, what interests us is to deploy and
evaluate the optimization methodology presented in Section 4, in
terms of convergence speed, ability to keep equal quality, and
resilience to discretization. The basic idea we apply is to start from
an OfC solution and find a good estimate of the power benefits
available when using OnA using as few function evaluations as
possible.

To this end, the yellow lines in each subplot show the
optimization steps, starting from a few points on the OfC
Pareto front. As can be seen, after one optimization iteration,
the solution has reached (almost or exactly) the OnA Pareto front
with a very similar quality, showing the high efficiency of the
optimization algorithm in a theoretical case. Furthermore, bigger
discretization steps (as shown in Figures 7B, C) are harder for the
optimizer with solutions diverging more from the original quality
but do not block its proper functioning.

5 PRACTICAL USE CASES

We selected a few state-of-the-art works from the literature,
which have successfully implemented adaptivity in their
respective applications. These will be used as case studies to
go through the steps of the proposed quick assessment
methodology (Figure 5). The selection encompasses a case
with ECG signal compression Ieong et al. (2017) that can be
used for wearable heart rate monitoring, a use case with a battery-
powered wireless video node recognizing people Cao et al. (2017),
and our own previous work on sound-based machine anomaly
detection De Roose et al. (n d).

5.1 Adaptive Temporal Decimation on ECG
Signals
The first use case, in the work of Ieong et al. (2017), is an ECG
signal compression application. The ECG sensor node adaptively
decimates the signal first and subsequently uses wavelet shrinkage
and Huffman encoding to compress the signal before storing or
transmitting it (see Figure 8, based on Figure 1 of the original
work by Ieong et al. (2017)).

5.1.1 Application Details
In this application, the environmental influence is the
instantaneous frequency of the input ECG signal. The ECG
signal consists of the faster QRS wave and the longer slower

P/T wave, with a periodicity of 0.3–3 s Ieong et al. (2017), leading
to some very-high-frequency adaptivity.

The signal degradation is lower when subsampling the PT part
of the signal, compared to subsampling the QRS waves, as is
visualized in Figure 2 of the original work by Ieong et al. (2017).
Therefore, we focus on the adaptive decimation part, as this is
where the adaptivity lies.We do not focus on wavelet shrinkage or
the Huffman encoding.

Under this assumption, the only TK (Table 1) is the
subsampling rate, being able to sample 1, 2, 4, 16, or 32 times
slower than the original input sample frequency of 360 Hz.

5.1.2 Methodology
5.1.2.1 Power/Quality Model
Using Figure 2 of the original work by Ieong et al. (2017), we are
able to build a power/quality model of adaptive temporal
decimation by isolating the PRD increase from either the QRS
part or the PT part of the waveform. Once isolated, they are a
function of the decimation factor in each environment, which can
take five discrete factors, and the complete PRD can be calculated
by combining the two parts of the PRD again. The power is
expressed in data rate, which translates to power when taking the
TX energy/bit cost into account. The quality is defined as “1-
PRD,” with PRD being the percentage root-mean-square
distortion, which is an expression of the reconstruction error
of the signal:

PRD �

�������∑ xi−x̂i( )2
N

√
���∑x2i
N

√ , (23)

with xi being the original signal and x̂i the reconstructed signal.

5.1.2.2 OfC Optimization and OnA Improvement
Figure 9 shows achievable OfC solutions in blue and OnA
solutions in orange. We let the optimizer once again start
from each OfC solution, converging to an OnA solution. In
purple, we show the solutions picked in the original work,
showing that the original work finds not only Pareto optimal
OnA solutions but also some non-optimal solutions. Our
optimization method consistently finds optimal OnA settings.
We see that up to a maximum of 40% power can be saved by
adaptively changing decimation rates between QRS and P/T parts
of the ECG signal, when allowing some minimal signal
deterioration.

5.1.2.3 OnA Overheads
The flexibility to switch decimation rates requires an overdesign
of the ADC sample speed. Yet, due to the very low sample
frequencies, the related cost is negligible. Also, the recognition
of the P/T and QRS environment can be implemented at a low
cost, using a single MAD (mean absolute deviation) feature and a
threshold comparing the original feature to a set fraction of the
MAD, which is negligible compared to the cost of wavelet
calculations and the Huffman encoding.
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5.1.2.4 Conclusion
Even though the benefits of OnA are quite limited, because of the
absolute minimal power consumption of the added OnA blocks,
it is clear that adaptivity is the best solution for this application.

5.2 Wireless Video Node
The second use case Cao et al. (2017) entails a wireless video sensor
node, with in situ data processing abilities. A battery-charged video
sensor node recognizes the presence of humans in its field of view
and sends this information wirelessly to a base station.

5.2.1 Application Details
The application’s environmental influence is the path loss (PL) of
the signal sent from the video node to the base station. When the
PL degrades, the amplifier gain must be higher, increasing the
energy per transmitted bit, hence driving the sensor node toward

solutions with lower radio frequency (RF) data rates and more
embedded processing.

The application has 2 TKs (Table 2). The first TK is the
algorithm (Alg): a support vector machine (SVM), a naive
Bayes classifier, or a tree-based classifier. The second TK is the
embedded processing depth (PD), as shown in Figure 10 (based
on Figure 3 from the original work). The PD can take three
values, with increasingly more computation and generally
increasingly less data output. It increases the amount of
embedded processing costs computational power, but reduces
the amount of data that has to be sent to the base station via RF,
reducing the RF power. With changing energy/bit due to the
environment, the amount of embedded processing shifts to create
an overall minimum of power:

fQ � f Alg( )
fP � Pprocessing Alg, PD( ) + PRF Alg, PD, Env( )
PRF � DatarateRF Alg, PD( ) · Energy/bit AmpGain Env( )( ).

(24)
Normally, power consumption is only a function of the TKs

and not a function of the environment. Yet, here, power is also a
function of a (hidden) TK, the amplifier gain, which reacts
adaptively to the PL, creating a functional relationship
between power and environment. The same optimization
principles still hold when the power also becomes a (pseudo)
function of the environment.

5.2.2 Methodology
5.2.2.1 Power/Quality Model
Using the data from the work of Cao et al. (2017) at 10−8 BER, we
constructed a power/quality model of the application in the
function of the TKs and the environmental PL.

FIGURE 8 | ECG signal compression overview, based on Figure 1 of the work of Ieong et al. (2017).

TABLE 1 | Overview of adaptivity in the ECG signal compression study by Ieong et al. (2017).

— —

Application ECG compression using adaptive decimation and wavelet compression
Quality PRD (a measure to express reconstruction errors of compressed signals)
Environment PT/QRS: ECG signals have a peak and a flat part of their curve
Tuning knobs Decimation factor: 1, 2, 4, 8, 16, and 32
OnA overhead Very small
Best-case OnA improvement Up to 40% power reduction

FIGURE 9 | Adaptive temporal decimation power benefits from
adaptivity.
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5.2.2.2 OfC Optimization and OnA Improvement
The Pareto fronts of both OfC and OnA are calculated through
(brute force) optimization. Figure 11 shows the OfC and OnA
power-accuracy curve achievable with the available TKs,
assuming all 4 PL environments are equally probable in the
use case. The figure also highlights the (trivial) optimization
paths for OnA optimization starting from all OfC points using
the introduced equal-Q optimizer. The lowest power OfC
point is a local minimum, as can be seen from figure 17 of
the original work, and therefore, the optimizer does not
optimize further. Looking at the distance between the
orange and blue curves in this graph (Figure 11), it is
apparent that the power consumption can be reduced by
about 0.5–2 mJ/frame by enabling OnA. Better solutions
than the ones proposed in the article are available in the
mid-accuracy range, which is achieved by allowing to switch
algorithms online using OnA.

5.2.2.3 OnA Overheads
The costs of OfC are the support for multiple algorithms in the
same sensor node, creating a larger design and more leakage. The
costs of OnA are mainly related to PL estimation. PL estimation
can be carried out at the base station, inferring limited
communication overhead, as assumed in the work of Cao et al.
(2017). The alternative is to estimate the PL on the system itself.
From the literature, the power cost can be estimated to be 2.34 mW
with an analog implementationWang et al. (2011) or 1.5 mWwith
a digital implementation Saalfeld et al. (2018).

5.2.2.4 Conclusion
The aforementioned costs (1.5–2.3 mW for on-chip PL detection)
can be compared to the 0.5–2 mJ/frame@10frames/s of power
savings gained using adaptivity, corresponding to 5–20 mW of
savings. It can, hence, be concluded that OnA has clear benefits
over OfC in this application.

5.3 Anomaly Detection
The last application we use as a case study is acoustic anomaly
detection in industrial machines De Roose et al. (n d). The
principle is to place a microphone next to a machine and use
audio data to detect any anomaly/problem on the machine using
a machine-learning-based anomaly detector.

5.3.1 Application Details
The anomaly detector is shown in Figure 12. Feature extraction is
based on the Mel features calculated from the sound data through
fast Fourier transform (FFT). The FFT is calculated at regular
intervals, and the current Mel features are combined with Mel
features from previous FFTs. These features are subsequently fed
to an auto-encoding neural network, which is trained to recreate the
network’s input at the network’s output. When the inputs and
outputs are very different, the network fails to represent the data and
an anomaly is detected Purohit et al. (2019); De Roose et al. (n d).

The TKs defined in this work are shown inTable 3. They are the
sampling frequency of the incoming acoustic signal,NFFT, the Hop
length, the number of Mel features (MF) extracted, the number of
frames combined to create the complete input features, and the size
of the fully connected neural network with relu activations,
expressed as (#melFeat · #frames) × 64 × 64 × 8 × 64 × 64 ×
(#melFeat · #frames). The number of nodes of each internal layer
(64 × 64 × 8 × 64 × 64) can be reduced by a factor of 2, 4, or 8.

The adaptive sound-based anomaly detection Purohit et al.
(2019); De Roose et al. (n d) uses the SNR of the machine sounds

TABLE 2 | Overview of flexible TKs in the wireless video node Cao et al. (2017).

— —

Application Video surveillance: Detecting the presence of human beings
Quality Classification accuracy: Ability to recognize human presence
Environment Path loss (PL) between the node transmitter and the base station receiver: 1) 40 dB, 2) 50 dB, 3) 60 dB, and 4) 70 dB
Tuning knobs Algorithm: 1) support vector machine, 2) naive Bayes, and 3) tree based

Processing depth (PD): 1) (object segmentation + compression), 2) [(1) + feature extraction], and 3) [(2) + classification]
OnA overhead Up to 1.5mW
Best-case OnA improvement From 5mW to 20mW

FIGURE 10 | Wireless video node processing structure, based on
Figure 3 of the work of Cao et al. (2017).

FIGURE 11 |Wireless video node: Ofc vs. best-case OnA power-quality
Pareto fronts, with quality being the detection accuracy of people in the
camera and power expressed in mJ/frame.
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to the factory background noise as the drive for adaptivity. The
system is trained with the MIMII dataset Purohit et al. (2019),
where the machine sound and background noises are mixed with
each other at 3 different SNR levels: −6 dB, 0 dB, and 6 dB. The
task of finding anomalies becomes harder as the SNR decreases.

5.3.2 Methodology
5.3.2.1 Power/Quality Model
The optimization of the anomaly detection is based on the area
under (the ROC) curve as a quality measure, and a power model,
which estimates the power by counting the number of additions,

multiplications, andmemory operations per second andmultiplying
it by, respectively, the relative energy per additions, multiplications,
and memory operations, as reported in the study by Horowitz
(2014). The operations required for sound-based anomaly detection
are mainly in the mel feature (MF) calculation algorithm and neural
network (NN) execution. The number of operations is expressed as a
function of the different TKs:

fA � f Nmel, fs,NFFT, Lhop,Nframes, sizeNN( )
fP � EMF Nmel, NFFT( ) + ENN Nmel,Nframes, sizeNN( )[ ]p fs/Lhop( )

EMF � AddMFp
Energy

Add
+MultMFp

Energy

Mult
+MemOpMFp

Energy

MemOp

ENN � AddNNp
Energy

Add
+MultNNp

Energy

Mult
+MemOpNNp

Energy

MemOp
.

(25)

5.3.2.2 OfC Optimization and OnA Improvement
We can apply the optimizer proposed in this paper to start
optimization from OfC Pareto points to improve beyond OfC,
as shown in Figure 13.

One of the main problems with the previous work was the slow
evaluation time, due to the training of a neural network. The brute-
forcemethod in the study byDeRoose et al. (n d) required hundreds of
evaluations for each Pareto point. This prevented the exploration of a
wide variety of tuning knob settings.With the method provided in this
article, however, we found a solution using only tens of evaluations.
This allows to increase the number of TK settings and environments. In
turn, this creates new, more optimal settings with a better power-
quality trade-off, as shown in Figure 14. In particular, the power

FIGURE 12 | Main architecture of the work of De Roose et al. (n d).

TABLE 3 | Overview of flexible TKs in the anomaly detection study by De Roose et al. (n d).

— —

Application Anomaly detection in industrial machines (MIMII dataset)
Quality Area under the curve (AUC) (ability to recognize anomalies)
Environment SNR between machine sounds and background noise (−6 dB, 0 dB, and 6 dB)
Tuning knobs Mel features (8, 16, 32, 64, or 128)

Sample frequency (2, 4, 8, or 16 kHz)
FFT size (128, 256, 512, 1024, or 2048)
Hop length (128, 256, 512, 1024, or 2048)
Combined frames (1, 3, 5, 7, or 9)
Neural network size (regular (320 × 64 × 64 × 8 × 64 × 64 × 320), half, quarter, and eight)

OnA overhead Up to 0.015μW + increased memory size
Best-case OnA improvement Up to 0.3μW

FIGURE 13 | Anomaly detection power benefits from adaptivity.
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consumption can be decreased by a factor of 5 and more, due to the
ability to converge faster and, thus, allow more tuning knob options.

5.3.2.3 OnA Overhead
The power consumption overhead of OfC comes from increased
leakage due to larger memories required to fit the maximum-sized
FFT intermediate results and the maximum-sized neural network
weights. These leakages can be mitigated by power gating unused
memory when using lower-performance settings. The power
consumption impact of OnA stems from the power cost of the
environmental detection block, and the memory leakage cost to
storemultiple NNmodels optimized for different TKs, to be able to
switch between them at run time for different environments.

5.3.2.4 Conclusion
The overheads have to be weighed against the results from
Figure 14, indicating power benefits for OnA of about
300 nW in some parts of the Pareto front. Although the work
of De Roose et al. (n d) demonstrates that the self-awareness block
consumes less than 15 nW, it is likely that the increase in leakage
due to the additional extra memory requirements overshadows
the benefits of OnA relative to OfC. For this reason, it is crucial to
enable OnA to reuse the same NN models for different TKs to
mitigate this cost or to stick with the simpler OfC solution.

6 CONCLUSION

In this article, we discussed in detail the opportunities stemming
from offline reconfigurability (OfC) and online adaptivity (OnA).
The benefits of OfC and flexible hardware platforms are mainly
business related, reducing design and production costs, with a
potential overhead in terms of power efficiency. The benefits of
OnA, on the other hand, are mainly power efficiency related, due
to its ability to adaptively select settings to meet a minimum

required quality level in different environments. Yet, OnA comes
with additional costs, in the form of 1) additional power
consumption to drive the adaptivity and 2) increased
optimization complexity. This article creates a roadmap to
quickly and efficiently evaluate if OnA saves more power than
it costs and whether it is to be preferred over OfC for specific use
cases. The main contributions are insights into the adaptivity
mechanics; an OfC–OnA optimization protocol with a fast
optimizer to deal with many OnA tuning knobs; and its
deployment to theoretical and practical use cases.
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