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Nonvolatile memory (NVM)-based convolutional neural networks (NvCNNs)

have received widespread attention as a promising solution for hardware edge

intelligence. However, there still exist many challenges in the resource-

constrained conditions, such as the limitations of the hardware precision

and cost and, especially, the large overhead of the analog-to-digital

converters (ADCs). In this study, we systematically analyze the performance

of NvCNNs and the hardware restrictions with quantization in both weight and

activation and propose the corresponding requirements of NVM devices and

peripheral circuits for multiply–accumulate (MAC) units. In addition, we put

forward an in situ sparsity-aware processingmethod that exploits the sparsity of

the network and the device array characteristics to further improve the energy

efficiency of quantized NvCNNs. Our results suggest that the 4-bit-weight and

3-bit-activation (W4A3) design demonstrates the optimal compromise

between the network performance and hardware overhead, achieving

98.82% accuracy for the Modified National Institute of Standards and

Technology database (MNIST) classification task. Moreover, higher-precision

designs will claim more restrictive requirements for hardware nonidealities

including the variations of NVM devices and the nonlinearities of the

converters. Moreover, the sparsity-aware processing method can obtain

79%/53% ADC energy reduction and 2.98×/1.15× energy efficiency

improvement based on the W8A8/W4A3 quantization design with an array

size of 128 × 128.
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1 Introduction

Recently, deep neural networks have reached significant

accomplishments in many manufacturing and daily life

applications. Their impressive ability to learn and extract

abstract features has greatly changed the field of artificial

intelligence (AI) from what it was before (LeCun et al., 2015).

Among the most popular deep neural network models,

convolutional neural networks (CNNs) demonstrate vital

importance, especially in image processing (Krizhevsky et al.,

2017), object detection (Girshick et al., 2014), and acoustic

feature extraction (Bi et al., 2015). However, the calculation

procedure of CNN requires a large amount of multiply and

accumulation (MAC) operations, which are highly energy and

time intensive, putting forward critical challenges for CNNs to be

implemented on hardware, especially for resource-constrained

edge intelligence applications.

To efficiently accelerate hardware neural networks, the

computing-in-memory (CIM) approach using nonvolatile

memory (NVM) device arrays, including memristors (Lin

et al., 2020; Yao et al., 2020; Xue et al., 2021), flash (Guo

et al., 2017), phase-change memory (PCM) (Ambrogio et al.,

2018), ferroelectric gate field-effect transistors (FeFET) (Jerry

et al., 2017), and magnetic RAM (MRAM) (Jain et al., 2018), is

receiving extensive attention. Recent studies have successfully

demonstrated various hardware implementations of the NVM-

based convolutional neural networks (NvCNNs), obtaining

orders of magnitude of better energy efficiency compared with

Central Processing Unit (CPU)- or Graphics Processing Unit

(GPU)-based solutions (Guo et al., 2017; Lin et al., 2020; Yao

et al., 2020; Xue et al., 2021). In NVM arrays, the conductance of

NVM devices is mapped as the weights, and the voltage signals

are mapped as the activations. The output of the MAC can be

directly generated through Ohm’s law and Kirchhoff’s current

law. The NVM arrays and the periphery circuits together

combine into the MAC units to accelerate neural networks

with high parallelism and speed.

However, for resource-constrained application

circumstances, there are still many requirements for further

improving the performance and energy efficiency of NvCNNs.

The first is that both the precision of NVM devices and the

periphery circuits, which are mainly the analog-to-digital

converters (ADCs) and the digital-to-analog converters

(DACs), have crucial effects on network performance and

energy consumption. For NVM devices, the number of

available and stable conductance states of the analog devices is

usually limited, making them difficult to map high-precision

weights. For ADCs and DACs, the full-scale voltage range (VFSR)

and the limited precision of the convertors will directly affect the

sampling and generation of the practical voltage signals in the

MAC units. Hardware implementing design with higher-

precision devices and converters can usually achieve better

network performance, but will also result in larger hardware

overhead. Researchers have explored many NVM-based neural

networks with limited precision designs in order to ease the

hardware burden. Most studies considered low-to-medium-

precision quantization (usually 4 bits) (Jacob et al., 2018; Cai

et al., 2019; Ma et al., 2019). Other studies on the other hand

focused on the binary and ternary quantized conditions (Tang

et al., 2017; Qin et al., 2020). However, a thorough analysis

combining hardware characteristics and the network

quantization method should also be implemented.

The second is that to further conduct specific optimization on

the NVM-based neural networks, one should take advantage of their

intrinsic characteristics. The sparse characteristics of the parameters

in the neural networks widely existed due to the advantages of the

rectified linear unit (ReLU) activation function and regularization

training methods. Enhancing the sparsity of the weights and the

activations can be considered equally as increasing the ratio of high-

resistance-state devices and low-amplitude voltage signals in the

hardware implementation, which dominate in reducing the energy

consumption (Sun et al., 2020). However, the sparsity of the

activations can be further utilized to reduce the required ADC

precision and the corresponding energy consumption. Some

researchers utilize counters or input encoder circuit modules to

sense the sparsity of binary input (Ali et al., 2021; Wang et al., 2021;

Li et al., 2022). Others recorded the map of the sparsity distribution

maps in advance during the network training (Yue et al., 2020; Yue

et al., 2021). However, a more versatile and convenient approach to

sense the sparsity is expected to further reduce the hardware

overhead and energy consumption of NVM-based neural networks.

In this study, we focus on exploring the energy-efficient

hardware design of NVM-based convolutional neural

networks through the quantization and sparsity-aware

processing method. Based on the benchmark of LeNet-5, we

thoroughly explore the quantization coeffect of both weight and

activation from 1-bit extreme low precision to 8-bit high

precision and compare the corresponding hardware burden.

The results imply that a combination of 4-bit weight and 3-bit

activation is favorable for the optimal compromise between

network performance and hardware overhead. To further

improve the energy efficiency, we propose an in situ sparsity-

aware processing approach in the quantized neural network with

the help of an additional row of the memory devices. Impressive

enhancement can be obtained through the approach by greatly

reducing the ADC energy consumption and improving the

energy efficiency of the MAC units especially when the

activations are highly sparse and the original ADC hardware

burdens are severe.

2 Hardware design of NvCNN

In NVMMAC units, the impressive capability of accelerating

the neural networks comes from the highly parallel processing of

the MAC operations. However, the precision of the computation
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is straightly related to the hardware implementation. The

quantization, which has been widely used in industry and

academia to compress the neural networks (Sze et al., 2017;

Deng et al., 2020), is not only intrinsically embedded within the

hardware implementation, and require specific discussion to

assure the processing accuracy, but also a powerful method to

reduce the hardware burden and improve the processing energy

efficiency. In this section, we will introduce the hardware design

strategy of the quantized CNN on the NVM MAC unit.

2.1 Network structure and the NVM MAC
unit

The typical and extensively analyzed LeNet-5 is adopted as the

evaluated model in this study (LeCun et al., 1998). The structure of

the network is demonstrated in Figure 1A, which is consisted of

two convolutional layers with 5 × 5 filters, two average pooling

layers with 2 × 2 filters, and three fully connected layers. The ReLU

function is used as the activation function of the hidden layers,

while the SoftMax function is used for the output layer. Moreover,

the Modified National Institute of Standards and Technology

database (MNIST) with 28 × 28 handwritten digit images is

used as the benchmark (LeCun et al., 1998), which are divided

into 60 and 10 k images for the training and testing set respectively.

For the hardware design of CNNs, the mapping strategy of

the parameters between the convolutional layers, as the

representation of the network layers, and the NVM MAC

units are illustrated in Figures 1B,C. The input activations A
are mapped as the input voltage signals Vi and then conducted

into the array columns through DACs. The weights W are

mapped as the conductance difference G of the NVM device

pairs in the array. The output activations A are mapped as the

output voltage signals Vo, which are converted from the row

currents I through peripheral circuit modules including trans-

impedance amplifiers (TIAs) and subtractors (SUBs). Finally, Vo

is sampled by the ADCs and buffered for further processing, and

used as the input signals for the next MAC unit. Notably, the

ReLU function is automatically embedded within the ADC

sampling process. The corresponding mapping relationship

between the parameters can be described in the equations as

follows:

FIGURE 1
(A) The structure of the LeNet-5model. (B) Schematic of the convolutional layer of CNNs. (C) Schematic of an NVMMAC unit, consisting of the
NVM array and the periphery circuits. Each weight is represented by the differential conductance of twomemory devices. (D) Schematics of the NVM
devices that are limited by the number of available conductance states (left), and DACs/ADCs that possess finite precision within the truncated range
(right), leading to the quantization effect on the weight and activation parameters, respectively. (E) Schematic of quantization operation from FP
parameters to quantized ones. (F) Schematic of the overall quantization algorithm. The black arrows denote the dataflow direction of the forward
propagation as well as the inference phase on the hardware. The blue arrows denote the data flow direction of the backpropagation.
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Gl � Wl · Grange/wrange , (1)
Vl � Al · Vrange/arange , (2)
Al � ReLU(Al−1Wl) , (3)

Vo � RtViG
l , (4)

where the superscript l denotes the lth layer and the

corresponding device array, the subscript range denotes the

distribution range of the corresponding parameters, and Rt

denotes the equivalent trans-impedance coefficient of the

overall peripheral circuits during the conversion of the current

signals to the voltage ones.

2.2 Quantization algorithm

In the hardware implementation of the NVM MAC units,

NVM devices used to map the weight parameters are limited by

the number of available conductance states, while the DACs/

ADCs which generate/sample the voltage signals possess finite

precision within the truncated range, will result in quantization

effects in mapping the activation parameters, as shown in

Figure 1D. Therefore, the quantization of both weights and

activations is necessary for the evaluation of the NvCNNs.

In the quantization algorithm, for a full-precision (FP) parameter

to be quantized, twoprimary hyperparameters, the clipping range, and

the precision, should be concerned (Figure 1E). The clipping range

determines the allowed range of the parameters, meaning that if the

value of the FP parameter is out of the range, it will be clipped to the

upper or lower boundary of the clipping range accordingly. The

precision then determines the allowed number of states, which are

usually distributed uniformly within the clipping range.

The overall quantization algorithm is shown in Figure 1F.

During the training, two sets of weights should be stored and

utilized, that is, the FP weights Wfp and the quantized weights

Wq. However, only the quantized activations Aq are buffered and

conducted into the next layer. Wq and Aq are used for both

forward propagation and backpropagation. Wfp is used to

accumulate the small updates of each training iteration, and

generate Wq for the next iteration. The training is conducted on

the software using the stochastic gradient descent with a batch

size of 200 and a learning rate of 0.01.300 iteration cycles are used

to ensure the convergence of the network training. Once the

training is completed on the software,Wfp can be discarded, and

the quantized parameters are transferred onto the hardware for

inference applications.

3 Evaluation of network quantization
and hardware overhead

As mentioned previously, higher weight precision will bring

more demands on the analog performance of the devices, and

higher activation precision will lead to more precise converters

with larger hardware overhead as well. Constrained by the

limited resources of the hardware implementation, the

quantized neural networks need to seek a compromise

between network performance and hardware overhead.

Moreover, the impact of the hardware nonidealities on the

network performance should be considered an essential

consideration to better guide the design of the hardware

neural networks.

3.1 Quantization precision and hardware
overhead

The quantization effects of the network parameters on the

performance are mainly determined by their clipping range and

precision. According to the previous research (Pan et al., 2020),

the weight parameters of the networks are centralized around

zeros and can be clipped within [−0.25, 0.25] during quantization

to obtain better network accuracies. Similar trends can also be

observed in the activation parameters. After the ReLU function is

applied, negative activations are all truncated to zeros, while the

positive ones are mostly centralized around zeros apart from

several individual extreme data. As for the activation

quantization, traditional methods use the maximum and

minimum values of the activations to determine the

quantization range. However, such methods will be critically

influenced by the extreme data, and discard abundant

information on small but major values. Some researchers use

nonlinear activation quantization methods to compensate for the

extreme values and obtain better performance, but require to

generate nonuniform reference signals, which introduce a

complex fabrication process and are not friendly for the

hardware implementation of ADCs/DACs (Sun et al., 2020).

Therefore, a uniform and clipped activation quantization strategy

is used to better match the characteristics of ADC/DAC

implementations and ease the hardware design.

The lower boundary of the activation clipping range is

stationed at 0 in the following analysis due to the utilization

of the ReLU function. The effect of the upper boundary of the

activation clipping range on the network accuracy is analyzed

and shown in Figure 2A. Results demonstrate that either too large

or too small upper boundary will result in a decrease in the

overall accuracies. The network possesses slightly better overall

performance when the upper boundary is set to 2. Thus, the

clipping range of activations is fixed at [0, 2] along the following

discussion.

The effects of weight and activation quantization precision

are illustrated in Figure 2B. In general, the network accuracy

tends to saturate at high-precision conditions for either weights

or activations but declines obviously with decreasing precisions,

especially at 1-bit. Specifically, in the consideration of weight

precision, high-precision weights no less than 6-bit show the
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highest network performance. However, to achieve such high-

precision-weight designs, NVM devices require much more

tunable states, claiming strict demands in material and device

structure design as well as operating strategies (Tang et al., 2019;

Xi et al., 2020). Medium-precision weights between 3-bit and 5-

bit possess only a small accuracy decline. Moreover, the devices

with no more than 3-bit stable and distinguishable states can be

relatively easy to obtain through operating methods like pulse

stimulation (Chen et al., 2019), current compliance (Chen et al.,

2020), and write-verify (Luo et al., 2020), etc. Therefore,

medium-precision weight designs are more hardware efficient

for application, and the 4-bit weight precision can provide

relatively higher network accuracy. Low-precision weights, i.e.

binary (1-bit) or ternary (2-bit), result in a large accuracy decline

compared to other cases. However, both binary- and ternary-

weight designs can be easily represented using a pair of binary

devices, which usually possess state-of-the-art switching

characteristics including retention, endurance, variation, yield

as well as programing simplicity (Huang et al., 2020), thus are

more suitable to achieve high reliability.

With respect to the activation precision, the precision of the

converters is equivalently considered, as mentioned previously.

The energy and area overhead of the converters usually occupy a

large portion of the NVM MAC units and become even larger

when their precisions are increased. Figure 2C shows the

tendency of the typical energy consumption of the leading

ADC implements at various precision designs (Murmann,

2021). On the one hand, high-precision activations like 6-bit

and 8-bit can obtain the highest performance but at the cost of

ultrahigh hardware redundancy. On the other hand, low-

precision cases, i.e. 1-bit and 2-bit, are more energy and area

efficient but suffer from significant accuracy decline. Our result

suggests that 3-bit activation is a better choice to obtain rather

high hardware efficiency while still maintaining tolerable

accuracy decline. Still, 1-bit-activation design can be more

favorable when the constrained resource becomes the most

concerning aspect in real world applications, because in this

case the energy-intensive converters can be substituted by more

compact and efficient circuit modules like transmission gate

(TG), voltage comparator, or current sense amplifier (CSA)

(Yan et al., 2019).

The comparison of the overall energy efficiency of the MAC

unit between various precision designs and NVM device

benchmarks (Li et al., 2018; Joshi et al., 2020; Yao et al., 2020)

is demonstrated in Figure 2D, according to the circuit module

metrics in (Miyahara et al., 2011; Texas Instruments, 2011;

FIGURE 2
(A) The effect of clipped activation range on the network accuracy of the MNIST dataset according to different quantization conditions. (B) The
effects of weight and activation quantization on the network accuracy of the MNIST dataset. Especially, the 1-bit weight precision denotes the
binary-weight case. (C) The energy consumption of the leading ADCs with respect to their precisions. (D) Evaluation of the overall energy efficiency
of the MAC units with 128 × 128 device array according to different quantization precision designs.
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Rabuske et al., 2012; Mahdavi et al., 2017; Bchir et al., 2021).

Great enhancement in energy efficiency can be observed in the

hardware designs with lower precision. The quantization method

is further conducted on the LeNet-5, VGG16 (Simonyan and

Zisserman, 2014), and ResNet-18 (He et al., 2016) network

models using the CIFAR-10 (Krizhevsky and Hinton, 2009)

dataset. The performances of the quantized networks are

shown in Table 1. The 4-bit-weight and 3-bit-activation

design exhibits a relatively low accuracy drop compared with

the low-precision quantization, suggesting the potential of

improving the energy efficiency in deeper network models.

In general, medium-precision quantization can obtain the

optimal compromise between network accuracy and hardware

overhead. Specifically, for LeNet-5, 4-bit-weight and 3-bit-

activation design is the most recommended choice, which can

acquire 98.82% network accuracy on the MNIST dataset with

minor degeneration compared to the 99.08% accuracy of the full-

precision one. 2-bit-weight and 1-bit-activation can be favorable

for extreme conditions where the accuracy can be sacrificed in

exchange for hardware reliability and overhead.

3.2 Evaluation of hardware nonidealities
on network performance

For the neural network inference application of the NVM

MAC unit, the well-trained parameters need to be transferred to

the hardware. However, the hardware implementation of the

NVM arrays and periphery circuits inevitably suffered from

nonidealities, causing undesired deviations between the ideal

and practical parameter values.

Due to the intrinsic stochasticity of the device mechanisms

and fabrication process, NVM devices possess unavoidable

variation issues in the conductance states, which can usually

be simulated using Gaussian distributions (Joshi et al., 2020).

Therefore, weight parameters are also affected by such

characteristics, and reduce the performance of the hardware

network. We define the normalized variation of weight nvw,

which will also be equal to the normalized variation of

conductance, in the equation as follows:

n]w � σw/wrange � σG/Grange , (5)

where σ stands for the standard deviation of the parameters. To

analyze the effect of different precisions on the network

robustness, we extract the maximum acceptable nvw that can

maintain over 90% accuracy of the network as the comparison

criterion. As for the effect of weight precisions, the networks

trained with lower weight precisions possess significantly

enhanced robustness, as demonstrated in Figure 3A, due to

the fact that higher-precision weights will suffer from more

serious state overlapping problems compared to lower-

precision conditions. The results also suggest that the

hardware designs with higher weight precision will require

extra efforts to suppress the variation of device conductance

states.

As for the effect of activation precisions on the network

robustness, the quantization of activation serves as a rounding

function on the outputs of MAC, and ought to cover slight

deviations of the activations caused by the weight variation.

However, the robustness shows no distinct tendency across

different activation precisions, as shown in Figure 3B. Such a

phenomenon might be explained by the fact that even though

low-precision-activation cases have better opportunities to

suppress the output deviations, the fatality caused by each

error is also more critical. Therefore, due to the two effects

canceling each other out, the overall robustness of the weight

variation is almost not affected by the activation precision.

Common types ofADCs andDACsusually use a series ofweighted

resistors or capacitors to achieve the division of the reference voltage.

However, the standard manufacturing process will always introduce

random deviations in the resistance and capacitance. These

nonidealities are usually described in terms of integral nonlinearity

(INL) and differential nonlinearity (DNL), which can cause

misjudgments during voltage comparison. To evaluate the deviations

caused by the converter nonlinearities, a simplified model is analyzed,

which randomly introduces variations into the comparison levels of the

quantization function. The normalized variation of activation nva is

defined similarly to the nvw. In each simulation evaluation, the nva are

randomly generated but fixed according to each weight filter to better

imitate the hardware implement circumstances. As illustrated in

Figure 4, the robustness to converter nonlinearities is barely affected

by the weight precisions, and only a slight enhancement can be

observed by lower weight precision designs. However, the network

robustness is significantly improved by the decreased activation

precision design. Such phenomena can be explained by the larger

gaps between the adjacent states in lower-precision cases. The results

also suggest that high-precision activation designs impose much higher

requirements on theDAC/ADChardware implement, which otherwise

would result in unfavorable sharp declines in performance.

4 Sparsity-aware processing method

The aforementioned simulations have evaluated the

quantization strategy to achieve proper hardware design that

TABLE 1 Comparisons of three typical neural networks on the Cifar-10
dataset at different quantization precisions.

LeNet-5 (%) VGG16 (%) ResNet-18 (%)

Full-precision 61.28 90.42 91.78

High-P W8A8 61.26 89.27 91.09

Med-P W4A3 57.76 87.14 90.26

Low-P W2A1 45.73 79.18 80.45
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FIGURE 3
The effect of different (A) weight precisions and (B) activation precisions on the network robustness to the weight variation. The maximum
acceptable nvw that can still maintain over 90% network accuracy is used as the comparison criterion to represent the robustness.

FIGURE 4
The effect of different quantization precisions on network robustness to the activation variation.
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can obtain good network performance at relatively low hardware

overhead. However, the quantization operation has inevitably

damaged the accuracy of the network anyway, and attempts to

further reduce the quantization precision will bring about a more

severe accuracy decline, as suggested by the results of the low-

precision quantization designs. Therefore, an energy efficiency

improvement strategy that is capable of maintaining the accuracy

of the MAC operations for the quantized NvCNNs is pursued.

Here, we present a novel in situ sparsity-aware processing

strategy with the assistance of an additional row of memory

devices.

In neural networks, the sparse characteristics of the

parameters widely existed due to the utilization of the ReLU

activation function and regularization constraint term during

the training. The activation cumulative probability distribution

of the quantized NvCNN under two representative conditions,

that is, the 4-bit-weight-and-3-bit-activation (W4A3)

medium-precision design and the 8-bit-weight-and-8-bit-

activation (W8A8) high-precision design, are demonstrated

in Figures 5A,B, respectively. It can be observed that the

activations of the network have demonstrated high sparsity.

For instance, in the W4A3 design, over 99% of the total

activation values are no greater than 0.25. After the ADC

sampling, the maximum activations (activation = 1.75) can

be represented as a binary value 111, while the values that equal

0.25 will be expressed as 001, and the values that equal 0 will be

expressed as 000. Therefore, these values ≤0.25 can be

distinguished from each other by only the lowest bit, which

is 2-bit lower than the overall one (from 3 bit to 1 bit).

However, the aforementioned evaluation of the activation

quantization effect has suggested that the minor extreme

data that occupy less than 1% still provide indispensable

roles in the network, and cannot be truncated. Similarly, in

the W8A8 case, over 97% of the total activation values can be

expressed by a precision 4-bit lower than that of the maximum

ones (from 8 bit to 4 bit). Therefore, in the NvCNNs, most of

the voltage signals that map the activations possess the

capability of being sampled with many lower-precision

configurations by the precision-reconfigurable ADCs (Yip

and Chandrakasan, 2013; Fateh et al., 2015), leading to

desirable potential in reducing the energy consumption of

the hardware implementation.

The hardware implementing scheme and the flowchart of the

proposed sparsity-aware processing algorithm are demonstrated

in Figures 6A,B, respectively. The overall strategy of the method

is to sense the sparseness of the input signals by predicting the

range of the MAC output results, while the range of the MAC

output results is predicted through the additional device row so

called as the sparsity sensing row. After that, the ADC precision

configuration is modulated according to the sensed sparseness of

the input signals, and energy efficiency improvement is finally

achieved.

Concretely, according to Ohm’s law and Kirchhoff’s current

law, the output voltages of the sparsity sensing row Vsense and the

regular rows for MAC operations Vo can be determined as

follows:

Vsense � Rt2Glow∑
n

p�1
Vi,p , (6)

Vo,q � Rt∑
n

p�1
Vi,nGpq ≤ RtGmax∑

n

p�1
Vi,p , (7)

where n is the array accumulation number, Glow is the lowest

conductance state of the memory devices, Gmax stands for the

maximum value of G, and Rt2 is similarly defined as the

equivalent trans-impedance coefficient of the peripheral

circuits of the sparse sensing row. Thus, through Vsense, the

overall sparsity of the input signals can be sensed, and the

maximum range of the regular MAC outputs Vo can be

predicted.

FIGURE 5
The layer-wise and total activation cumulative probability distributions of (A)W4A3 and (B)W8A8 cases, respectively. The activations are highly
sparse, and over 99%/97% of the total values can be expressed with precisions 2-bit/4-bit lower than that of the maximum ones for the W4A3/
W8A8 case.
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Figure 6C demonstrates the SPICE simulation results of the

proposed sparsity-aware processing circuit design of the

W8A8 case. The Vsense equivalently reflects the different

degrees of the overall sparsity of the inputs. The output values

denote the regular output voltages of the MAC operations Vo,

while the predicted maximum values are the predicted maximum

range of Vo deduced from Vsense. Three typical examples of the

device matrixes are evaluated, that is, theGmaxwith all maximum

weights, Gdense with dense and all-positive weight elements, and

Gsparse with sparse and random weights on behalf of the practical

weight matrixes, respectively. The results demonstrate that under

all circumstances, the output values are less than the predicted

maximum values, which also proves that the sparsity sensing row

can provide accurate estimates of the range of the output

voltages.

Here, the thresholds of the Vsense that represent different

degrees of the input sparsity and will generate different predicted

results (enveloped as the black dotted line), are recorded as Vth,

which can be derived as follows:

Vth,k � VFSR ×
1

2k
Rt2Glow

RtGmax
, k � 1, 2, 3, · · · (8)

where Vth,k stands for the kth threshold voltage. If Vsense is less

than the predetermined Vth,k during the processing, then the kth

FIGURE 6
Scheme of (A) hardware implementation and (B) the flowchart of the proposed sparse-aware processing method. (C) Simulation results of the
sparsity-aware processing circuit design with respect to different Vsense. (D) The configuration of the ADC precision according to different Ctrl
signals. (E) The normalized ADC energy consumptions that use the proposed sparsity-aware processing method with respect to the array row sizes.
(F) The comparison of the energy efficiency between the optimizedMAC units with the sparsity-aware processingmethod and the original ones
under W8A8 (gray) and W4A3 (white) cases.
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MSB of the sampling results of the output voltages can be

determined to zero. Thus, by comparing the Vsense with the

properly prerecorded Vth, we can generate control signals Ctrl

for the ADCs to dispense the highest few sampling bits, and

modulate the required precision configuration dramatically, as

shown in Figure 6D. Eventually, the corresponding energy or

time consumption of the highest few bits can be eliminated, and

the energy efficiency of the NVM MAC unit can be further

improved for the quantized NvCNNs.

To evaluate the effect of the proposed method, the

normalized ADC energy consumptions that use the proposed

sparsity-aware processing method according to different array

sizes are shown in Figure 6E. An impressive reduction in the

ADC energy can be observed from the results. With an array

row size of 128, the MAC unit can reduce the ADC energy

consumption to 47% of the original within the W4A3 design.

Since the W8A8 design possesses higher activation sparsity, the

energy of the ADCs can even be reduced to around 21%. With

an array row size of 512, the proposed sparsity-aware

processing method fails in the case of the W4A3 design, but

still provides over 18% reduction in the W8A8 condition. It is

obvious that such a method cannot fulfill the purpose when the

array becomes too large. However, 512 parallel rows have

already covered up most advanced MAC chips. Moreover, a

larger array size will intensify the parasite effects, and partial

readout schemes are expected in extremely large arrays. In the

proposed method, higher activation sparsity and lower array

row size can both obtain better ADC energy reduction. The

former is determined by the characteristics and training

methods of the neural networks, while the latter will result

in low parallelism of the MAC unit, which introduces a trade-

off between the energy reduction and the processing

parallelism, and require dedicated design for different

application situations.

Notably, apart from the ADC energy reduction, an additional

row of memory devices as well as the corresponding periphery

circuits are introduced by the sparsity sensing method, which

unfavorably increases the overall energy consumption. Using the

same circuit module benchmarks as in Section 3 and the devices

from Ref (Joshi et al., 2020), we analyze the improvement of the

overall energy efficiency of the optimized MAC unit, as shown in

Figure 6F. The optimized MAC unit can achieve an overall

energy efficiency improvement of 4.98× to 1.18× with the

array row size varying from 32 to 512 in the W8A8 design.

As for the case of the W4A3 design, despite the relatively low

sparsity and the already highly compressed hardware overhead,

such a method can still provide 1.20× and 1.15× for the MAC

units with 32 × 32 and 128 × 128 array size despite the quantized

neural network.

Generally speaking, the proposed sparsity-aware processing

method can achieve significant improvement in energy

efficiency, especially in the cases when the activations are

highly sparse and the original ADC overhead is severe. Higher

energy efficiency improvement can be obtained when utilizing

devices with lower conductance states. Moreover, such a method

can be conducted in situ on the array without additional circuit

module designs and is adaptable to many other commonly used

input encoding approaches such as serial pulse sequences or

modulated-width pulses (Hung et al., 2021). However, there are

still some limitations to this method. First, the ratio of the energy

reduction is directly related to the sparsity of the activations and

the array size, thus, the advantages of the proposed method

demand evaluation in the context of the practical applications.

Second, this method might not be effective enough when the

ADC consumption is not the main constraint of energy

efficiency.

5 Conclusion

In conclusion, we have thoroughly studied the quantization

coeffect of both weight and activation to the network performance

and the corresponding hardware overhead and proposed an in situ

sparsity-aware processing method for the energy-efficient

hardware neural networks. We find that high-precision (higher

than 6-bit) designs are not helpful to further improve the network

performance, and will lead to serious hardware redundancy.

Moreover, the high-precision designs impose much higher

hardware implement requirements on the device variations and

nonlinearities of the converters. Medium-precision quantization

can obtain the optimal compromise between network accuracy

and hardware overhead. For LeNet-5, 4-bit-weight and 3-bit-

activation design is recommended as the hardware

implementing solution, which can acquire 98.82% network

accuracy on the MNIST dataset compared to the 99.08%

accuracy of the full-precision one. The low-precision designs

can significantly improve the energy efficiency and the

robustness of the hardware implementation, but will also

introduce relatively high accuracy loss, which makes them more

favorable when the hardware reliability and overhead become the

most concerning aspect. Moreover, we provided a novel sparsity-

aware processing method in situ on the array to further improve

the energy efficiency by taking advantage of the neural network

sparsity and the device array characteristics. Such a method can

reduce the heavy energy consumption of ADCs and achieve

additional improvement in energy efficiency especially when the

activations are highly sparse and the hardware overhead of ADCs

is severe, e.g., 79%/53% ADC energy reduction and 2.98×/1.15×

energy efficiency improvement for 8-bit-weight-and-8-bit-

activation/4-bit-weight-and-3-bit-activation design with an array

size of 128 × 128. However, a thorough evaluation in the context of

particular application circumstances is still necessary to fully

leverage this method. We believe our strategies and evaluations

will provide valuable guidance on the design of hardware

implementation of energy-efficient NvCNN for resource-

constrained edge intelligence.
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