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A new class of van der Waals-type layered materials, ASn2Pn2 (A= Li, Na, Sr, Eu; Pn= As,
P, Sb), has attractedmuch attention in the field of condensed matter physics because they
have interesting physical properties and various ground states, as well as potential
applications. Here, we are the first to report the close connection among the
superconducting transition temperature Tc, crystal structure and Hall coefficient in
pressurized NaSn2As2 single crystal. We found that the superconducting NaSn2As2
displays two pressure-induced crystal structure phase transitions, first from an
ambient-pressure rhombohedral (R) phase to a monoclinic (M) phase starting at ~
12 GPa (PC1), and then to a simple cubic (C) phase starting at ~ 33 GPa (PC2). In
these phases, the Tc value and carrier concentration change correspondingly. Our
results suggest that the observed three superconducting states are related to the
change of structural phase and the variation of carrier concentrations.
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INTRODUCTION

The new class of van der Waals-type layered materials ASn2Pn2 (A= Li, Na, Sr, Eu; Pn= As, P, Sb)
exhibits special physical properties and different ground states, such as low thermal conductivity (Lee
et al., 2015; Lin et al., 2017), topological state (Rong et al., 2017; Gui et al., 2019), magnetically
topological insulating state (Gibson et al., 2015; Li et al., 2019) and superconducting state (Goto et al.,
2017; Cheng et al., 2018; Goto et al., 2018; Ishihara et al., 2018; Yuwen et al., 2019; Zhao et al., 2021),
etc. Since ASn2Pn2 has a layered structure, similar to cuprate and iron-based superconductors
(Bednorz and Muller, 1986; Wu et al., 1987; Hsu et al., 2008; Kamihara et al., 2008; Guo et al., 2010;
Wang et al., 2011; Chu et al., 2015; Arguilla et al., 2016; Hu, 2016; Goto et al., 2018; He et al., 2019;
Proust and Taillefer, 2019), it is expected that the materials may present superconductivity or emerge
exotic phenomena through chemical doping or applied pressure. Earlier studies on Na1+xSn2-xAs2
and Na1-xSn2P2 found that the superconductivity can be truly developed by Na doping on the Sn site
or self-doping by Na vacancy defects (Goto et al., 2018; Yuwen et al., 2019), indicating that the
superconductivity of these materials is sensitive to the tuning parameters.

Pressure is an effective method to tune crystal and electronic structure without changing
chemistry. Which can be used as a probe to test whether there is a link between the crystal
structure and superconductivity in van der Waals-type layered materials. In this paper, we are the
first to report the connection among the crystal structure, Hall coefficient (RH) and Tc in the
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superconducting NaSn2As2, through the complementary
measurements of in-situ high-pressure X-ray diffraction
(XRD), electric resistance, ac susceptibility and Hall coefficient.

The high-quality single crystal samples were synthesized by
solid-state reaction methods, as reported elsewhere (Lin et al.,
2017). High pressure was generated by a Diamond anvil cell
(DAC) with two opposing anvils sitting on the Be-Cu
supporting plates. In the high-pressure measurements,
diamond anvils with 300 μm flats were employed to create
pressure, and NaCl powder was adopted as pressure
transmitting medium. High pressure resistance and Hall

coefficient measurements were carried out using four-probe
technique and Van der Paw method (van der Pauw, 1958),
respectively. High-pressure alternating-current (ac)
susceptibility measurements were performed by using the
home-made primary/secondary-compensated coils around
the diamond anvil (Debessai et al., 2008; Sun et al., 2012).
High pressure x-ray diffraction (XRD) measurements were
carried out at beamline 4W2 at Beijing Synchrotron Radiation
Facility and at beamline 15U at the Shanghai Synchrotron
Radiation Facility, respectively. The polycrystalline samples
prepared for the x-ray diffraction measurements were obtained

FIGURE 1 | Structure information of NaSn2As2 under high pressure. (A) Powder X-ray diffraction patterns collected at different pressures, showing two structure
phase transitions that occur at ~ 11.6 and ~ 33.1 GPa, respectively. In the experiments, a monochromatic X-ray beam with a wavelength of 0.6199 Å was employed
(B–E) Analysis of the XRD patterns measured at 0.4, 20.0, 36.6 and 48.9 GPa, showing that the NaSn2As2 sample evolves from a rhombohedral phase (R 3 m) to a
monoclinic (C2/m) phase, and then to a simple cubic phase (F–G) Pressure dependence of the lattice constants and atomic volume (V) in the rhombohedral (R),
monoclinic (M), and cubic (C) phases.
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by grinding single-crystal samples. The pressure in all
experiments was determined by the ruby fluorescence
method (Mao et al., 1986).

We first performed in-situ high pressure XRD
measurements. Figure 1A shows the XRD diffraction
patterns collected at different pressures up to ~ 50 GPa. It is
found that all patterns below 9.9 GPa can be indexed well by
the rhombohedral (R) phase with space group R 3 m
(Figure 1B), as what was observed at ambient pressure (Lin
et al., 2017). However, new peaks appear when pressure is
increased up to 11.6 GPa, indicating that application of
pressure induces the structure change. The analysis on the
XRD patterns for this high-pressure phase reveals that the
sample partially transforms into the monoclinic (M) phase
(C2/m) (Figure 1C). The two coexisted phases (R and M)
persist up to ~ 30 GPa before another obvious change of the
XRD patterns at ~ 33 GPa (Figure 1D), where the presence of a
new sets of diffraction peaks suggests that pressure drives a
new phase transition. We found that the new phase can be
indexed to a simple cubic phase (Figure 1E). The refinements
of the XRD results allow us to obtain the pressure dependence

of lattice parameters and corresponding volume for the R, M
and C phases (Figures 1F,G).

NaSn2As2 crystalizes in rhombohedral (R) unit cell at ambient
pressure, similar to that of Bi2Te3 or Bi2Te2Se (Kushwaha et al.,
2016). Theoretical calculations indicate that Bi2Te3 undergoes
structural phase transitions under pressure, from R phase to M
phase, and eventually to C phase due to that the C phase has a
lower enthalpy (Zhu et al., 2011). Our high pressure XRD
measurements reveal that NaSn2As2 shows the similar high-
pressure behavior as Bi2Te3, occurring the transitions of R-to-
M-to-C phase upon increasing pressure. The same phase
evolution observed in our compressed NaSn2As2 sample allows
us to propose that these two materials may share the same
mechanism of driving the phase transition.

To investigate the pressure effects on the transport properties
of NaSn2As2 in these different phases, we carried out in-situ high
pressure resistance measurements for the sample. Figures 2A–C
show the electrical resistance as a function of temperature under
different pressures up to 52.2 GPa for the sample #1. Below
12 GPa, a tiny kink is observed at around 200 K, which has
also been found by Pugliese et al. (2019). We propose that this

FIGURE 2 | Electrical resistance (R) as a function of temperature (T) at different pressures. (A–C) For the sample #1 measured down to 1.5 K, insets in (B) and (C)
display the enlarged views of the normalized R-T curves in the lower temperature range. (D)Normalized R-T curvesmeasured down to 0.3 K for the sample #2, exhibiting
superconducting transition with zero resistance in the pressure range of 0.4–19.4 GPa.
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anomaly may be associated with an instability of the CDW order.
Since the ambient-pressure superconducting transition of
NaSn2As2 is about 1.3°K (Goto et al., 2017; Cheng et al., 2018;
Ishihara et al., 2018), which is lower than the base temperature
(1.5 K) of the cryostat employed for this run, no resistance drop is
observed. However, we find that the normal resistance value
versus temperature is reduced with increasing pressure up to
12.7 GPa, then it is enhanced with further compression, we
propose that the observed phenomenon should be attributed
to the partial R-M phase transition (Figures 2A,B).

Noticeably, a resistance drop is found at ~2.1 K at 22.6 GPa
(as shown in the inset of Figure 2B) and it shifts to higher
temperature with further compression. A zero-resistance state
is observed at 1.5 K at 28.7 GPa and above, indicative of an
emergence of a superconducting transition (inset of Figure 2B
and Figure 2C). The transition temperature (Tc) is enhanced
upon increasing pressure and remains almost unchanged at
pressure higher than ~ 36 GPa (Figure 2C). To understand
the full evolution process of Tc with pressure at lower
temperature for NaSn2As2, we performed high-pressure
resistance measurements for the sample #2 in another
cryostat that can cool the sample down to ~ 0.3 K
(Figure 2D). We observed a superconducting transition at
1.4 K at the lowest pressure of 0.4 GPa, adopted in this study,
close to the Tc obtained at ambient pressure (Goto et al., 2017;
Cheng et al., 2018; Ishihara et al., 2018). With increasing

pressure, Tc decreases down to ~ 0.3 K at ~ 13 GPa and then
increases with further compression up to 19.4 GPa
(Figure 2D).

To support the observed resistance drops in pressurized
NaSn2As2 are attributed to superconducting transitions, we
performed resistance measurements under different magnetic
fields for the sample subjected to 28.7 and 40.1 GPa
(Figure 3A and Figure 3B). It is found that the resistance
drops shift to lower temperature with increasing magnetic
field (Figure 3A and Figure 3B). We also performed
alternating-current (ac) susceptibility measurements on the
sample in the pressure range of 2.8–46.2 GPa and found the
diamagnetism (Figure 3C). The evolution of Tc with pressure
obtained from the ac susceptibility measurement is consistent
with that measured by the resistance. These results confirm that
the pressure-induced resistance drop originates from the
superconducting transition. We extract midpoint Tc as a
function of magnetic field and estimate the value of the upper
critical magnetic field (Hc2) at zero temperature by Werthamer-
Helfand-Honhenberg (WHH) formula (Hc2

WHH(0) =
-0.693TC(dHc2/dT)T=Tc.) (Werthamer et al., 1966). The Hc2

value is ~ 1.2 T at 28.7 GPa and ~ 2.1 T at 40.1 GPa
(Figure 3D), which are much higher than the value of ~
0.25 T obtained at ambient pressure (Goto et al., 2017). These
results indicate that the three superconducting phases are
different in nature.

FIGURE 3 | Characterization of superconducting transitions in pressurized NaSn2As2. (A–B) Temperature dependence of electrical resistance under different
magnetic fields at 28.7 and 40.1 GPa, respectively. (C) Estimations of superconducting upper critical field (Hc2) as a function of superconducting transition temperature
(Tc) at ambient pressure (Goto et al., 2017), 28.7 and 40.1 GPa, the dashed lines represent the slopes of the estimated upper critical fields (dHc2/dT)T=Tc at different
pressures. (D) The real part of the alternating-current susceptibility (χ ′) as a function of temperature at different pressures. The arrows indicate the onset
temperatures of superconducting transitions.
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We summarized the pressure dependence of
superconducting transition temperature Tc and structure
information in Figure 4A. To compare Tc(P) detected from
resistance and ac susceptibility measurements in a unified way,
we used zero-resistance Tc in the phase diagram. It is seen that
Tc of the ambient-pressure superconducting phase decreases
continuously with increasing pressure up to PC1 (~ 12 GPa),
where the R phase partially transforms to the M phase.
Meanwhile, the Tc increases with further compression up to
~ 31 GPa. By applying higher pressure, the simple cubic phase
appears and coexists with theM phase, in which Tc rises in this
pressure range. When pressure is higher than 36 GPa, the
structure transforms into a pure single cubic phase and the
corresponding Tc remains almost unchanged. These results
show that the Tc are strongly influenced by the structural phase
transition. To further understand the change of
superconducting transition temperature in pressurized
NaSn2As2, we performed high-pressure Hall coefficient
measurements on the sample by sweeping the magnetic field
perpendicular to the ab plane up to 2 T at 10 K. The pressure
dependence of Hall coefficient (RH) is illustrated in Figure 4B.
It is found that RH is positive in the R phase, reflecting the
dominance of hole carriers (the carriers in the studied material
are composed of hole and electron carriers). Meanwhile, the

value of RH is enhanced with elevating pressure and reaches a
maximum at ~ PC1, implying that the role of the hole carrier is
reduced with increasing pressure and it may be responsible for
the monotonic decline of Tc in this pressure range. In the
pressure range of a coexistence of R andM phase (12–31 GPa),
RH is still positive but decreases dramatically with increasing
pressure, suggesting that the role of hole carriers is weakened
by applying pressure. It suggests that the structural phase
transition enhances the contribution of electron carriers
which seems to be in favor of superconductivity. It is worth
noting that the tendency of the change in Tc(P) is contrary to
that in RH(P) in the superconducting phase with the
dominance of hole carriers (Figures 4A,B), implying that
the component of the carriers plays a vital role in
determining Tc of this material. At pressure about 33 GPa
(PC2), RH goes through zero, suggesting that both holes and
electrons are likely present and making compensating
contributions. At P> PC2, the cubic phase appears and RH

changes its sign from positive to negative, demonstrating that
theM-to-C phase transition gives rise to a drastic change in the
character of the first Brillouin zone, which impacts directly on
the Tc value, and the cubic superconducting phase with the
domination of electron carriers holds highest Tc (~ 4.1°K).
Noted that NaSn2As2 exhibit opposite conduction polarities

FIGURE 4 | Pressure-temperature phase diagram combined with structural phase information and Hall coefficient of NaSn2As2. (A) Pressure-Tc phase diagram
with structural information. Tc

zero (R) stands for the zero-resistance temperature of superconducting transition obtained from resistance measurements. Tc (ac)
represents the superconducting transition temperature measured through ac susceptibility measurements. SCR, SCR+M, SCM+C and SCC represent superconducting
phases in the rhombohedral phase, mixed rhombohedral andmonoclinic phases, mixedmonoclinic and cubic phases and single cubic phase, respectively. (B)Hall
coefficient (RH) as a function of pressure measured at 10 K. PC1 and PC2 stand for the critical pressures of structural phase transition, respectively.
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along in-plane and cross-plane directions due to the unique
Fermi surface geometry (He et al., 2019). The Hall coefficient
shown in this study is obtained from the in-plane
measurement, how the cross-plane Hall coefficient changes
with pressure deserves further investigations in the future.

In conclusion, we have investigated high-pressure coevolution
of superconductivity with structure and transport properties for
NaSn2As2, one of the van der Waals-type layered materials,
through in-situ measurements of XRD, resistance, ac
susceptibility and Hall coefficient. We found a close correlation
of superconductivity with crystal structure and Hall coefficient.
Based on the evolution from the ambient-pressure
superconducting phase of NaSn2As2, we find that pressure
induces two dramatic changes of superconductivity that are
associated with the R-M phase at the critical pressure of 12 GPa
(PC1) and M-C phase transition at another critical pressure of ~
33 GPa (PC2), respectively. Hall coefficient measurements find that
the tendency of the change in Tc(P) of the rhombohedral and
monoclinic superconducting phases is opposite to that in RH(P),
suggesting that hole carriers are dominant in these SC phases, At
PC2, the Hall coefficient change the sign from positive to negative,
meanwhile the sample undergoes a structure phase transition from
the M phase to the C phase. The Tc value of the cubic phase is
higher than that of the rhombohedral and monoclinic
superconducting phases. The connection among the
superconductivity, structural phase transition and RH revealed
by our high-pressure study is expected to shed new insight on
the underlying superconducting mechanism of the tin-pnictide-
based superconductors and provide a route to explore new
superconductors with potential applications.
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