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Applying machine learning to aid the search for high temperature superconductors has
recently been a topic of significant interest due to the broad applications of these materials
but is challenging due to the lack of a quantitative microscopic model. Here we analyze
over 33,000 entries from the Superconducting Materials Database, maintained by the
National Institute for Materials Science of Japan, assigning crystal structures to each entry
by correlation with Materials project and other structural databases. These augmented
inputs are combined with material-specific properties, including critical temperature, to
train convolutional neural networks (CNNs) to identify superconductors. Classification
models achieve accuracy >95% and regression models trained to predict critical
temperature achieve R2 >0.92 and mean absolute error ≈ 5.6 K. A crystal-graph
representation whereby an undirected graph encodes atom sites (graph vertices) and
their bonding relationships (graph edges), is used to represent materials’ periodic crystal
structure to the CNNs. Trained networks are used to search though 130,000 crystal
structures in the Materials Project for high temperature superconductor candidates and
predict their critical temperature; several materials with model-predicted TC >30 K are
proposed, including rediscovery of the recently explored infinite layer nickelates.
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INTRODUCTION

Over thirty years ago, Bednorz and Müller observed a sharp drop in resistivity in polycrystalline
La2-xBaxCuO4 near TC ≈ 35 K. Variation of the Ba:La ratio revealed the Ba containing La2CuO4

phase to be responsible for the superconducting transition (Bednorz and Muller, 1986). This
event precipitated thousands of experiments on copper-oxide containing compounds, including
a Y-Ba-Cu-O (YBCO) system which, with critical temperature of 92 K, surpassed the boiling
point of liquid nitrogen (Wu, et al., 1987). These events led to the formation of the most
populous class of high temperature (high-T) superconductors, copper-oxide containing
compounds, and demonstrate the impact a single new superconductor can have on this
field. Today there are numerous chemically and structurally distinct classes of high-TC

superconductors represented in the Superconducting Materials Database (SuperCon).
Developing physical theories to explain the mechanism of superconductivity in these
compounds is one of the great inquiries of condensed matter theory.
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Another challenge of modern condensed matter theory is
calculating material-specific properties for superconductors. Ab
initio calculations of critical temperature and energy gap at 0 K in
elemental and binary superconductors achieve agreement with
empirical values (Sanna, et al., 2020). However, density functional
theory for most superconductors is limited due to strong electron
correlations in these materials (Marques, et al., 2005).
Furthermore, ab initio calculations have not, at this point,
been applied en masse to materials databases to predict likely
superconductors and their critical temperatures due to current
computational time and memory constraints. This challenge, the
lack of a complete physical foundation for the mechanism of
superconductivity in these compounds, and the advent of
machine learning in materials science motivates recent
attempts at predicting new high-TC superconductors with
supervised learning networks.

Early investigations into using statistical methods to classify
superconductors consisted of exploratory clustering analysis
whereby superconductors were plotted in a parameter space
which partitioned the dataset into distinct hypervolumes. In
particular, the averaged valence-electron numbers, orbital radii
differences, and metallic electronegativity differences confined
the 60 known, at that time, superconductors with TC >10 K into
three distinct volumes (Villars and Philips, 1988). Recently,
random forest (RF) regression and classification networks have
been trained to predict critical temperature and classify whether a
superconductor has critical temperature above a threshold value,
respectively (Stanev, et al., 2018). These classification networks
achieve 90% accuracy predicting whether a superconductor has
TC >10 K and the regression networks achieve R2 ≈ 0.88 modeling
TC. For each superconductor, 145 attributes (stoichiometric,
elemental, electronic, ionic) based off compounds’ chemical
formula are computed using the Materials Agnostic Platform
for Informatics and Exploration (Magpie); these attributes
represent each superconductor to the RF networks. Although
Magpie attributes have been demonstrably useful for materials
property modeling of crystalline compounds, including modeling
band gap energy and formation energy, these attributes do not
explicitly convey crystal structure and bonding relationships
(Ward, et al., 2016). The relative importance of each Magpie
attribute for the RF networks is ranked with average atomic
weight, average covalent radius, average number of d valence
electrons, and average number of unfilled orbitals increasing
regression model performance most. Similarly, a deep learning
model which used compounds’ chemical formula and valence
electron data to represent it to the neural network achieved
comparable performance to the RF models (Konno, et al., 2021).

As previous analyses have not accounted for superconductors’
crystal structure, which by chemical intuition should be essential
for yielding superconductivity (esp. at high temperatures), here
we use material-specific data extracted from the SuperCon
database (National Institute of Materials Science, 2011;
Yamashita et al., 2018) including crystal system, space group,
and crystal prototype to collect the periodic structure for each
superconductor from the Materials Project database (Jain et al.,
2013) and related databases. At the same time, the neural
networks in this work do not rely on the use of explicit

attributes like atomic weight or valence electrons, which are
understood to be related to superconductivity. While inclusion
of these attributes may improve network performance metrics, it
also biases statistical learning networks towards finding new
superconductors only within the same parameter space
‘clusters’ we know of today. Therefore, no explicit attributes
are represented to the CNNs beyond periodic crystal structure
and chemical composition in an effort not to bias the networks
toward well-researched classes. As a proof-of-concept for the use
of CNNs to identify high-TC superconductor candidates, we
combine classification and TC regression models into a
pipeline to search for candidate materials in the roughly
130,000 unique crystals from the Materials Project database.
The pipeline identifies several different compositions, outside
of the familiar high-TC classes, with model predicted TC >30 K.
We thus lay the foundation for future work to develop synthetic
methods to prepare these materials with appropriately tuned
electron count to exhibit high temperature superconductivity, as
well as to further develop machine learning based techniques to
predict the occurrence of superconductivity.

MATERIALS AND METHODS

Superconducting Materials Datasets
Achieving predictive accuracy with neural networks requires
access to large, standardized datasets. To this end, we analyze
over 33,000 oxide-metallic entries from the SuperCon database,
which includes both superconducting compounds and closely
related non-superconducting compounds. Each compound in the
SuperCon database is associated with 173 material-specific
attributes, including chemical composition, crystal system,
associated publication, year, and experimentally determined
properties including critical temperature, critical magnetic
field, and coherence length. Using this data for machine
learning can be problematic due to a lack of standardization
and therefore required significant pre-processing.

As periodic crystal structure is required to build the crystal-
graph used to represent each superconductor to the networks,
each composition in the SuperCon database is queried in the
Materials Project crystal structure database. Approximately
19,000 entries of the SuperCon database had a corresponding
entry and structure recorded in the Materials Project database.
Some chemical compositions corresponded to multiple different
structures in the Materials Project; in this case materials-specific
attributes from SuperCon including crystal system, space group,
and crystal prototype were used to distinguish between
polymorphs. Of 19,000 SuperCon entries for which a crystal
structure could be determined, ~15,000 had experimental critical
temperature recorded in the SuperCon database; the remaining
~4,000 compounds were discarded as it was not possible to
determine whether zero resistivity had been observed in these
compounds. Of the remaining ~15,000 compounds which had
critical temperature recorded, ~6500 are cuprates, ~1300 are
iron-based, and ~7000 are a combination of low-TC, phonon-
mediated materials, and other classes. Figure 1A displays the
breakdown by class of this dataset. Additionally, material-specific
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attributes with more than 300 non-empty values were recorded to
train regression models; coherence length (~350), Debye
temperature (~650), coefficient of electronic specific heat
(~800), energy gap at 0 K (~400), critical field (~700), Néel
temperature (~300), penetration depth (~300), and resistivity
at room temperature (~600).

Convolutional Neural Networks
A variation on Xie and Grossmans’s Crystal Graph Convolutional
Neural Network (CGCNN) is employed for classification and
regression prediction of superconductivity, critical temperature,
and other attributes. In the crystal-graph representation, edges of
the graph represent connectivity between atoms and vertices of
the graph represent atoms sites and their properties. In particular,
the crystal-graph representation is recorded in three tensors
which describe 1) the atom features, including atom species, 2)
the distance of each atom site to its nearest neighbors 3) the
identity of each atom site’s nearest neighbors. The atom feature
tensor contains, for each atom site, a one-hot encoded vector
which conveys, at minimum, the group and period number of the
atom species at that site. The atom feature vector may also
contain electronegativity, covalent radius, valence electrons,
first ionization energy, electron affinity, block, and atomic
volume of the site’s atom. In addition to the natural
representation of crystal structures as graphs, we are further
motivated by CGCNN’s performance in predicting attributes
which are interconnected with superconductivity. Trained on
dataset sizes of the order of ~10,000, mean absolute error (MAE)
for estimations of band gap energy, Fermi energy, and bulk
moduli met or exceeded DFT-order accuracy for calculations
of these properties (Xie and Grossman, 2018).

Convolutional neural networks are ideal for modeling
superconductors and their properties due to their ability to
model complex, nonlinear functions. These networks consist
of several hidden layers, between input and output layers,
which learn by experiencing data to represent a function. The
hidden layers of a neural network are comprised of nodes which
accept weighted input(s) from previous layers of the network. At
each node, an activation function is applied to a linear

combination of the weighted inputs; this value is sent to
subsequent node(s) in subsequent layers of the network and
introduces nonlinearity into the model. The neural network
‘learns’ during training by adjusting the weights connecting
the nodes in the hidden layers through stochastic gradient
descent. Specifically, at each iteration of training a randomly
selected batch of data passes through the network and network
performance is computed by evaluating the loss function on that
batch of data. Then the gradient of the loss function is calculated
via back-propagation and network weights are updated along the
direction of steepest descent, the negative of the gradient. The
magnitude of the weights’ update corresponds to the learning
rate, another tunable parameter of neural networks (Goodfellow,
et al., 2016). In this work, the classification and regression
networks use negative log likelihood and mean absolute error
loss functions, respectively. In convolutional neural networks, the
hidden layers apply a convolution to the input volume which
maps neighborhoods of the input volume into lower dimensions.
Convolutional networks have been leveraged successfully to
classify images, commonly referred to as ‘computer vision’
(Krizhevsky, et al., 2012). This construction is ideal for
periodic structures because convolutions capture the local
characteristics of the crystal structure.

For all CNNs described in this work, datasets are randomly
split by 75% training, 10% validation, and 15% testing sets. The
training process involves the CNN iteratively experiencing the
entire training dataset, and updating (learning) through
backpropagation, then experiencing the validation set to
benchmark the model’s progress at that point in training.
Each of these iterations is a single training ‘epoch’ and the
number of training epochs used to train the CNN is a tunable
model parameter. The validation set does not further train the
network as network weights are not updated after experiencing
the validation set. The testing set consists of samples which the
network did not experience during training or validation. The
trained network is applied to the testing set to estimate the
network performance on out-of-sample populations of data;
that is, data the network has never experienced. The training,
validation, and testing datasets consist of crystal structure files for

FIGURE 1 | (A) Histogram of materials in the SuperCon dataset by TC (bin width = 2 K). Blue, yellow, and red correspond to ‘Low-TC’, iron-based, and cuprate
superconductors, respectively. (B) Classification model performance as a function of a temperature threshold (TTHRESH) which partitions materials into two classes:
above and below TTHRESH. Low-Tc is defined as superconductors with TC < 40 K.
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all compounds and their corresponding ground truth labels (e.g.,
experimentally measured critical temperature). In addition to the
number of training epochs, tunable model parameters include the
activation and loss functions, number of hidden layers, and
number and type of atom features.

There are two main hazards regarding modeling with neural
networks: overtraining and overfitting. Overtraining occurs when
the network learns the gross features of the dataset but continues
training and therefore ‘learns’ from noise in the dataset; an
undesirable outcome as the network loses generalizability
(Tetko, et al., 1995). Overtraining is avoided by halting
training prior to network convergence; this is accomplished by
examining network performance on a validation dataset after
each epoch of training. After some number of epochs, validation
loss (model error) will stop decreasing indicating the network’s
performance on data it has not experienced is no longer
improving. Overfitting occurs when the complexity within a
network exceeds that required to model the function; in
particular, predictive ability of neural networks may decline
with increasing internal degrees of freedom (Andrea and
Kalayeh, 1991). CGCNN already employs dropout, whereby
elements of the input tensor are zeroed out with probability of
0.5; dropout is thought to reduce overreliance on particular
features of training data thereby reducing overfitting (Hinton,
et al., 2012). Additionally, benchmarking on number of hidden
layers and atom features is used to determine the minimum
complexity required for the CNN to model the dataset.

Representation of Off-Stoichiometric
Compounds
Over two-thirds of the SuperCon database, ~19,500 entries, have
off-stoichiometric chemical compositions due to the varying
substitutions and charge doping often required to elicit
superconductivity; this is especially prevalent among the
higher TC materials. In general, the Materials Project does not
contain all possible doping combinations or fractions; therefore,
in the case an off-stoichiometric chemical composition does not
correspond with an entry in the Materials Project, a ‘parent’
composition is determined heuristically and used to query the
Materials Project instead. After a corresponding entry in the
Materials Project is located, the structure file is corrected to reflect
the true chemical composition. Further, for some entries, the
SuperCon database contains experimentally determined lattice
parameters which are used to correct atom coordinates and unit
cell volume in the periodic crystal structure file. This practice
increases the fidelity of the periodic structure file, especially in
cases where a structure is substantially affected; for example,
YBa2Cu3O7-x, whose structure and superconductivity properties
vary with oxygen fraction (Conder, 2001).

A probabilistic approach is employed to represent off-
stoichiometric compositions to the neural networks. For an
off-stoichiometric compound, the structure file generated will
indicate multiple atom species at a single atom site, each with
fractional occupancies that sum to the total coefficient of that site.
In the data loading process, the crystal structure file is translated
into the crystal-graph representation which requires the one-hot

encoding of atom and neighbor features; this translation is
complicated by the presence of multiple atom species at a
single atom site. Specifically, multiple group and period
numbers to describe multiple atom species cannot be
represented in a one hot encoded vector. This is overcome by
the following process: One-hot encoded vectors are instantiated
to describe all doping species and parent species. For each atom
site in the crystal, the possible dopant(s) and parent species at that
site are identified. The one-hot encoded vectors for each species
are scaled by the total fraction of the species at that atom site and
then the vectors are added together. This results in a vector which
contains the probability of each atom feature at each atom site.

RESULTS

Classification Models
Several classification models are trained to classify whether a
given compound is a superconductor and whether a given
compound has a critical temperature greater than a threshold
critical temperature (TTHRESH). All classification models are
trained on a dataset of ~22,000 compounds; ~10,000
superconductors and ~12,000 non-superconductors, including
~200 non-superconducting copper oxide containing compounds.
Non-superconducting compounds are considered to have zero
TC. The non-superconducting compounds are a diverse set of
compounds collected from the Materials Project and cross-
referenced with the SuperCon dataset to ensure no known
superconductors are included. Although the compounds in the
‘non-superconductor’ category are ensured not to be known
superconductors, there is a risk that undiscovered
superconductors are inadvertently included in this class. The
incidence of this is likely extremely small; a project which
investigated over 1,000 expert-proposed superconductor
candidates observed zero resistivity in just ~3% of candidates
(Hosono, et al., 2015).

Classification network performance is measured by precision,
accuracy, recall, and F1 score. These performance metrics are
defined by the following formulae:

accuracy � TP + TN
TP + TN + FP + FN

(1)

precision � TP
TP + FP

(2)

recall � TP
TP + FN

(3)

F1 � 2 ×
precision × recall
precision ÷ recall

(4)

where TP, TN, FP, and FN represent number of true positive, true
negative, false positive, and false negative results, respectively. In
terms of the classification task of categorizing a material either as
a superconductor or a non-superconductor these metrics are
described by the following: A false positive is defined as the model
classifying a compound as a superconductor when it is not
actually one. Accuracy reflects the proportion of materials
classified correctly. Precision is the proportion of model-
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classified superconductors which actually are superconductors
and recall is the proportion of superconductors which the model
identified. F1 score is the harmonic mean of precision and recall.
Depending on the intended use of the trained neural network it
may serve to optimize some parameters at the expense of the
others; in training networks to search large materials databases a
model with higher precision would be preferred because it may
have fewer false positives.

Classification models are trained to determine whether a
compound has critical temperature greater than a threshold
temperature, TTHRESH. Performance measures for these models
as a function of TTHRESH are shown in Figure 1B; baseline
accuracy is the accuracy of a classification model that always
selects the most populous category (i.e. always classifies
compounds as having TC < TTHRESH). For TTHRESH = 0K,
baseline accuracy is equivalent to the proportion of
compounds in the training dataset which are non-
superconductors. In the range of TTHRESH from 0 to 15 K, all
four performance metrics score ~0.90 or higher with the best all-
aroundmodel achieving accuracy of 95%. The TTHRESH = 20, 30 K
models also perform well with all metrics >0.85 and may be the
most useful to the goal of identifying high-TC superconductors.
Accuracy increases slightly as TTHRESH increases; this is an artifact
of the proportion of compounds with TC < TTHRESH increasing
from 55% at 0K to 87% at 50 K, which allows the model to
improve by simply classifying most compounds as having TC
below TTHRESH. Additionally, as TTHRESH increases, recall
increases in line with precision decreasing. This trend is due
to the increasing proportion of superconductors in the above-
TTHRESH category which are cuprates. When nearly all
superconductors in the above-TTHRESH category are cuprates,
the classification model tends to classify most cuprate
superconductors, even those with TC far below TTHRESH, as
having TC > TTHRESH, resulting in reduced precision. Due to
the varying TTHRESH, the training, testing, and validation datasets
are necessarily all different and therefore there is some random
variation of the performance metrics of these classification
models.

Classification model performance as a function of training
dataset size and several hyperparameters are benchmarked to
determine optimal model hyperparameters. Performance as a
function of these parameters can be found in Supplementary
Figures S1, 2. SI Figure 1A shows model performance generally
increasing as training dataset size increases. Model performance
does not improve between training dataset sizes of 12,000 to
16,000 and even briefly declines. This implies additional data
beyond 16,000 may not improve model performance
substantially unless the additional data introduced new
information to the networks. This might be achieved through
higher quality datasets or the addition of new superconductor
classes. For training dataset sizes below 8,500 it is difficult to
quantify performance metrics and recognize model over-fitting as
there are too few superconductors in the testing dataset and recall
tends toward 0 (classifying all compounds as having TC <
TTHRESH ). SI Figure 1B shows model performance as a
function of training batch size. Batch size is an important
model parameter as it affects model convergence and

generalizability. Larger batch sizes have been shown to reduce
deep learning model’s ability to generalize and may tend to
converge to non-optimal minima (Keskar, et al., 2017).
Benchmarking the classification model performance indicates
batch size between 25–50 results in best performance along all
metrics. SI Figure 1C shows model performance with respect to
the number of convolution layers. After four convolution layers,
model performance does not improve by increasing the number
of convolution layers. This indicates between 2–3 convolution
layers is sufficiently complex to model the datasets. Model
benchmarking of performance with respect to atom features is
shown in SI Figure 2. Benchmarking finds, including block (s, p,
d, f) in the atom feature vector results in the largest marginal
increase in performance, second only to including all atom
features. Interestingly, the atom feature valence electrons was
ranked lowest in terms of performance improvement, indicating
the valence orbital as opposed to the number of electrons is
predictive. No combination of 3 or more atom features out-
performs simply using all atom features. This is likely a result of
neural networks being able to disregard (de-weight) information
that is not important.

Classification models which can identify superconducting
compounds with predictive accuracy, despite learning from
only periodic crystal structure and chemical composition, are
achieved and can be used to filter candidate compounds in
materials databases. Since these models give no indication of
critical temperature, CNNs are trained to accurately estimate
critical temperature.

Regression Models
The second component of building a pipeline to search materials
databases for new classes of high-TC superconductors is a
regression model which can estimate TC with predictive
accuracy. Performance metrics for regression models are R2

value and mean absolute error (MAE). R2 measures the test
set correlation betweenmeasured TC andmodel-predicted TC and
MAE is calculated by the formula:

MAE � 1
N

∑
N

1

∣∣∣∣∣∣∣∣∣
Tmeas − Tpred

∣∣∣∣∣∣∣∣∣
(5)

where N is the size of the test set, and Tmeas and Tpred correspond
to measured TC and model-predicted TC, respectively.

Regression models are trained on a dataset of the periodic
crystal structure file and experimentally measured TC for over
10,000 superconductors from the SuperCon database. No non-
superconducting materials are included in these sets. Figure 2A
shows a regression model trained on all superconducting
materials which achieves R2 ≈ 0.92 and MAE = 5.6. Figures
2B–D show model predicted TC vs. measured TC for regression
models trained on only copper-oxide containing superconductors
with TC > 10K, Fe-based superconductors with TC > 10 K, and
superconductors with TC < 40 K (low-TC) which fall into neither
of the other two categories. Although visually, in Figure 2D TC =
20 K is a more natural cutoff for the Low-TC category, the
compounds in the low-TC class with TC > 20 K include the
phonon-mediated diboride superconductors, Mg1-xMxB2 (M =
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FIGURE 2 | Regression model performance in predicting TC, y = x shown as a solid, red line. (A) Predicted vs. measured TC for a regression model trained on a
combined dataset of cuprates, Fe-based, Low-TC, and other compounds. R2 ≈ 0.92. (B) Predicted vs. measured TC for a regression model trained on cuprate
superconductors only, model achieves R2 ≈ 0.82 on cuprate-only test set. The cuprate-only model’s predicted TC for Fe-based and Low-TC compounds correlate poorly
with measured values. (C) Predicted vs measured TC for a regression model trained on Fe-based superconductors only, model achieves R2 ≈ 0.83 on Fe-based-
only test set. The Fe-based-only model’s predicted TC for Low-TC and cuprates correlates poorly with measured values. (D) Predicted vs. measured TC for Low-TC
regressionmodel trained on Low-TC superconductors only, achieves R

2 ≈ 0.89 on Low-TC only test set. The Low-TC only model has no predictive ability on the Fe-based
and cuprate test sets.

FIGURE 3 | Atom feature importance in terms of regression model performance, as measured by R2 and MAE calculated on the test set, for individual-class
models. The x-axis indicates which atom feature, in addition to group and period, is included in the model. In each of the subplots, the x-axis is in order of increasingly
good performance. The right-most x-axis category, ‘all features’, is the category with best performance for all three models. (A) Cuprate model performance vs atom
features. (B) Fe-based model performance vs atom features. (C) Low-TC model performance vs. atom features.
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Al, C, Co, Fe, Li, Mn, Ni, Si, Zn) (Buzea and Yamashita, 2001) and
Ba1-xKxBiO3 (Yin, Kutepov, and Kotliar, 2013). Despite the
unusually high TC’s these superconductors are adequately
modeled by the Low-TC trained network, and indicates that
our networks are picking them out as being similar in
mechanism as other low-Tc materials. The cuprate, Fe-based,
and low-TCmodels achieve R2 ≈ 0.82 and MAE = 8.0 K, R2 ≈ 0.83
and MAE = 6.4 K, and R2 ≈ 0.89 and MAE = 1.6 K, respectively.
Note that the range of TC for the Low-TC model is 0–40 K while
the range of possible TC for the cuprate and Fe-based models is
10–140 K; this difference accounts for the much lower MAE for
the low-TC model.

The combined model’s R2 value by material class is 0.82,
0.73, and 0.81 for the cuprate, Fe-based, and Low-TC classes,
respectively. This indicates that individual classes are better
modeled by the individual-class models than by the combined
model. Model bias, represented by the distribution of relative
errors, for each of the four regression models is shown in SI
Figure 3. Each of the models is slightly biased toward
underestimation of TC with the cuprate-only model being
the least biased. Figures 1B–D also indicate how well each
of the individual models can predict TC for the other two
classes by plotting the individual models’ predicted TC for a
static test set. In general, the individual class models have little
to no predictive power for the other two classes. The cuprate
model significantly overestimates the Low-TC

superconductors and a large portion of Fe-based
superconductors are estimated to have TC near 0 K.
Similarly, the Fe-based model overestimates the Low-TC

superconductors with large variations in its predictions of
TC for cuprates. The Low-TC model demonstrates no
predictive power for the other two classes; it estimates most
cuprate and Fe-based superconductors to have TC < 10 K.

Unlike decision-tree based models, where features can be
ranked by their marginal improvement to the model
performance, it is not clear how to determine which features
the neural networks relied upon most. However, the relative
importance of the atom features may be gleaned by
benchmarking model performance on different atom feature
vectors. Performance is benchmarked for each of the
individual-class models in an attempt to understand the
different mechanisms at play in each class. Figure 3 contains
performance of the cuprate, Fe-based and Low-TC models for
various atom feature vectors. The x-axis indicates which atom
feature, in addition to group and period, is included in the crystal-
graph used to train the models. For each of the individual-class
models, those trained using only group and period still perform
well and the best performance in each class was the model trained
using all nine atom features. Additionally, no combination of
three or more features performs better than using all nine atom
features; this is likely due to the CNN’s ability to disregard
unhelpful features through de-weighting.

Figures 3A–C indicate the single atom feature corresponding
to best model performance in each of the cuprate, Fe-based, and
Low-TC models. The Low-TC model best single feature was
covalent radius, although models trained with this feature only
barely outperformed the two next-best features: valence electrons

and first ionization energy. The slightly increased relative
importance of covalent radius and valence electrons reflect
long standing experimental results. Among elemental, alloy
and some other compound superconducting materials, TC is
proportional to atomic volume by the relation TC ~ Vx, where
x = 4,5 (Matthias, 1955), and TC is indirectly proportional to ionic
mass: TC ~ 1/

���
mI

√
(Reynolds, et al., 1951). In second place,

valence electrons reflect the finding that 2 to 8 valence electrons
per atom are generally required for superconductivity in this class
with TC of non-transitionmetals increasing for increasing valence
electrons per atom and TC peaking at 3, 5, and 7 valence electrons
per atom in transition metals (Matthias, 1955). In the Fe-based
model, the 6 best single atom features perform similarly;
therefore, for the Low-TC and Fe-based models it is best to
include group and period only in the atom feature vector for
increased generalizability.

The cuprate regression model is an exception; the single
best feature, first ionization energy, performs substantially
better than models trained using other atom features.
Figure 4 examines the relationship between the sum of
first ionization energies of the cations and TC. The
maximum TC observed increases with increasing ionization
energy; variation of TC within the same ionization energy is
due to other factors including oxygen reduction. It has been
determined previously for the Buckminster fullerides, A3C60,
that decreases in the sum of ionization energies of the alkali
atoms corresponds with increasing TC (Hetfleisch, et al.,
2015), so in the cuprates trends in ionization energy have
the opposite effect. This likely reflects that the fullerides are
electron-doped in nature, whereas the cuprates are almost
exclusively hole doped, though it may also reflect different
underlying mechanisms. We note that for both the iron and
cuprate superconductor families, first ionization energy and
electronegativity are in the best performing individual
features. This is in agreement with chemical intuition,

FIGURE 4 | TC vs. sum of first ionization energies of cations in cuprate
superconductors. Maximum attainable TC increases with sum of ionization
energy of the cations. Red, dashed line indicates upper limit on TC vs.
ionization energy.
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which has identified metal ligand covalency as a key
ingredient in high-TC superconductors.

Benchmarking of regression model parameters including
training dataset size, epochs of training, and the number of
convolution layers is carried out to optimize model
performance. Figure 5A shows the combined regression
model performance as a function training dataset size to
increase from sizes of 0–4000 and then plateau between
4000 and 8000. Similar to the classification model, this
indicates simply training with more data may not increase
predictive accuracy. Figure 5B similarly indicates a point of
diminishing returns with respect to the number of training
epochs; model training is halted prior to 120 epochs to reduce
the potential loss of generalizability from overtraining.
Figure 5C finds the optimal number of network
convolution layers to be five, an increase over the optimal

number for the classification networks indicating the increased
complexity of modeling the continuous variable TC over a
binary classification problem (larger number of layers will
eventually lead to overfitting/memorization).

The combined TC regression model trains on a dataset of
superconductors only. An interesting finding, therefore, is that
when posing a test set of 2500 superconductors and non-
superconductors, for which TC is set to 0, the regression
model distinguished between the two sets extremely well. This
is surprising because all of the materials the regression network
experiences in training have TC > 0 K. In particular, the combined
regression model classifies whether a compound has TC > 30 K,
with greater accuracy than the classification model described
previously. Figure 6 details the classification ability of the
combined regression model as a function of TTHRESH.

As previously mentioned, each superconductor from the
SuperCon database is associated with 173 material-specific
attributes and attributes for which there are sufficient data are
used to train a regression network. The logarithm of Debye
temperature and coefficient of electronic specific heat, and
Néel temperature are modeled by CNNs with some success: R2

is roughly 0.68 for these models despite having fewer than 800
and as little as 400 materials in the training dataset. These models
indicate a wider use of CNNs beyond predicting only TC.

Search for New Superconductors in the
Materials Project
Ultimately, the purpose of models which accurately classify
superconductors and predict material-specific properties is to
select candidate materials with desirable properties, in this case
high TC. As a proof of concept, we use the classification and
regression models, combined into a single pipeline, to search for
candidate high temperature superconductors among the 130,000
unique compositions in the Materials Project. Around half of all
candidates with predicted TC >25 K were copper-oxide
containing or Fe-based; as the training dataset consisted of
largely these two classes, in the TC >25 K range, it is not
surprising that the networks mostly found candidates within
these categories. The overall positivity rate is 3.7% indicating
the pipeline is not as biased toward a positive classification as

FIGURE 5 | Combined regression model performance, measured by R2 and MAE, as a function of various model parameters. (A) Performance vs. training dataset
size. (B) Performance vs. number of training epochs. (C) Performance vs. number of convolution layers. Five layers optimizes both performance metrics.

FIGURE 6 | Performance of all-class TC regression model when tested
on a dataset of ~2500 superconductors and non-superconductors. Non-
superconductors are assumed TC = 0. Baseline accuracy is the calculated
accuracy for a model which always recommends the classification of the
most populous category.
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might be expected for a model trained by a dataset of 40%
superconductors and 60% non-superconductors. Just over 2%
(~2800) compounds in the Materials Project database are
predicted to have TC > 25 K and are not copper-oxide
containing or Fe-based; 85% of this group contains oxygen,
not surprising given the distribution of the training data.
Figure 7 shows the distribution of candidate materials, with a
close view of potential new classes of high temperature
superconductors.

We examine the pipeline’s candidates with predicted TC >25 K
and which do not belong to established superconductor classes
and propose several high-TC candidates in Table 1. The most
numerous group of candidates are the transition metal oxides
containing Ni, Pd, Ru, and Ag. This should motivate advances in
synthesis to higher oxygen partial pressures necessary to stabilize
the high oxidation states of Ru, Pd, etc, found in these predicted
materials. Interestingly, heavier transition metal oxides
containing Ta, Re, Os, and Ir also make up a large fraction of
these candidates. Many of these candidates appear analogous to
cuprate and pnictide superconductors; crystal structure and
simple chemical patterns such as valence electrons, charge
balancing, and stoichiometry were likely identified by the
neural networks. On this basis, it is natural to ask why
superconductivity has not, to date, been observed in these
materials; one distinct possibility is that it has not (yet) been
possible to prepare sufficient quality and electron-count
controlled versions. This is supported by the nickelate
candidates: ANiO2 (A = Mg, Ca, Ba), which relate to the
recent observation of zero resistivity between 9 and 15 K in
the rare-earth infinite-layer nickelate, Nd0.8Sr0.2NiO2 (Li, et al.,
2019), even though the materials themselves have been known for
decades.

Ruthenium oxides are the next most numerous group; in
addition to candidates with cuprate analogs, the triple
perovskites Ba3MIrRuO9 (M = Li, Na, Mg, Ni, Zn, Bi, In) and
Sr2Y1+xCe1-xRuCu2O10 (x = 0, 0.5), with alternating copper oxide

and ruthenium oxide layers are interesting candidates.
Superconductivity in the heavier transition metal oxides is not
unprecedented although it has not yet been observed at the high
model-predicted temperatures herein. The layered silver oxide,
Ag5Pb2O6, superconducts at very low temperatures (Yonezawa
and Maeno, 2005) and in the pyrochlore oxides RbOs2O6 and
Cd2Re2O7 at 6.3 and 1 K, respectively (Hanawa, et al., 2001;
Yonezawa, et al., 2004). Also surprising is the prediction of
intermetallic oxides and metalloid candidates including silicon
oxide and germanates. While it is unlikely the stoichiometric
compositions are superconducting, it is possible various
experimental methods including substrates, pressure, and
charge doping can bring about or enhance a phase transition
in these candidate classes if they can be successfully electron
doped (a formidable chemical challenge itself) (Chamorro and
McQueen, 2018).

DISCUSSION

Convolutional neural networks are leveraged to model
superconducting critical temperature and screen the Materials
Project for new families of high TC candidate materials. Crystal
structures are represented to the CNNs as undirected graphs and
no explicit chemical attributes beyond composition are required
to achieve good performance. The best regression model can
predict critical temperature with an average absolute error of
5.6 K, with slight bias toward underestimation. This regression
model also accurately classifies whether a crystal has TC above a
threshold value with F1 >0.94 for TTHRESH = 25 K; both
superconductors and non-superconductors are accurately
classified by this model despite it training on a dataset of
superconductors only. Combining classification and regression
models into a pipeline and searching the Materials Project crystal
structure database yields 2800 superconductor candidates with
predicted TC >25 which are not copper-oxide containing or Fe-

FIGURE 7 | Distribution of model-predicted candidate superconductors. Inset figure describes overall distribution of candidates with a closer view of potential new
classes of high temperature superconductors.
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based. The significant variety in predicted candidates combined
with the prediction of cuprate and pnictide analogs is indicative of
the generalizability of these models. These models appear to be
especially useful for uncovering high-TC superconductivity in
perovskite structures as small changes in stoichiometry or
reduction can generate significant changes in TC and other
properties. While it is unknown whether any of the candidate
materials are superconducting, similar models may be trained on
individual classes of superconductors to generate phase diagrams
and determine optimal substitution elements and ratios to
optimize TC or other attributes in these materials.

Although accounting for crystal structure is a step forward, future
iterations of these models would be improved by increasing the
complexity of the crystal-graph representation to account for various
substrates, topologies, and pressure often used to bring about
superconductivity or enhance TC. As the current record for high-
TC superconductivity is thought to have been achievedwith hydrogen
rich mixtures (e.g. H3S, YH10) under extreme pressure, not

accounting for pressure specifically may limit future models
(Drozdov, et al., 2019). These attributes could be incorporated
into the models used herein implicitly by adjusting compounds’
structure and stoichiometry to reflect the behavior of the structure
under high pressure, for example, or to reflect the presence of a
substrate. Alternatively, these parameters could be represented
explicitly as a binary (pressure, no pressure), categorical, or
continuous variable. The crystal-graph is ultimately three tensors
of numbers and so may be made arbitrarily complex to account for
these important experimental variables. Either approach requires a
richer dataset thanwhat is currently available, although efforts toward
this goal are in motion.

Although the crystal-graph representation is powerful and
flexible there are drawbacks to artificial neural networks more
generally. Data loading from crystal structure files and model
training require significant computational time and memory.
Despite this, the pre-trained models themselves can screen large
databases quickly with the majority of time and memory being used

TABLE 1 | Superconductor candidates classified by the model with Materials Project reference number, model-predicted TC, and crystal system. Number of model
proposed candidates with TC >25 K in parenthesis.

Composition Reference No. TC, PRED Crystal System

Nickelate (n = 271) – –

MgNiO2 mp-1239335 30 Triclinic
CaNiO2 mp-1147749 44 Tetragonal
BaNiO2 mp-1147749 74 Orthorhombic
SrNdNiO4 mp-1217981 31 Tetragonal
Ba3NiO4 mp-27957 76 Trigonal
YBa2Ni3O8 mvc-1132 76 Tetragonal
– – – –

Palladate (n = 28)
Ba2Pd2O5 mp-984976 26 Tetragonal
BaY2PdO5 mp-9656 29 Tetragonal
BaLn2PdO5 – – Tetragonal
(Ln = Ho, mp-9785, 38 –

Tb, mp-9760, 28 –

Tm, mp-1187634, 25 –

Nd) mp-8514 23 –

– – – –

Ruthenium-Oxide (n = 158) –

Ba2RuO4 mp-1025337 31 Tetragonal
Sr2Y1.5Ce0.5RuCu2O10 mp-1218787 38 Tetragonal
Sr2CeYRuCu2O10 mp-1218854 32 Tetragonal
Sr2EuCeRuCu2O10 mp-1218883 31 Monoclinic
Sr2La2RuCuO8 mp-1218695 30 Tetragonal
Ba2RRuO6 mp-12729 30-72 –

Ba3MIrRuO9 – – –

M = Li, Na, Mg, Ni, Zn, Bi, In OR mp-1228273 29-64 Mostly cubic, tetragonal
M = Yb, Tm, Er, Tb, Ho, Sm, Nd, In, Gd, Dy, Lu, Pr mp-1228196 49-67 –

– – – –

Other Group 5 Transition Metal Oxide (n = 408) – –

Ba4AgAuO6 mp-556896 80 Orthorhombic
Ca2TaAgO6 mvc-4204 50 Monoclinic
Mg2TaAgO6 mvc-4152 41 Monoclinic
– – – –

Group 6 Transition Metal Oxide (n = 691) – –

Sr2CuOsO6 mp-546295 47 Tetragonal
Sr2NiOsO6 mp-19119 35 Tetragonal
Sr3ZnPtO6 mp-673047 25 Trigonal
– – – –

Non-Oxide (n = 1153) – –

AcNb3 mp-1183255 27 Cubic
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to load the crystal structure data. Another drawback of artificial
neural networks is interpretability; it is not clear what features of the
superconductors the models picked up on to predict TC or classify a
material as a superconductor or not. Due to this, neural networks
may not be the best choice of model if the goal is to glean physical
insights. This is especially difficult, in light of the models performing
similarly whether explicit atom features (valence electrons, block,
etc.) are included in the crystal-graph representation or not.Methods
to overcome this are in development; image classification tasks can
be interpreted by scores on each pixel on a predicted image with the
score indicating how much that pixel contributed to the network’s
decision (Lundber and Lee, 2017). A similar scoring may be
implemented for the crystal-graph and visualized to determine
which aspects of the graph were most important in the model’s
prediction.
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