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Epigenetic changes predisposing to type 2 diabetes in 
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Epidemiologic studies have demonstrated an association between intrauterine growth retardation 
and a greater risk of chronic disease, including coronary heart disease, hypertension, stroke, and 
type 2 diabetes in adulthood. An adverse intrauterine environment may affect both growth and 
development of the organism, permanently programming endocrine and metabolic functions. 
One of the mechanisms of programming is the epigenetic modification of gene promoters 
involved in the control of key metabolic pathways. The aim of this review is to provide an overview 
of the experimental evidence showing the effects of early exposure to suboptimal environment 
on epigenome. The knowledge of the epigenetic markers of programming may allow the 
identification of susceptible individuals and the design of targeted prevention strategies.
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Epigenetic mechanisms are commonly associated to gene 
 silencing, genomic imprinting and transcriptional regulation of 
tissue-specific genes during cellular differentiation (Schübeler et al., 
2000). The epigenetic control of gene expression is based on modula-
tion of chromatin structure and accessibility to transcription factors 
(Figure 1). This type of control is achieved by multiple mechanisms 
such as methylation–demethylation of cytidine–guanosine (CpG) 
sequences in the promoter regions, acetylation–deacetylation of 
lysine residues of core histones in the nucleosome and presence 
of microRNA molecules which bind to complementary sequences 
in the 3′ end of mRNA and reduce the rate of protein synthesis 
(Goldberg et al., 2007). CpG-rich regions of DNA reside in 60% 
of promoters utilized by human RNA polymerase II and are often 
found in association with housekeeping and tissue-specific genes. 
Transcriptionally active chromatin is characterized by unmethyla-
tion of CpG sequences, which permits an open structure of the 
chromatin, thus allowing access to transcription factors. The same 
effect is given by acetylation of lysine residues of histones, which 
decreases their binding to DNA (Wolffe and Matzke, 1999).

Major epigenetic “programming,” involving the removal of epi-
genetic marks in the nucleus, followed by establishment of a dif-
ferent set of marks occurs physiologically upon fertilization when 
many gametic marks are erased and replaced with embryonic marks 
important for early embryonic development and toti- or pluripo-
tency. Major programming also takes place in primordial germ cells 
in which parental imprints are erased and totipotency is restored 
(Morgan et al., 2005).

One of the mechanisms that trigger programming and, hence, 
epigenetic changes, is intrauterine malnutrition (Cianfarani et al., 
1999), which can be induced by several causes affecting the placental 
transfer of nutrients from mother to fetus (Fowden et al., 2006). To 
explain the relationship between prenatal undernourishment and 
postnatal risk of metabolic disease, Hales and Barker proposed the 
“thrifty phenotype” hypothesis (Hales and Barker, 1992). According 

IntrauterIne programmIng: causes and 
consequences
Early life events may play a critical role in determining the suscep-
tibility to chronic diseases (Gluckman et al., 2005). Epidemiological 
evidence suggests a close relationship between the exposure to a 
suboptimal in utero environment, whose consequence is intrau-
terine growth retardation (IUGR), and the development of insu-
lin resistance, type 2 diabetes, hypertension, hyperlipidemia, and 
cardiovascular disease in adult life (Barker et al., 1989; Robinson 
et al., 1992; Ravelli et al., 1998).

Lucas (1991) introduced the concept of programming, based on 
the observation that early diet influenced brain development and 
growth in preterm babies. This concept was subsequently expanded 
to include the long-term effects of in utero programming induced 
by maternal cues on metabolic and endocrine functions of the 
fetus. The programming process occurs during “critical periods” 
of embryo–fetal life characterized by high cell proliferation rate in 
the developing tissues and may involve structural and functional 
changes in genes, cells, tissues, and even whole organs. This ability of 
the organism to change structure and function in response to envi-
ronmental signals is named “developmental plasticity” (Gluckman 
and Hanson, 2004). Such plasticity permits a range of phenotypes 
to develop from a single genotype and is finalized to allow the 
organism to match its environment (Gluckman et al., 2009).

“Developmental plasticity” acts through epigenetic changes in 
gene transcription, alterations in tissue differentiation, and changes 
in homeostatic processes (Gluckman and Hanson, 2004). Epigenetic 
changes are established in early life and modulate gene expression 
during development, thus mediating the adaptation of the organ-
ism to the environment (Gluckman and Hanson, 2004; Gluckman 
et al., 2008). However, when environmental conditions change a 
mismatch may occur, rendering the organism less adapt to cope to 
the new environmental conditions (such as postnatal overfeeding), 
eventually leading to disease (Gluckman et al., 2009).
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of histone H3 on lysine 9 (H3K9), lysine 14 (H3K14), and lysine 
18 (H3K18) are present at birth (MacLennan et al., 2004). These 
features persist up to day 21 of postnatal life, suggesting a perma-
nent change in hepatic gene expression. Fu et al. (2004) showed 
that the hyperacetylation on histone H3 in the liver of IUGR rats 
occurs in association with decreased nuclear protein levels of his-
tone deacetylase 1 (HDAC1) and HDAC activity. These site-specific 
changes in histone H3 acetylation alter the histone association with 
the promoter regions of PPAR-gamma coactivator (PGC-1) and 
carnitine–palmitoyl-transferase I (CPTI), two genes that we have 
previously demonstrated to be persistently altered in the IUGR rat. 
PGC-1 expression is increased whereas CPTI expression is reduced in 
IUGR rats who will develop diabetes (Lane et al., 2001, 2002). PGC-1 
is a transcriptional coactivator that mediates hepatic glucose produc-
tion by controlling mRNA levels of key gluconeogenic enzymes, such 
as glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, and 
fructose-1,6-bisphosphatase (Yoon et al., 2001). CPTI is a part of 
the carnitine shuttle and is considered to be a rate-limiting trans-
porter in mitochondrial fatty acid β-oxidation (McGarry and Brown, 
1997). Altered mRNA levels of these genes characterize the IUGR 
liver at birth, and these changes persist postnatally. Finally, these 
epigenetic modifications may be gender specific as at day 21, the 

to the “thrifty phenotype” model, the growing fetus exposed to 
nutritional deprivation adopts at least two strategies to aid survival. 
First, it diverts nutrients to the brain to preserve brain growth at the 
expense of body growth and the development of other organs such 
as pancreas, liver, and muscle. Second, metabolic programming 
occurs in a manner that is beneficial to survival under conditions 
of poor postnatal nutrition. However, if the organism is born into 
conditions of adequate or overnutrition, then this may conflict with 
the earlier programming and insulin resistance, and, later on, type 
2 diabetes, may result (Geremia and Cianfarani, 2004).

experImental evIdence of epIgenetIc programmIng
Several animal models have been created to reproduce a poor uterine 
environment leading to fetal undernourishment and, consequently, 
developmental programming. Most animal models of IUGR are 
based on uteroplacental insufficiency (Simmons et al., 2001), which 
limits the supply of substrates to the fetus, or suboptimal maternal 
nutrition (Armitage et al., 2004).

Altered intrauterine milieu associated with uteroplacental 
( placental) insufficiency affects DNA methylation and histone H3 
acetylation. In liver, increased levels of S-adenosylhomocysteine 
together with DNA hypomethylation and histone hyperacetylation 

FigurE 1 | Epigenetic mechanisms regulating gene expression. 
Transcriptionally active chromatin is characterized by the presence of acetyl 
groups (Ac) on specific lysine residues of histones in the nucleosome, which 
decreases their binding to DNA, eventually leading to an open chromatin 
structure that permits access to transcription factors (TF). In addition, 
demethylation of cytidine–guanosine (CpG) sequences in the promoter region 

(P) of actively transcribed genes allows for the binding of transcription factors 
(TF). Transcriptionally inactive chromatin is characterized by histone 
deacetylation, promoter CpG methylation (as indicated by the presence of 
methyl groups, Me), and decreased binding of transcription factors. A further 
level of epigenetic control is provided by microRNA molecules (19–22 
nucleotides in length) which bind to mRNA thus reducing the rate of translation.
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changes and the reduction in Pdx1 expression could be reversed by 
HDAC1 inhibition (islets cultured in the presence of trichostatin). 
However, as H3K9me2 accumulates, DNMT3A (a DNA methyl-
transferase) is recruited to the promoter and initiates de novo DNA 
methylation, which locks in the silenced state the pancreas, eventu-
ally resulting in diabetes (Park et al., 2008).

Exendin-4 (Ex-4), a pancreatic β-cell trophic factor, has been 
shown to reverse the silencing of Pdx-1. Administration of Ex-4 
during the prediabetic neonatal period dramatically prevents the 
development of diabetes in IUGR rats by restoring expression of 
Pdx1 to normal levels and normalizing islet β-cell proliferation rate 
(Stoffers et al., 2003). However, it is not yet known whether Ex-4 
may influence Pdx-1 epigenetics.

Raychaudhuri et al. (2008) explored epigenetic mechanisms 
underlying diminished skeletal muscle GLUT4 mRNA in a rodent 
model of IUGR obtained by nutrient restriction. GLUT4 is the 
major insulin-responsive isoform in the family of membrane-
spanning glycoproteins with the function of glucose transporters. 
At 450 days of life the female offspring demonstrated a significant 
decrease in skeletal muscle total GLUT4 mRNA concentrations. 
This gender-specific difference may originate from early develop-
mental perturbations in pancreatic β-islet cell insulin synthesis 
and secretion (Chamson-Reig et al., 2006), young females dem-
onstrating persistent postnatal hypoinsulinemia that regulates 
skeletal muscle GLUT4 transcription. No significant increase 

neonatal  pattern of H3 hyperacetylation persist only in male IUGR 
rats (Fu et al., 2004). The major limitations of these studies are the 
lack of information on the effects of the epigenetic changes on gene 
expression and the short postnatal follow-up of the study animals.

A key developmental gene whose epigenetic modulation has 
been studied to explain the intrauterine metabolic programming 
predisposing to type 2 diabetes is Pdx1 (pancreatic and duodenal 
homeobox 1). Pdx1 is a transcription factor that regulates pancreas 
development and β-cell differentiation. Reductions in Pdx1 expres-
sion in human and animal models have been shown to cause type 
2 diabetes, β-cell dysfunction, and impaired islet compensation 
in the presence of insulin resistance (Holland et al., 2005; Stoffers 
et al., 1997). Uteroplacental insufficiency causes multiple epigenetic 
changes of Pdx1 involving histone modifications, DNA methyla-
tion, and chromatin remodeling in rats (Park et al., 2008). In this 
animal model, β-cell mass is normal at birth, whilst Pdx1 expres-
sion is reduced. In adult animals, β-cell mass is markedly decreased 
and Pdx1 expression is nearly absent. The epigenetic mechanisms 
underlying these events are characterized by the progressive his-
tone H3 and H4 deacetylation, lysine 4 on histone H3 (H3K4) 
demethylation, and lysine 9 on histone H3 (H3K9) methylation in 
Pdx1 proximal promoter. All these changes lead to a silenced chro-
matin, with decreased USF-1 (a key transcription factor) binding 
and increased recruitment of histone deacetylase 1 (HDAC1) and 
its corepressor Sin3A. During the neonatal period, these epigenetic 

FigurE 2 | In utero epigenetic programming. Epigenetic programming permits a range of phenotypes to develop from a single genotype and is finalized to allow 
the organism to match its environment. When environmental conditions change a mismatch may occur, rendering the organism less adapt to cope to the new 
environment, eventually leading to disease.
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Heijmans et al. (2008) selected 60 individuals whose mothers 
were exposed to famine during the periconceptional period and 
62 individuals exposed late in gestation for at least 10 weeks. 
They studied the epigenetic status of the IGF-II gene. IGF-II 
gene is maternally imprinted and strongly epigenetically regu-
lated (hypomethylation leads to bi-allelic expression). Among 
the 60 individuals exposed to famine periconceptionally, all 
cytosine–guanine (CpG) sites of the IGF-II gene but one were 
significantly less methylated (in comparison with the same-
sex siblings). Among the 62 individuals exposed to famine late 
in gestation, no difference in IGF-II methylation was found 
between the exposed individuals and their unexposed siblings. 
They concluded that periconceptional exposure to famine is 
associated with lower methylation of the IGF-II gene 6 decades 
later (Heijmans et al., 2008). The reduced methylation of IGF-II 
may represent the consequence of intrauterine exposure to defi-
cient methyl donors supply, such as the aminoacid methionine, 
although additional contribution of other stressors such as cold 
and emotional stress cannot be ruled out. Consistent with the 
potential role of methyl donors in determining IGF-II gene meth-
ylation status is the recent observation that periconceptional folic 
acid use of the mother is related to an increased methylation 
of the IGF-II gene of the offspring (Steegers-Theunissen et al., 
2009). However, we point out that remains to be determined 
whether the changes in IGF-II gene methylation are associated 
with changes in gene expression.

The transcriptional coactivator peroxisome proliferator acti-
vated receptor γ coactivator-1 α (protein PGC-1α; gene PPAR-γ-
C1-α) is an important factor regulating the expression of genes for 
oxidative phosphorylation and ATP production in target tissues 
through coactivation of nuclear receptors (Lin et al., 2005). PPAR-
γ-C1-α shows an epigenetically regulated decrease of expression 
in muscle and pancreatic islets from patients with type 2 dia-
betes. Insulin secretion in pancreatic islets is dependent upon 
mitochondrial function and this transcriptional coactivator is a 
master regulator of mitochondrial genes: this protein can interact 
with and regulate the activities of cAMP response element bind-
ing protein and nuclear respiratory factors. It provides a direct 
link between external physiological stimuli and the regulation 
of mitochondrial biogenesis. The epigenetic modulation results 
in increased DNA methylation on PPAR-γ-C1-α gene promoter 
(Ling et al., 2008).

The highest proportion of cytosine methylation within PPAR-
γ-C1-α is found within non-CpG nucleotides. As alterations in 
the extracellular milieu, including hyperglycemia, hyperinsuline-
mia, elevated free fatty acids (FFA), and elevated cytokines can 
cause peripheral insulin resistance, Barrès et al. (2009) incubated 
human skeletal muscle from normal glucose-tolerant subjects 
with tumor necrosis factor-α (TNF-α), FFA, insulin and glu-
cose. In these experimental conditions non-CpG methylation 
was acutely increased in human myotubes by exposure to TNF-α 
or FFA. Selective silencing of the DNA methyltransferase 3B 
(DNMT3B) prevented palmitate-induced non-CpG methyla-
tion of PPAR-γ-C1-α and decreased mitochondrial DNA and 
PGC-1α mRNA. These data suggest that DNMT3B is linked to 
the acute fatty acid-induced non-CpG methylation of PPAR-
γ-C1-α promoter.

in the  methylation of CpG regions within GLUT4 promoter 
was observed in skeletal muscle of IUGR rats. On the contrary, 
hypomethylation of most CpG islands was found. In this IUGR 
model deacetylation and di-methylation of specific amino acid 
residues in the N-tail of histone 3 were identified. Taken together 
these findings indicate that epigenetic changes of histone code 
may inhibit skeletal muscle GLUT4 transcription in adult female 
IUGR rats.

Thompson et al. (2010) have recently studied DNA meth-
ylation of the whole genome in pancreatic islets of IUGR rats 
at 7 weeks of age. Using the HpaII tiny fragment enrichment 
by ligation-mediated PCR (HELP) assay, they generated a DNA 
methylation map at almost 1 million unique sites throughout the 
rat genome in normal pancreatic islet cells. Male IUGR animals 
showed a different cytosine methylation pattern in approximately 
1400 loci at 7 weeks of age. Epigenetic dysregulation occurred 
preferentially in conserved intergenic sequences, frequently 
near genes regulating processes involved in vascularization, 
β-cell proliferation, insulin secretion, and cell death. Intergenic 
sequences may represent important regulatory sites influenc-
ing local gene expression. This epigenomic dysregulation pre-
cedes the development of diabetes and probably represents a 
link between intrauterine growth restriction and development 
of type 2 diabetes in adulthood. Candidate dysregulated loci 
were investigated with quantitative assay of cytosine methyla-
tion and gene expression was tested by RT-PCR. GTP cyclohy-
drolase 1 (CGH-1) gene (a gene with a role in the endothelial 
dysfunction and in β-cell development) showed a three-fold 
reduction in mRNA expression, associated with hypermethyla-
tion at a conserved intergenic site. Hypomethylation of fibrob-
last growth factor receptor 1 (FGFR1) gene (whose signaling 
is modulated by β-cell microenvironment) was associated with 
increased mRNA expression. Proprotein convertase subtilisin/
ketin type 5 (PCSK5) gene (a gene that impairs β-cell activity 
and regulates β-cell adhesion to extracellular matrix) showed 
significantly reduced mRNA expression associated with hyper-
methylation. These findings strongly  suggest that early epigenetic 
modifications in pancreatic islets may mediate the long-term 
metabolic consequences of  exposure to suboptimal intrauterine 
environment (Thompson et al., 2010).

The epigenetic changes affecting glucose metabolism are 
reported in Table 1.

clInIcal evIdence of epIgenetIc programmIng
In humans, evidence that epigenetic changes predispose the organ-
ism to type 2 diabetes stems from the studies on the individuals 
who were prenatally exposed to famine during the Dutch Hunger 
Winter in 1944–45. This period of famine was the consequence 
of a German-imposed food embargo in the western part of The 
Netherlands toward the end of World War II during the winter of 
1944–45. As official food rations were documented, the reported 
average daily rations were 667 kcal and there was little variation 
in the percentage of calories from proteins (≈12%, of which 4% of 
animal origin), fat (19%), and carbohydrates (69%). It was dem-
onstrated that individuals exposed to famine prenatally were at 
higher risk of developing cardiovascular and metabolic diseases 
in adulthood (Lumey et al., 2007).
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LBW subjects showed similar PPAR-γ-C1-α methylation during the 
two diets. When shifted to the control diet after overfeeding, revers-
ibility of PPAR-γ-C1-α methylation was observed only in NBW. 
Epigenetic alterations observed in LBW subjects at increased risk of 
developing type 2 diabetes could reflect DNA methylation remnants 
established during fetal life, possibly affecting tissue development in 
organs relevant to type 2 diabetes pathophysiology during phases of 
active cell divisions. This study shows that the same PPAR-γ-C1-α 
CpG sites reported to be more highly methylated in pancreatic β 
cells from type 2 diabetes subjects are methylated to a higher extent 
in young and lean LBW compared with NBW subjects when studied 
during an isocaloric control diet (Brøns et al., 2010). The increased 
methylation of PPAR-γ-C1-α observed after overfeeding in NBW 
only may reflect a more widespread genome-wide response, prob-
ably part of a normal physiological response involved in the day-
to-day regulation of mechanisms influenced by the diet.

These epigenetic changes are reported in Table 1.

DNA methylation and gene expression of PPAR-γ-C1-α in human 
muscle is influenced by high-fat diet in a birth weight dependent 
manner (Brøns et al., 2010). Brøns et al. studied 26 young, healthy, 
lean men with low birth weight (LBW, <10th percentile) and 20 
subjects with normal birth weight (NBW, 50–90th percentile). All 
subjects were born at term, and the groups were matched  according 
to age and body mass index (BMI). Subjects were examined twice 
with a hyperinsulinemic–euglycemic clamp after intake of a 3-days 
control diet including 30% fat and after a 5-days high-fat diet con-
taining 50% extra calories and 60% fat. When challenged with 
high-fat diet, LBW subjects developed peripheral insulin resist-
ance and reduced PPAR-γ-C1-α and OXPHOS (the cluster of genes 
from both the nuclear and mitochondrial genomes controlling the 
mitochondrial oxidative phosphorylation) gene expression in the 
muscle. PPAR-γ-C1-α methylation was significantly higher in LBW 
subjects during the control diet. When exposed to overfeeding, 
methylation of PPAR-γ-C1-α increased in the NBW group only. 

Table 1 | The different genes whose function is linked to the development of type 2 diabetes (and its complications).

Authors Subjects Tissue Procedure gene gene function Epigenetic change

Fu et al. 

(2004)21

IUGR rats Liver Uteroplacental insufficiency PPAR-γ 

Coactivator

Transcriptional coactivator, 

controls mRNA levels of key 

gluconeogenic enzymes

H3K9 

hyperacetylation 

affecting association 

with gene promoter

Fu et al. 

(2004)21

IUGR rats Liver Uteroplacental insufficiency CPT-I Part of the carnitine shuttle, 

rate-limiting transporter in 

mitochondrial fatty acid 

β-oxidation

H3K9 

hyperacetylation 

affecting association 

with gene promoter

Park et al. 

(2008)28

IUGR rats Pancreatic 

islets

Uteroplacental insufficiency PDX-1 Transcription factor critical for β 

cell function and development

H3 and H4 

deacetylation, H3K4 

demethylation, H3K9 

methylation

Raychaudhuri 

et al. (2008)30

IUGR female 

rats

Skeletal 

muscle

Caloric restriction (50% of 

the ad libitum food intake 

through mid- to late 

pregnancy and lactation)

GLUT4 Glucose transporter (insulin-

responsive membrane-spanning 

glycoprotein)

H3K14 deacetylation; 

H3K9 methylation

Thompson 

et al. (2010)32

IUGR rats Pancreatic 

islets

Uteroplacental insufficiency CGH-1 Role in endothelial dysfunction 

(through nitric oxide synthesis) 

and β cell development

CpG hypermethylation 

in intergenic 

sequences

Thompson 

et al. (2010)32

IUGR rats Pancreatic 

islets

Uteroplacental insufficiency FGFR-1 Fibroblast Growth Factor 

Receptor; signaling modulated 

by β cell microenvironment

CpG hypomethylation 

in intergenic 

sequences

Thompson 

et al. (2010)32

IUGR rats Pancreatic 

islets

Uteroplacental insufficiency PCSK-5 Role in peptide processing and 

maturation (may impair β cell 

activity through IGF-I receptor- 

and bone morphogenetic 

protein 4-mediated pathways)

CpG hypermethylation 

in transcription start 

site

Heijmans 

et al. (2008)34

Humans 

(AGA)

Blood Periconceptional famine IGF-II Fetal growth CpG hypomethylation 

Barrès et al. 

(2009)38

Humans 

(AGA)

Skeletal 

muscle

Incubation with TNF- α, FFA, 

insulin, glucose

PPAR-γ-
C1-α

Transcriptional coactivator, 

regulator of mitochondrial genes

Non-CpG 

hypermethylation

Brøns et al. 

(2010)39

Humans (SGA 

and AGA)

Skeletal 

muscle

High fat diet, overfeeding PPAR-γ-
C1-α

Transcriptional coactivator, 

regulator of mitochondrial genes

CpG hypermethylation

References to the relative studies, subjects of the studies and type of epigenetic modifications are also indicated. IUGR, intrauterine growth-retarded; AGA, adequate 
for gestational age; SGA, small for gestational age.
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