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Clustering of proteins in higher order complexes is a common theme in biology and profoundly 
influences protein function. The idea that seven-transmembrane spanning G protein-coupled 
receptors (GPCRs) might form dimers or higher order oligomeric complexes has been 
formulated more than 20 years ago. Since then, this phenomenon has been investigated 
with many different biochemical and biophysical techniques. The more recent notion of 
GPCR heteromerization describes the specific association of two different GPCRs. GPCR 
heteromerization may be of primary importance in neuroendocrinology, as this may explain 
at least some of the functional crosstalks described between different hormonal systems. 
Importantly, many GPCR heteromers have distinct functional properties compared to their 
corresponding homomers. Heteromer-specific pharmacological profiles might be exploited 
for drug design and open new therapeutic options. GPCR heteromerization has been first 
studied in heterologous expression systems. Today, increasing evidence for the existence 
of GPCR heteromers in endogenous systems is emerging providing crucial evidence for the 
physiological function of GPCR heteromerization.
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GPCR oliGomeRs, what aRe they Good foR?
The concept of GPCR di(oligo)merization has raised considerable 
interest over the last 20 years. Supporting evidence comes form 
numerous reports using biochemical, biophysical, and functional 
assays (see Bouvier, 2001; Angers et al., 2002 for review). Whereas 
the first pioneering studies considered the clustering of one specific 
GPCR into homomers, it become rapidly evident that different 
types of GPCRs might also assemble into heteromers, thus broad-
ening the potential impact of GPCR oligomerization considerably 
(see Prinster et al., 2005; Milligan, 2009 for review). Having accepted 
that GPCR dimers exist, the question of the functional significance 
of these dimers arises.

In the case of obligatory dimers, the functional significance of 
GPCR dimers is obvious. Indeed, early studies showed that co-
expression of GABA

B1
 and GABA

B2
 subunits is necessary for the 

functional expression of the GABA
B
 receptor (Jones et al., 1998; 

White et al., 1998). Subsequently, it was shown that the GABA
B1

 
subunit binds the natural ligand whereas the GABA

B2
 subunit is 

necessary for G protein coupling and cell surface expression of the 
heteromeric complex. Similar observations have been made for 
sweet and umami taste receptors (Nelson et al., 2001, 2002). The 
issue is however more complex for non-obligatory dimers. The 
major difficulty resides in preparing pure monomeric and dimeric 
GPCR samples rather than measuring their biological function. An 
elegant way to determine the function of monomeric GPCRs was 
achieved by the reconstitution of purified β2AR in high-density 
lipoprotein phospholipid bilayer particles. Importantly, the geome-
try of these particles allows only integration of monomeric receptor 
protomers. Addition of purified heterotrimeric G proteins showed 

intRoduCtion
The seven-transmembrane spanning G protein-coupled receptor 
(GPCR) family represent in humans, with more than 800 mem-
bers, the largest family of cell surface proteins corresponding to 
about 3% of all genes. Although generally expressed at relatively 
low levels, every cell typically expresses at least one and in most 
cases several GPCRs at their cell surface. Not  surprisingly, GPCRs 
are involved in all major biological processes ranging form cell 
migration, proliferation, inflammation, immunity, etc… GPCRs 
respond to a remarkable diversity of ligands ranging from pho-
tons, to ions, metabolites, amino acids, lipids, peptides, and 
proteins. Over the last 20 years, GPCRs have been among the 
most tractable targets for the development of therapeutic small 
molecule drugs.

The canonical signaling pathway of GPCRs involves monomeric 
receptors, heterotrimeric G proteins, and various effector systems. 
Subsequently, several features have been added to this basic con-
cept. Notably, addition of GPCR interacting proteins other than 
G proteins opened the possibility of fine-tuning of signaling in a 
receptor subtype- and tissue-specific manner. Moreover, alterna-
tive, G protein-independent, i.e., β-arrestin-dependent, signaling 
pathways have been described. Further diversity has been intro-
duced by the notion that GPCRs might not only exist as monomeric 
peptides but can also cluster in dimeric or oligomeric structures. 
The current review gives a short overview of the proposed func-
tions of GPCR oligomers and discusses the biological relevance 
and participation of such complexes in functional crosstalk. In the 
second part, examples of GPCR oligomers in the neuro-endocrine 
system will be critically assessed.



Frontiers in Endocrinology | Cellular Endocrinology  February 2011 | Volume 2 | Article 2 | 2

Kamal and Jockers GPCR heterodimerization and neuro-endocrine system

and  desensitization, i.e., through activation of protein kinase A or 
C, are often involved in the integration of cellular signals (Jockers 
et al., 1998). Crosstalk may also occur at receptor-proximal levels 
through competition for a common and limited G protein pool as 
indicated in a recent study on the virally encoded BILF1 receptor 
(Nijmeijer et al., 2010). Clustering of this G

i
-coupled constitutively 

active receptor with either the chemokine CXCR4 or the histamine 
H

4
 receptor appears to sequester G

i
 proteins away from the two 

latter receptors impairing their G
i
-dependent signal transduction. 

Furthermore, potentiation of cellular signals at the level of Gβγ 
subunits has been reported in a number of studies (see Prezeau 
et al., 2010 for review). Stimulation of G

i
-coupled GABA

B
 recep-

tor is known to potentiate Ca2+ signaling of the G
q
-coupled mGlu

1a
 

receptor, in cortical neurons co-expressing both receptors (Hirono 
et al., 2001). Studies in transfected HEK293 cells confirmed this 
functional crosstalk and indicated that Gβγ subunits, liberated 
upon activation of GABA

B
 receptor, are responsible for the Ca2+ 

potentiation in the absence of any evidence of receptor heteromeri-
zation (Rives et al., 2009). Importantly, similar potentiating effects 
can be seen between other G

i
- and G

q
-coupled GPCRs suggesting 

a general mechanism of signal integration.
A further mechanism of cellular crosstalk was recently sug-

gested for the corticotropin-releasing factor receptor 1 (CRF
1
) 

and serotonin 5-HT
2
 receptors (Magalhaes et al., 2010) Cellular 

5-HT
2
 responses and serotonin-dependent anxiety were sensitized 

by CRF stimulation. Sensitization of 5-HT
2
 responses correlated 

with increased cell surface expression of 5-HT
2
 receptors, which 

are known to constitutively internalize. Interestingly this effect was 
dependent on the presence of functional PDZ domain binding 
motifs of the CRF

1
 and 5-HT

2
 receptors and intact endocytotic 

and recycling pathways suggesting a putative scaffolding function 
of multi-PDZ domain-containing proteins to facilitate recycling 
of 5-HT

2
 and CRF

1
 receptors.

Crosstalk at the level of GPCR oligomers has been demonstrated 
in several cases. For example, discovery of heteromer-specific sig-
naling pathways (Rashid et al., 2007) and heteromer-selective 
ligands strongly suggest the importance of opioid receptor (OR) 
heteromers in physiology (Waldhoer et al., 2005). Unique heter-
omer-specific cellular responses have been also associated with the 
5-HT

2A
/mGlu

2
 heteromer, which has been implicated in psychosis 

(Gonzalez-Maeso et al., 2008). By constructing chimeric recep-
tors between mGlu

2
, which interacts with 5-HT

2A
 receptors and 

mGlu
3
, which does not interact with 5-HT

2A
, the authors convinc-

ingly showed that the cellular responses were exclusively dependent 
on the formation of 5-HT

2A
/mGlu

2
 heteromers.

Collectively, these data show that functional crosstalk may occur 
at different levels of cellular signaling and trafficking that may or 
may not depend on GPCR heteromerization. The examples pre-
sented in the chapter “Examples in the neuro-endocrine system” 
will be analyzed in respect of the molecular level of crosstalk.

BioloGiCal siGnifiCanCe of GPCR heteRomeRization – 
CRiteRia
Evidence for the formation of GPCR heteromers is mostly based 
on observations made in transfected cell lines raising the question 
of the biological significance of these complexes. Nevertheless, an 
increasing number of articles provide evidence of GPCR heter-

that G protein activation was as efficient as in intact cells (Whorton 
et al., 2007). Similar conclusions were drawn by two further studies 
using rhodopsin as model receptor (Bayburt et al., 2007; Ernst et al., 
2007). These studies show that monomeric GPCRs are sufficient 
for G protein activation leaving the question of the function of 
GPCR dimers unanswered.

The role of GPCR dimer formation is clear in non-obligatory 
heteromers with distinct functional properties (Prinster et al., 2005; 
Milligan, 2009). GPCR heteromerization between orphan GPCRs 
for which no natural ligand is known and non-orphan GPCRs with 
known ligand is very interesting in the sense that it might define the 
function of orphan GPCRs. The existence of ligand-independent 
functions of some of the more than 100 still orphan GPCRs has 
indeed been determined in several heteromers containing non-
orphan GPCRs (Levoye et al., 2006).

A number of studies have suggested that GPCR oligomeriza-
tion may be important in cell surface delivery implying that oli-
gomerization occurs early in the biosynthetic pathway (Bulenger 
et al., 2005). According to this model, successful oligomerization 
is part of the quality control process. A prominent example is the 
GABA

B
 receptors, where the GABA

B2
 subunit controls the proper 

cell surface expression of GABA
B1

.
Formation of functional dimers offers the possibility for allos-

teric regulation of one protomer by the other. Several reports con-
firmed indeed the existence of allosteric interactions between the 
two orthosteric binding sites within a dimer. Negative and positive 
allosteric effects have been reported (Durroux, 2005).

Allosteric interactions between the protomers of GPCR dim-
ers imply asymmetry within the GPCR cluster. The concept of 
asymmetric dimers on the level of the ligand binding site can be 
further extended toward G protein coupling or binding of GPCR 
interacting proteins (GIPs) in general. Assymetric binding of G 
proteins to only one of the two protomers was shown for several 
GPCRs. In the case of GABA

B
 receptors, ligand binding to the GB1 

subunit trans-activates the GB2 subunit that binds to the G pro-
teins (Galvez et al., 2001). In contrast, in the leukotriene B4 BLT1 
receptor the same protomer binds the ligand and activates the G 
protein in a cis manner, therefore questioning the function of the 
second protomer (Baneres and Parello, 2003). Recent studies on the 
melatonin MT

1
 receptor complex with G

i
 proteins and the regulator 

of G protein (RGS) 20 suggest that one protomer binds to the G 
protein whereas the second protomer binds to other GIPs, RGS20 
in the present case. These results provide an additional justification 
for dimer formations and for the fine-tuning of GPCR signaling 
through GIPs.

funCtional CRosstalk Between GPCRs with oR 
without dimeRization
Signal integration between different hormones is a common fea-
ture of the endocrine system. Indeed, each cell expresses typically 
several GPCR subtypes that integrate different hormonal signals 
in time and space to produce an adequate cellular response. The 
ability of one hormone, acting on a specific GPCR, to modulate 
the function of a second GPCR does not inherently imply heter-
omerization between these two GPCRs. Indeed receptor heter-
omerization represent only one out of several ways of functional 
crosstalk at the cellular level (Figure 1). Heterologous sensitization 
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of GPCRs in central nervous system (CNS) disorders is outlined by 
the great quest of pharmaceutical companies for drug discovery. 
Several GPCRs, in particular the metabotropic glutamate, adenosine, 
dopamine as well as serotonin receptor, and cannabinoid receptors, 
were shown to be implicated in CNS disorders such as Parkinson, 
Alzheimer, schizophrenia, depression, and psychosis. Despite the 
lack of direct evidence for the implication of GPCR heteromers 
in neuropathologies, several examples in the literature show the 
importance of heteromerization in receptor functions suggesting 
that alterations in GPCR crosstalk can directly impact health.

Opioid and Cannabinoid receptor heteromers
Opioid receptors bind endogenous peptides with effects resem-
bling those of opiate drugs and are very well known for their 
roles in pain, analgesia and reward. Heteromerization between 
the different OR subtypes was extensively studied over the last 
20 years (see van Rijn et al., 2010 for review) with some evi-
dence in vivo. For example, the δ/κ OR selective ligand, the 
6′-guanidinonaltrindole (6′-GNTI), is an analgesic and has the 
unique property of preferentially activating OR heterodimers over 
the corresponding homomers, indicating that OR heteromers are 
functionally relevant in vivo (Waldhoer et al., 2005). In the current 
review we will address only examples of OR heteromerization 
with other GPCRs.

Opiates and exogenous cannabinoids are analgesics used for the 
treatment of patients with neuropathic pain. Considerable behav-
ioral, anatomical, and biochemical evidence describe  similarities 
between the OR and the cannabinoid receptor systems. The first 
study to suggest direct physical interactions between the can-
nabinoid CB

1
 receptor and κOR and δOR (CB

1
/κOR and CB

1
/

δOR) was conducted in transfected cells by Rios et al. (2006). The 
authors identified a reciprocal antagonistic relationship between 
the two receptors in transfected cells and in native tissues exposed to 
increasing concentrations of an agonist for one receptor along with 
non-activating concentrations of an agonist for the other receptor. 
Another study showed, in 2008, a direct interaction between CB

1
 

and μOR using FRET and co-immunoprecipitation experiments 
in CHO cells exogenously expressing both receptors (Hojo et al., 
2008). In vivo, functional interaction of these receptors is very well 
exemplified by 9-tetrahydrocannabinol, the major psychoactive 
constituent of marijuana, which enhances the potency of opioids 
such as morphine in animal models (Cichewicz, 2004). Moreover, 
anatomical studies confirmed the co-localization of μOR and CB

1
 

in common somatodendritic compartments of catecholaminergic 
neurons in the locus coeruleus, the center of opiate addiction and 
withdrawal, and also revealed CB

1
-positive axon terminals form-

ing synaptic contact with μOR-containing dendrites (Scavone 
et al., 2010).

Recently, ORs were shown to interact functionally with chem-
okine receptors (Salanga et al., 2009). CXCR4 is able to cross-
desensitize the chemotaxis and calcium mobilization response 
as well as analgesia associated with κOR. Activation of CXCR4 
with CXCL12 induces desensitization of κOR and this leads to an 
impairment of analgesic activity in vivo (Finley et al., 2008). Using 
FRET, CXCR4 was shown to form heteromeric complexes with 
δOR. Intriguingly, simultaneous application of δOR and CXCR4 
agonists to human monocytes (MM-1 cells)  expressing both 

omerization in endogenous tissues, some of which will be discussed 
in the next chapter. To provide some guidance in defining the 
physiological relevance of GPCR heterodimers, the International 
Union of Basic and Clinical Pharmacology (IUPHAR) released 
some recommendations in 2007 (Pin et al., 2007). The first crite-
rion concerned the evidence for physical interaction (or proxim-
ity) of both receptors in native tissues or primary cells. This may 
be achieved by performing co- immunoprecipitation experiments 
with selective antibodies or energy transfer techniques between 
labeled ligands or antibodies. The second criterion requests evi-
dence for heteromer-specific properties such as heteromer-specific 
signaling properties, the identification of heteromer-selective lig-
ands and the presence of allosteric ligand binding properties. The 
third criterion recommends supporting evidence from knockout 
animals or RNAi technologies to further validate the possible 
functional role of heteromers in vivo. Obviously, none of these 
criteria alone provides conclusive evidence for the existence and 
functional significance of GPCR heteromers. The comity therefore 
proposes that at least two of the three criteria have to be fulfilled 
for the acceptance of GPCR heteromers.

examPles in the neuRo-endoCRine system
G protein-coupled receptor oligomerization has become an 
extensively studied field. The current chapter will focus on the 
description of GPCR heteromers relevant in neuroendocrinology. 
A more extensive list of GPCR heteromers is provided in Table 1. 
Complementary information on GPCR heteromerization may be 
also found in other recent expert reviews (Birdsall, 2010; Ferre et al., 
2010; Rozenfeld and Devi, 2010).

GPCR heteRomeRs in the CentRal neRvous system
G protein-coupled receptors are widely distributed in the nervous 
system, and mediate key physiological processes including cognition, 
mood, appetite, pain, and synaptic transmission. The important role 

FiGuRE 1 | Functional versus physical interaction of GPCRs. (i) In the 
absence of any physical or functional interaction, the activation of two different 
GPCRs induces two independent signaling pathways A and B, which 
consequently result in two independent effects 1 and 2. (ii) Physical 
interaction of two different GPCRs results in the activation of the heteromer-
specific signaling pathway C that will be responsible of a downstream effect 3. 
(iii) In the absence of physical interaction, a functional interaction can be 
observed when signaling pathways A and B crosstalk to produce effect 4.
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Table 1 | Non-exhaustive list of GPCR heteromers in the neuro-endocrine system.

Heterodimer Physical interaction Functional References

In vitro In vivo
interaction in vivo

β2AR/EP1 BRET and co-IP – – McGraw et al. (2006)

β2AR/κOR co-IP – – Jordan et al. (2001)

β2AR/μOR co-IP – – Jordan et al. (2001)

5- HT2A/D2 FRET – – Lukasiewicz et al. (2010)

5-HT1A/Gal1 FRET – S and BP Borroto-Escuela et al. (2010), Kehr et al. (2002)

5-HT2A/mGlu2 co-IP and BRET co-IP frontal cortex samples S and B Gonzalez-Maeso et al. (2008)

5-HT4/5-HT2(A,B) – – S Derangeon et al. (2010)

A1/A2A BRET and co-IP co-IP rat striatum B and S Ciruela et al. (2006)

A1/mGlu1α co-IP co-IP rat cerebellar 

synaptosomes

S Ciruela et al. (2001)

A1/P2Y1R co-IP co-IP rat brain, hippocampus 

and human astroglial cells

S Yoshioka et al. (2002), Tonazzini et al. (2008)

A2/mGlu5 co-IP – S and BP Ferre et al. (2002), Kachroo et al. (2005), 

Adams et al. (2008)

A2/mGlu5/D2 BRET and FRET co-IP rat striatum S Cabello et al. (2009)

A2A/D2 FRET and co-IP co-IP rat striatum and 

neuroblastoma

S and BP Canals et al. (2003), Tanganelli et al. (2004)

AT1/β2AR co-IP S Barki-Harrington et al. (2003)

AT1/APJ BRET and FRET and co-IP − – Chun et al. (2008)

AT1/B2 Not clear Not clear S AbdAlla et al. (2005), Hansen et al. (2009)

CB1/A2A BRET co-IP rat striatum S and BP Andersson et al. (2005), Carriba et al. (2007), 

Tebano et al. (2009)

CB1/D2 FRET – B Marcellino et al. (2008), Kearn et al. (2005), 

Glass and Felder (1997)

CB1/δOR BRET – S Rios et al. (2006)

CB1/κOR BRET – S Rios et al. (2006)

CB1/μOR FRET and co-IP – S Rios et al. (2006), Hojo et al. (2008), Cichewicz 

(2004)

CB1/OX1 FRET – – Hilairet et al. (2003), Ellis et al. (2006)

CCR5/μOR co-IP – – Chen et al. (2004)

CRF1/5-HT2 – – S and T Magalhaes et al. (2010)

CXCR4/δOR FRET – S Pello et al. (2008)

CXCR4/κOR – – S and BP Finley et al. (2008)

D1/D2 co-IP co-IP and new Gq coupling S Lee et al. (2004), Rashid et al. (2007)

D1/H3 BRET – S and BP Ferrada et al. (2008)

D1/μOR BRET – S and E Tien et al. (2010), Becker et al. (2001)

D2/H3 BRET – S and BP Ferrada et al. (2008)

D2/SST2 FRET photo-bleaching FRET in rat 

striatum

Bivalent ligands and S Baragli et al. (2007), Jaquet et al. (2005)

D2/SST5 photo-bleaching FRET S Rocheville et al. (2000)

D5/D2 BRET – S So et al. (2009)

EP1/D1 – – S Kitaoka et al. (2007)

EP1/D2 – – S Kitaoka et al. (2007)

ETA/ETB FRET – – Evans and Walker (2008)

GABAB1/CaS co-IP co-IP brain lysates S and E Chang et al. (2007)

GABAB2/M2 FRET and TIRF co-IP cortex – Boyer et al. (2009)

GHSR/D1 – – – Chow et al. (2008)

GHSR/EP1 BRET and co-IP – – Chow et al. (2008)

GHSR/IP BRET and co-IP – – Chow et al. (2008)

(Continued)



www.frontiersin.org February 2011 | Volume 2 | Article 2 | 5

Kamal and Jockers GPCR heterodimerization and neuro-endocrine system

Another example is the μOR and the substance P (NK
1
) receptor, 

which is highly expressed in brain regions implicated in depression, 
anxiety, and stress. They are also present in the nucleus accumbens, 
which mediates the motivational properties of drugs of abuse 
including opioids. The rewarding effects of morphine are absent 
in mice lacking NK

1
 suggesting that these receptors are critical for 

the reinforcing properties of morphine, and for adaptive responses 
elicited by repeated opiate administration (Ripley et al., 2002). 
Direct interaction between NK

1
 and μOR was reported in vitro 

and functional characterization of cells expressing both receptors 
revealed cross-modulation of receptor internalization and desen-
sitization (Pfeiffer et al., 2003).

Cannabinoid receptors family remain one of the most impor-
tant GPCR drug discovery targets due to the intense interest in 
CB

1
 receptor antagonists for treating obesity and the metabolic 

syndrome. Heteromerization of CB
1
 in the context of metabolism 

will be discussed later. The literature reports many examples of 
functional interaction between cannabinoid and dopamine recep-
tors. Functional antagonism was shown in rat brain where the CB

1
 

agonist CP55,940 reduced the affinity of D
2
 agonist binding sites in 

the dorsal and ventral striatum. Similarly, in vivo administration of 
CP55,940 inhibited D

2
-promoted locomotor activity (Marcellino 

et al., 2008). In vitro, heteromer formation was demonstrated using 
FRET (Marcellino et al., 2008). Co-expression of both receptors 
in HEK293 cells showed that co-stimulation of D

2
 and CB

1
 results 

in a switch of G protein coupling preference of these G
i/o

-coupled 
receptors toward the pertussis toxin-insensitive Gαs

 protein (Kearn 
et al., 2005). Similar observations have been reported in primary 
striatal neuron cultures (Glass and Felder, 1997) supporting the 
physiological relevance of D

2
/CB

1
 heteromer formation.

receptors endogenously, abolished functional effects observed 
upon treatment of these cells with either agonist alone (Pello 
et al., 2008).

CCR5 was reported to interact physically, in vitro, with μOR 
using co-immunoprecipitation assays inducing cross desensitiza-
tion of the receptor without modulation of receptor internaliza-
tion. DAMGO (μOR agonist) and RANTES induced chemotaxis in 
CHO cells co-expressing both receptors. Preincubation with either 
DAMGO or RANTES inhibited chemotaxis caused by the other 
ligand. Moreover, DAMGO pretreatment enhanced phosphoryla-
tion of CCR5 and reduced RANTES-promoted GTPγS binding 
suggesting heterologous desensitization (Chen et al., 2004).

Several different GPCRs are implicated in the regulation of 
striatal functions. Notably, in vivo functional crosstalks have been 
reported between dopamine and ORs. As an example, metham-
phetamine-induced zif268 (transcription factor also known as 
Egr1, Early Growth Response Protein 1) expression was abolished 
in μOR-knockout mice in which dopamine receptors were blocked 
by haloperidol. However, the expression of zif268 mRNA was not 
altered in μOR knockout mice without blockade of dopamine 
receptors or in wild-type mice with blockade of dopamine recep-
tors (Tien et al., 2010). These results suggest a crosstalk between the 
μ-opioid system and the dopamine system in the modulation of the 
expression of zif268 induced by methamphetamine. D

1
 knockout 

mice were shown to have a reduced μOR expression in striatal 
patches without alterations in κOR and δOR expression patterns 
(Becker et al., 2001). Co-localization of these receptors was shown 
in rat striatal and cortical neurons, however direct interactions were 
only reported in transfected cells using the BRET assay (Juhasz 
et al., 2008).

GHSR/MC3 FRET and ELISA – – Rediger et al. (2009)

GHSR/NTS1 co-IP – S Takahashi et al. (2006)

GHSR/TP BRET and co-IP – – Chow et al. (2008)

IP/TP co-IP – – Wilson et al. (2004)

MC4/GPR7 FRET and ELISA – – Rediger et al. (2009)

MC4/MC4 

D90N

FRET and ELISA – S Biebermann et al. (2003)

NK1/μOR BRET and co-IP – S and BP Ripley et al. (2002), Pfeiffer et al. (2003)

T1R1/T1R3 co-IP and ligand binding Rescue of T1R3 KO mice S Nelson et al. (2001, 2002), Xu et al. (2004)

T1R2/T1R3 co-IP and Ligand binding S Nelson et al. (2001, 2002), Xu et al. (2004)

V1A/OT co-IP and BRET – – Terrillon et al. (2003)

V2/OT co-IP and BRET – – Terrillon et al. (2003)

β1AR/β2AR co-IP – S Zhu et al. (2005)

This table enumerates the major GPCR heteromers and details the, in vitro and in vivo, evidence for physical interaction, if present. S, signaling modulation; T, 
trafficking modulation; B, binding modulation; E, expression modulation; BP, Behavioral or pain modulation in mice; BRET, bioluminescence resonance energy 
transfer; FRET, fluorescence resonance energy transfer; co-IP, co-immunoprecipitation; βAR, beta adrenergic receptor; EP1, prostanoid receptor 1; κOR, kappa opioid 
receptor; μOR, mu opioid receptor; δOR, delta opioid receptor; 5-HT2, serotonin receptor 2; D2, dopamine receptor 2; 5-HT1, serotonin receptor 1; 5-HT4, serotonin 
receptor 4; Gal, galanin receptor; mGlu, mGlutamate receptor; A, adenosine receptor; P2YR, purinergic P2Y receptors; AT, angiotensin receptor; APJ, apelin receptor; 
B, Bradikinin receptor; CB, canabinoid receptor; OX, orexin receptor; CCR5, C-C chemokine receptor type 5; CXCR4, C-X-C chemokine receptor type 4; CRF1, 
corticotrophin releasing factor receptor subtype 1; H3, histamine receptor 3; SST, somatostatin receptor; ET, endothelin receptor; GABAB, γ-aminobutyric acid; CaS, 
calcium-sensing receptor; M2, muscarinic receptor 2; GHSR, ghrelin receptor; IP, prostaglandin (prostacyclin) receptor; MC, melanocortin receptor; NTS, neurotensin 
receptor; TP, thromboxane receptor; NK1, substance P receptor; T1R, taste receptor 1; V, vasopressin receptor; OT, oxytocin receptor.

Table 1 | Continued

Heterodimer Physical interaction Functional References

In vitro In vivo
interaction in vivo
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was also reported that A
2A

 receptor antagonists increase locomo-
tion in reserpinized (dopamine-depleted) mice and produce con-
tralateral rotational behavior in rats only after the treatment with 
sub-threshold doses of the D

2
-like receptor agonist quinpirole 

(Tanganelli et al., 2004).
A physical interaction between A

2
 and mGlu

5
 was shown in 

vitro by co-immunoprecipitation. Simultaneous stimulation of 
cells co-expressing both receptors led to a synergistic increase in 
ERK phosphorylation (Ferre et al., 2002). In vivo, the anti-Par-
kinsonian effects of mGlu

5
 antagonists, known to increase motor 

control, were potentiated by an A
2A

 antagonist confirming a func-
tional interaction between these two receptors (Kachroo et al., 
2005). A combination of a sub-threshold dose of SCH 58261 (A

2A
 

antagonist) with a sub-threshold dose of MTEP (mGlu
5
 antago-

nist) reduced alcohol self-administration (Adams et al., 2008). In 
addition, A

2A
 and mGlu

5 
seem to form higher order oligomeric 

complexes with D2. Cabello et al. (2009) were able to show in vitro 
using BRET and FRET assays as well as co-immunoprecipitation 
the presence of the latter three receptors in the same complex. 
Similar results were obtained in rat striatum homogenates (Cabello 
et al., 2009).

Dopamine is a neurotransmitter in many brain regions, and 
regarding Parkinson disease – the most important is the striatum. 
In addition, relevant studies regarding receptor oligomerization 
are described in nucleus accumbens, i.e., a nucleus of the striatum. 
Dopamine binds and activates five types of receptors, D

1
, D

2
, D

3
, 

D
4
, and D

5
. The literature reports many examples of dopamine 

subtype heteromerization and postulate their implication in neu-
ropathologies such as Parkinson and dyskinesia (Missale et al., 
2010). D

1
/D

2
 heteromers are convincingly demonstrated in vivo 

by co-immunoprecipitation (Lee et al., 2004). Whereas D
1
 and D

2
 

homomers are coupled to G
s
 and G

i
 proteins, respectively, D

1
/D

2
 

heteromers are coupled to G
q/11

 when both protomers are activated. 
Activation of this heteromer-specific G

q/11
 pathway increases levels 

of calcium/calmodulin-dependent protein kinase IIα in the nucleus 
accumbens, unlike activation of the G

s
-coupled D

1
 receptors, indi-

cating a mechanism by which D
1
/D

2
 may contribute to synaptic 

plasticity (Rashid et al., 2007).
Recently, D

1
 and D

2
 were reported to form heteromeric com-

plexes with histamine H
3
 (but not H

4
) receptors in vitro using BRET. 

Functional interaction in mice is suggested in light of the important 
role of postsynaptic H

3
 receptors in the modulation of dopaminer-

gic transmission by means of a negative modulation of D
2
 receptor 

function. Indeed, selective H
3
 receptor agonists inhibit D

1
- and 

D
2
-promoted locomotor activity and the H

3
 receptor antagonist 

thioperamide has a potentiating effect. Moreover, radioligand 
binding experiments in striatal membrane preparations showed 
that activation of H

3
 decreased the binding affinity of D

2
 (Ferrada 

et al., 2008).
Pituitary tumors express both somatostatin and dopamine 

receptors (Colao et al., 2007). D
2
 and somatostatin SST

2
 recep-

tors are co-localized in three different brain regions including the 
cerebral cortex, striatum, and substantia nigra. In vivo, D

2
/SST

2
 

heteromer formation was confirmed in rat striatal neurons using 
photo-bleaching FRET (Baragli et al., 2007). Another evidence sup-
porting D

2
/SST

2
 formation comes from the high efficacy of bivalent 

ligands, designed to target somatostatin and dopamine receptors, 

In the last few years, it has been suggested that A
2A

 receptors 
could exert a permissive role on CB

1
 function in a way that a 

basal adenosinergic tone would be important for cannabinoid-
mediated effects. Specifically, it has been demonstrated that the 
ability of a CB

1
 agonist to inhibit motor activity requires the 

presence and the activation of A
2A

 (Andersson et al., 2005; Carriba 
et al., 2007). The activation state of A

2A
 seems also to regulate syn-

aptic effects of CB
1
, which is partly dependent on mGlu

5
 (Tebano 

et al., 2009). Heteromer formation between CB
1
 and A

2A
 was 

shown in vitro, in cells exogenously expressing both receptors 
using BRET and, in vivo, by immunoprecipitation assays in rat 
striatum suggesting that heteromer formation may participate 
in the functional crosstalk between these two receptors (Carriba 
et al., 2007).

Adenosine, Dopamine, and Glutamate receptor heteromers
Adenosine activates four GPCRs, A

1
, A

2A
, A

2B
, and A

3
, which are 

widespread throughout the body. They are involved in a variety 
of physiological processes and pathologies including neurological, 
cardiovascular, inflammatory diseases, and cancer (see Trincavelli 
et al., 2010 for review).

Heteromerization between the different adenosine receptor sub-
types is exemplified by the A

1
/A

2A
 heteromer, which was reported 

in vitro and in vivo in 2006 by Ciruela et al. (2006). Immunogold 
detection and co-immunoprecipitation experiments confirmed 
the heteromer formation in rat striatal glutamatergic nerve ter-
minals. The authors showed that A

2A
 activation reduces the affinity 

of A
1
 for agonists, which might explain the stimulatory effect of 

adenosine on glutamatergic neurotransmission at higher ligand 
 concentrations. Moreover, the authors speculate about a possible 
role of A

1
/A

2A
 heteromers in the tolerance to the psychostimulant 

effects of caffeine (Ciruela et al., 2006).
Using co-immunoprecipitation assays Ciruela et al. (2001) 

showed a subtype-specific interaction between mGlu
1α and A

1
 

receptors in both rat cerebellar synaptosomes and co-transfected 
HEK293 cells. This heteromer was reported to be implicated in 
neuroprotection suggesting a potential role in neurodegenerative 
diseases such as Alzheimer. Importantly, the timing of mGlu

1α and 
A

1
 receptor activation is very important to achieve a maximal effect 

in adenosine- and glutamate-mediated neuroprotection/neurode-
generation (Ciruela et al., 2001).

Purinergic P2Y receptors are involved in neuromodulation and 
neuron–glia interactions and respond to a wider range of agonists, 
including di- or tri-phosphates of nucleosides, and uridine diphos-
phate-glucose. The P2Y

1
 subtype has been reported to form heter-

omers with the A
1
 receptor in vivo as determined by co-localization 

and co-immunoprecipitation experiments in rat brain (Yoshioka 
et al., 2002), rat hippocampus (Tonazzini et al., 2007), and in human 
astroglial cells (Tonazzini et al., 2008). P2Y

1
 stimulation impaired 

the potency of A
1
 coupling to G proteins, whereas the stimulation 

of A
1
 increased the functional responsiveness of P2Y

1
, indicating a 

functional interaction between these receptors in rat hippocampus 
(Tonazzini et al., 2007).

Several reports highlight the physical and functional interac-
tion between A

2
 and D

2
 receptors. BRET and FRET assays as well 

as co-immunoprecipitation in neuroblastoma cells and striatum 
indicate formation of A

2
/D

2
 heteromers (Canals et al., 2003). It 
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between 5-HT
2A

 and mGlu
2
. Moreover, the metabotropic glutamate 

agonist, LY379268 increases the affinity of different hallucinogens 
for the 5-HT

2A
 receptor-binding site but also, a selective 5-HT

2A
 

receptor agonist decreases the affinity of different agonists for the 
mGlu

2
 receptor-binding site (Gonzalez-Maeso et al., 2008).

Galanin is co-expressed with and modulates serotonin and 
noradrenaline release, two neurotransmitters implicated in depres-
sion. Stimulation of galanin GAL

1
 and/or GAL

3
 receptors results in 

a depression-like phenotype, while activation of the GAL
2
 receptor 

attenuates depression-like behavior (Kuteeva et al., 2008). 5-HT
1A

 
and GAL

1
 interact with each other in vitro as demonstrated by FRET. 

After simultaneous activation of both receptors, G
i 
and MAPK sig-

naling did not show any additive or synergistic effects indicating 
that activation of each receptor alone is sufficient to reach maximal 
signaling capacity for these specific pathways (Borroto-Escuela et al., 
2010). However, an antagonistic effect of GAL

1
 activation on 5-HT

1A
-

induced hippocampal serotonin release and hypothermia and loco-
motor activity were shown in the rat brain (Kehr et al., 2002).

Another example of functional crosstalk with no evidence, 
at least for now, of physical interaction has been described for 
CRF

1
 and 5HT

2
 receptors involved in anxiety as detailed above 

(Magalhaes et al., 2010).

GPCR heteRomeRs in the CaRdiovasCulaR–Renal system
The most commonly studied and clinically targeted cardiac GPCRs 
include adrenergic, angiotensin, endothelin, and adenosine recep-
tors. Drugs, targeting adrenergic, and angiotensin receptor signal-
ing pathways alone, account for the majority of prescriptions for 
cardiovascular diseases (Salazar et al., 2007).

Angiotensin II (AngII) causes vasoconstriction both by a direct 
action on smooth muscle cells and, indirectly, through the facilitation 
of noradrenaline release from postganglionic sympathetic neurons. 
AngII binds to two main receptors, AT

1
 and AT

2
. Via stimulation of 

AT
1
 receptors, AngII causes virtually all of its physiological actions, 

namely the cardiovascular, neuronal, renal, endocrine, and hepatic 
effect see (Guimaraes and Pinheiro, 2005) for review. Bradykinin 
(BK), an endogenous vasoactive peptide mainly produced from 
plasma with a physiological role in inflammation and nociception, 
binds two main receptors, B

1
 and B

2
 (Fincham et al., 2009). AbdAlla 

et al. (2000) reported functional and physical interaction between 
AT

1
 and B

2
 receptors with major implications in pre-eclampsia and 

hypertensions. In the cortical thick ascending limb in the kidney, 
BK exerts negative modulatory effects on AngII-induced calcium 
responses dependent on tyrosine kinase and MAPK pathways. In 
the presence of BK AngII-induced sodium transport is suppressed 
(Hus-Citharel et al., 2010). The AT

1
/B

2
 heteromer has also been 

suggested to contribute to AngII hyper-responsiveness of mesangial 
cells in experimental hypertension (AbdAlla et al., 2005). However, 
the existence of AT

1
/B

2
 heteromers has been questioned by several 

groups suggesting that the documented in vivo crosstalk between 
these two hormones is most likely based on a functional rather 
than physical interactions (Hansen et al., 2009).

AT
1
/β

2
AR heteromers were described in mouse cardiac myocytes 

transfected with the corresponding cDNAs. The main functional 
consequence of this interaction is the enhancement of agonist-
induced β

2
AR signaling and the silencing of the spontaneous activa-

tion of β
2
AR, suggesting that heteromerization mutually stabilizes 

on the inhibition of growth hormone (GH) and prolactin secre-
tion from GH-secreting pituitary adenomas, which are partially 
responsive to somatostatin analog therapy (Jaquet et al., 2005).

The literature reports several studies pinpointing a functional 
crosstalk between the prostanoid receptor EP

1
 as well as D

1
 and 

D
2
 receptors without evidences for physical interactions. EP

1
 is 

expressed in more than one-half of medium spiny neurons in the 
striatum, and its ligand, prostaglandin E

2
 (PGE

2
) is produced in 

the striatum in response to stimulation with a D
1
 or D

2
 agonist. 

The PGE
2
–EP

1
 pathway facilitates both D

1
 and D

2
 signaling as 

indicated by the Thr34 phosphorylation of the dopamine- and 
cAMP-Regulated PhosphoProtein 32 (DARPP-32) in vitro in stri-
atal slices. EP

1
-knock out mice exhibit a significant suppression of 

hyperlocomotion induced by cocaine or SKF81297, a D
1
 agonist, 

and significant attenuation of catalepsy induced by raclopride, a 
D

2
 antagonist (Kitaoka et al., 2007).

GABA receptor heteromers
GABA

B
 are critical receptors in the CNS, where their function is 

mainly the suppression of neuronal activity. The GABA
B1

/GABA
B2 

heteromer, is one of the best characterized examples of GPCR heter-
omerization as detailed above. There is also some evidence for the 
formation of heteromers between GABA

B1 
and the calcium-sensing 

receptor (CaS) in vitro and in hippocampal neurons. CaS receptors 
control systemic calcium balance via the regulation of parathyroid 
hormone secretion and renal calcium excretion. Heteromer forma-
tion seems to modulate the expression of CaS as expression of the 
CaS is increased in brain lysates of GABA

B1 
knockout mice and in 

cultured hippocampal neurons (Chang et al., 2007).
GABA

B2 
was recently shown to interact functionally and physically 

with muscarinic M
2
 receptors. In vitro, a combination of FRET and 

TIRF microscopy detected the heteromers at the cell surface. GABA
B2 

and M
2 
are both localized in the somatosensory cortex and are shown 

to interact in vivo by co-immunoprecipitation. In PC12 cells, GABA
B2 

expression rescues M
2 
surface expression, M

2
-induced activation of 

GIRKs, and inhibition of cAMP production (Boyer et al., 2009).

Serotonin receptor heteromers
Serotonin (5-HT) receptors represent one of the largest subfamilies 
of GPCRs. There are 14 different 5-HT receptor subtypes widely 
distributed throughout the peripheral and CNS, representing thera-
peutic targets for drugs used to treat anxiety, depression, schizo-
phrenia, obesity, and other disorders (Millan et al., 2008).

Alterations in either serotonin or dopamine neurotransmission 
seems to be implicated in many human neurological and psychiat-
ric disorders, including depression, anxiety, and schizophrenia (de 
Almeida et al., 2008). Recently, formation of 5-HT

2A
/D

2
 heteromers 

was reported in vitro using FRET but the functional properties of 
this complex are not known. Nevertheless, 5-HT

2A
 and D

2
  receptors 

are co-localized in the medial prefrontal cortex as well as in the 
pars reticulate of the substantia nigra in rat, suggesting, at least, 
the possibility of functional crosstalk between these two receptors 
in vivo (Lukasiewicz et al., 2010).

The 5-HT
2A

/mGlu
2
 heteromer plays a role in anxiety and con-

stitutes one of the most interesting examples of GPCR heter-
omerization reported so far. Compelling pharmacological and 
biochemical evidence in vivo confirmed the physical interaction 
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HEK293 cells. IP
1 

seems to facilitate TP-mediated generation of 
cAMP in a manner independent of IP

1
-induced cAMP formation 

(Wilson et al., 2004).
Opioid receptors and β

2
ARs have been shown to coexist and 

functionally interact in cardiac myocyte sarcolemma. Low doses 
of selective opioids are known to inhibit norepinephrine-mediated 
functions (Pepe et al., 1997). Physical interaction was reported 
by co-immunoprecipitation studies in CHO cells exogenously 
expressing both receptors. In vitro, heteromerization results in an 
alteration of trafficking properties with no significant alterations 
in ligand binding. Moreover, opioid-selective agonists alter β

2
AR 

internalization, thus providing a possible molecular mechanism 
for the lack of β

2
AR agonist-mediated effects after OR activation 

(Jordan et al., 2001).
Prostanoids EP

1
 receptors and β

2
AR form heteromers in vitro 

(BRET, co-immunoprecipitation). EP
1
 and β

2
AR colocalize in air-

way smooth muscle cells, where activation of EP
1
 was reported to 

reduce β
2
AR-stimulated cAMP without affecting β

2
AR phospho-

rylation or trafficking. EP
1
/β

2
AR heteromers might be implicated 

in asthma (McGraw et al., 2006).
P2Y receptors play various physiological roles, including medi-

ation of vasodilatation in the endothelium, vasoconstriction of 
smooth muscles, and control of mitogenic actions and secretory 
processes. A

2A
/P2Y

1
 and A

2A
/P2Y

12
 heteromers were detected in 

human platelet membranes by co-immunoprecipitation tech-
niques, and seem to have a crucial role in the physiology of platelet 
aggregation (Nakata et al., 2010).

GPCR heteRomeRs in taste
Taste, or gustation, is mediated by a specialized anatomically 
and physiologically defined chemosensory gustatory system. The 
gustatory system in mammals includes taste receptor cells (TRC) 
 organized in taste buds located within the gustatory papillae, 
located mainly, but not exclusively in the tongue. Reception of 
taste qualities that humans describe as sweet, umami, and bitter 
involves GPCRs from the T1R and T2R subfamilies (Bachmanov 
and Beauchamp, 2007). Whereas T1R are typical class C GPCRs 
with a large N-terminal “Venus fly trap” (VFT) domain, T2R 
belong to rhodopsin-like class A GPCRs with small N-terminal 
domains. The T1R family is composed of three subtypes T1R1, 
T1R2, and T1R3 that have been shown to form obligatory T1R1/
T1R3 and T1R2/T1R3 heteromers (Nelson et al., 2001, 2002). 
Binding of sweet stimuli such as sucrose or aspartame to the VFT of 
T1R2 and umami taste stimuli such as l-glutamate to the orthos-
teric binding site of the VFT of T1R1 activate T1R2/T1R3 and 
T1R1/T1R3 heterodimers, respectively (Nelson et al., 2001, 2002; 
Xu et al., 2004). Several molecules binding to allosteric binding 
site within the VFT domain or the TM domain of taste receptors 
have been characterized.

For example, IMP and GMP bind near the opening of the 
orthosteric glutamate binding site of T1R1 thus further stabilize 
the closed conformation of the VFT (Zhang et al., 2008). Newly 
developed enhancers of sweet taste bind to a similar site in the 
T1R2 stabilize the sucrose-promoted closure of the VFT (Zhang 
et al., 2010). Such compounds could help reduce the caloric 
content in food and beverages. Other compounds such as lac-
tisole and cyclamate have been proposed to bind to allosteric 

both receptor subtypes in their respective inactive conformations 
in the absence of agonist. In vivo, selective blockade of β

2
AR in 

mouse cardiomyocytes inhibits angiotensin-induced contractility 
and administration of the AT

1
 antagonist valsartan reduces the 

maximal response to catecholamine-induced elevation of heart rate 
(Barki-Harrington et al., 2003), further supporting the physiologi-
cal relevance of heteromerization.

Another heteromeric partner described for AT
1
 is the apelin 

receptor (APJ). Apelin seems to be an important factor in the reg-
ulation of vascular tone and cardiovascular function (Kalea and 
Batlle, 2010). AT

1
 was shown to physically interact with APJ in vitro 

by BRET, FRET, and co-immunoprecipitation assays. Whereas in 
vivo evidence for AT

1
/APJ heteromer formation is still lacking, 

many examples support an in vivo functional crosstalk. In ape-
lin knockout mice, exogenous Ang II induces atherosclerosis and 
abdominal aortic aneurysm formation while co-infusion of apelin 
abrogated these effects. Moreover, in a vein graft mode, apelin treat-
ment rescued AngII-mediated increase in neointimal formation 
and vascular remodeling (Chun et al., 2008).

Adrenergic receptors are responsible for translating chemi-
cal messages from the sympathetic nervous system into cardio-
vascular responses. Three β-adrenergic receptor subtypes are 
found in the mammalian heart β

1
, β

2
, and β

3
-AR

 
(Salazar et al., 

2007). Heteromerization between the different subtypes has been 
described and is implicated in many cardiovascular functions. 
For example, alterations in receptor pharmacology and func-
tion were seen in intact adult mouse cardiomyocytes lacking 
β

1
AR and β

2
AR, where heteromerization reduced spontaneous 

receptor activity and enhanced responsiveness to catecholamines 
(Zhu et al., 2005).

Another key player in the regulation of the cardiovascular sys-
tems are endothelin receptors. Endothelins are composed of a fam-
ily of 21 amino acid peptides (ET-1, ET-2, and ET-3). ET-1 is the 
predominant endothelin in the cardiovascular system binding to 
endothelin A (ET

A
) and B (ET

B
) receptors (Sakurai et al., 1990). 

ET
A 

and
 
ET

B 
have been reported to form heteromers, which induce 

sustained calcium signaling as compared to the corresponding 
homomers, known to induce a more transient calcium release in 
transfected HEK293 cells (Evans and Walker, 2008).

Serotonin was found in multiple cardiovascular tissues, 
including heart, blood vessels, brain, platelets, adrenal gland, 
and kidney. 5-HT

4
 (mainly 5-HT

4b
), 5-HT

2A
, and 5-HT

2B
 recep-

tors coexist in auricular myocytes of newborn rats. 5-HT
4
 and 

5-HT
2
 receptors appear to regulate intercellular communica-

tion at rat cardiac myocyte gap junctions. Unexpectedly, 5-HT
4
 

activation reduces cAMP, L-type calcium currents, and intercel-
lular coupling while 5-HT

2A
 or 5-HT

2B
 activation enhances gap 

junctional intercellular communication (Derangeon et al., 2010). 
These results suggest receptor heteromerization, which are still 
to be assessed.

Prostacyclin (PGI
2
) and Thromboxane A2 (TxA

2
) are biological 

opposites: PGI
2
 is a vasodilator and inhibitor of platelet aggrega-

tion, which limits the deleterious actions of TxA
2
, a vasoconstric-

tor, and platelet activator. The molecular mechanisms involved 
in the counter-regulation of PGI

2
 and TxA

2
 promoted signaling 

are unclear. Physical and functional interaction between the PGI
2
 

receptor (IP
1
) and TxA

2 
receptor (TP) were reported in vitro in 
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the  thyroid-stimulating hormone (TSH) the glycoprotein hormone 
family. Their respective receptors LHR belong to a distinct subgroup 
of GPCRs that are characterized by a large N-terminal ligand bind-
ing domain-containing leucine-rich repeats and the typical hepta-
helical transmembrane domain. Biophysical and pharmacological 
assays were employed to show the formation of LHR homomers 
that display negative cooperativity between the ligand binding sites 
of receptor protomers (Urizar et al., 2005). More recently, the exist-
ence and functional relevance of LHR homomers was shown in vivo 
by using an elegant trans-complementation assay (Rivero-Muller 
et al., 2010). By generating transgenic mice co-expressing signal-
ing deficient and ligand binding deficient forms of the LHR with 
targeted deletion of the wild-type LHR, the authors succeeded in 
completely restoring normal gonadal and genital function. This 
study provides compelling in vivo evidence for GPCR oligomeriza-
tion by intermolecular functional complementation of two mutant 
receptors (Figure 3).

Follicle-stimulating hormone, another hormone produced by 
the anterior pituitary gland, acts synergistically with LH to regu-
late pubertal maturation and reproductive processes. Based on 
the recent resolution of the crystal structure of FSH together with 
ectodomain of its receptor (FSHR) suggested formation of a tetra-
meric complex composed of a FSH dimer that bridges two FSHR 
ectodomains (Fan and Hendrickson, 2005). Such complexes were 
observed in the crystals and in solution, at high concentrations (μM 
range), suggesting the possible stabilization of FSHR oligomers in 
the presence of FSH. Subsequent studies did not confirm a major 
role of FSH binding and/or the ectodomain in oligomerization of 
the FSHR but pointed rather to the central role of the TM domain 
in stabilizing constitutive oligomers (Guan et al., 2010).

The existence of FSHR dimers inspired chemists to synthe-
size FSHR antagonist composed of two pharmacophores con-
nected through ethylene glycol spacers (Bonger et al., 2009). 
These antagonists were indeed more potent than dimeric com-
pounds in which one of the pharmacophores was replaced by an 
inactive confomer.

The gonadotropin-releasing hormone (GnRH) is produced 
in the hypothalamus and responsible for the release of FSH and 
LH from the anterior pituitary. Oligomerization of human GnRH 

 binding site located in the TM domain of T1R3 and thus regulate 
orthosteric ligand binding to the VFT of T1R1 and T1R2 in the 
respective heterodimers.

Much less is known about the T2R subfamily that com-
prises approximately 40 members in humans (Bachmanov and 
Beauchamp, 2007). T1R and T2R are expressed in distinct sub-
sets of TRC excluding any functional crosstalk at the cellular level. 
However, nearly all T2R members are typically co-expressed within 
individual TRCs suggesting signal integration at the cellular level. 
The existence and potential functional importance of T2R heter-
omers remains to be studied.

GPCR heteRomeRs in RePRoduCtion
Different GPCRs participate in reproductive functions at the level of 
the hypothalamic–pituitary axes and reproductive organs. Oxytocin 
is a hypothalamic hormone stored in the posterior pituitary, which 
has uterine-contracting and milk-releasing actions. The receptor 
for oxytocin, OT, has been shown to cluster into homomers but 
also into heteromers with closely related vasopressin V

1A
 and V

2
 

receptors in transfected HEK293 cells (Terrillon et al., 2003). The 
existence of OT homomers has been recently confirmed in mam-
mary gland tissue using classical radioligand binding assays and 
a newly developed time-resolved FRET assay between two fluo-
rescently labeled OT ligands (Albizu et al., 2010). In contrast to 
previous energy transfer assays that require expression of modified 
receptors fused to energy donors and acceptors, this novel assay can 
be applied to unmodified wild-type receptors and is thus likely to 
boost research on GPCR homo- and heteromerization in native 
tissues (Figure 2).

The luteinizing hormone (LH) is produced by the anterior 
pituitary gland. Whereas LH stimulates testosterone production 
in Leydig cells in males, it triggers ovulation in females. LH con-
stitutes together with the follicle-stimulating hormone (FSH) and 

FiGuRE 2 | Detection of homo/heteromer formation by FRET using 
fluorescent ligands. (i) In the case of homomer formation a FRET signal can be 
detected between a selective donor (D) ligand I that binds the first protomer and a 
selective acceptor (A) ligand 1 that binds the second protomer The donor and 
acceptor ligands can be the same molecule but labeled differently. (ii) In the case 
of heteromer formation, a FRET signal can be detected between a selective donor 
ligand 1 that binds the first protomer and a selective acceptor ligand 2 that binds 
the second protomer. In this case, donor and acceptor ligands are different 
molecules.

FiGuRE 3 | G protein-coupled receptors oligomerization by 
intermolecular functional complementation of mo mutant receptors. (i) 
Oligomerization of ligand binding deficient receptor mutant (RL−) does not 
trigger GPCR function. (ii) Oligomerization of signaling deficient receptor 
mutant (Rs−) does not trigger GPCR function. (iii) Co-expression of RL− and 
Rs− restores GPCR function. L; ligand.
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receptors, NTS
1
, NTS

2
, NTS

3
 but only NTS

1
 and NTS

2
 belong to 

the GPCR family (Stolakis et al., 2010). GHSR and NTS
1 
are shown 

to physically interact in vitro and neuromedin U was described as 
ligand for this heteromer. GHSR/NTS

1
 heteromers have been sug-

gested to play a role for an autocrine growth-promoting pathway 
in non–small cell lung cancers by modulating the transcription of 
downstream target genes including the Forkhead box protein M1 
(FOXM1; Takahashi et al., 2006).

Jiang et al. (2006) identified neurons co-expressing GHSR and 
D

1
 in GHSR-IRES-tauGFP mice, suggesting at least a functional 

interaction between these two receptors. In vitro, the activation of 
GHSR by ghrelin amplifies dopamine/D

1
-induced cAMP accumu-

lation (Jiang et al., 2006). In vivo, ghrelin and dopamine crosstalk 
was suggested based on the observation in rats that ghrelin admin-
istration increased dopamine-related hyperactivity (Wellman 
et al., 2005). Till date, there is no direct evidence in vitro or in vivo 
confirming GHSR/D

1
 heteromerization. GHSR can constitutively 

hetero-oligomerize with members of the prostanoid receptor fam-
ily. GHSR is reported to heteromerize with EP

3-I
, IP

1
, and TPα 

receptors in vitro using BRET and co-immmunoprecipitation. The 
constitutive activation of phospholipase C by GHSR was signifi-
cantly decreased in HEK 293 cells co-transfected with EP

3-I
, IP, or 

TPα. Moreover, cell surface expression of GHSR was reduced in 
presence of the prostanoids receptors (Chow et al., 2008). Despite 
lack of direct evidence, the expression of GHSR and prostanoid 
receptors in atherosclerotic plaques suggests heteromer implication 
in this pathology (Gomez-Hernandez et al., 2006).

Melanocortin receptors have a diverse range of physiological 
functions; MC

1
 controls skin pigmentation, MC

2
, the receptor for 

the adrenocorticotropic hormone (ACTH), plays a critical role in 
the hypothalamic–pituitary–adrenal axis, whereas MC

3
 and MC

4
 

have essential roles in energy homeostasis and MC
5
 is believed 

to be involved in exocrine function (Cone, 2006). Mutations in 
the MC4R gene are the most frequent monogenic cause of severe 
obesity. Biebermann et al. present an interesting mechanistic expla-
nation why a particular heterozygous inactivating MC

4
 mutation 

leads to the development of extreme obesity by a dominant-neg-
ative effect. This dominant-negative effect of the D90N mutation 
is caused by a functionally altered wild-type MC

4
/D90N receptor 

heteromer. MC
4
 can actually form heteromers, at least in vitro, 

with a mutant MC
4
 D90N resulting in functional alterations as 

exemplified by the complete loss of activation of the G
s
/adenylyl 

cyclase pathways (Biebermann et al., 2003). In addition, MC
4
 can 

physically interact, in vitro, with GPR7. MC
3
 was shown to heter-

omerize with GHSR resulting in the modulation of MC
3
 trafficking 

(Rediger et al., 2009).

ConClusions and PeRsPeCtives
G protein-coupled receptor oligomerization has been an intensely 
studied field of research over the last 20 years. There is a broad 
consensus that GPCR oligomerization is not necessary for efficient 
activation of heterotrimeric G proteins as monomeric receptors 
are sufficient to ascertain this basic function. In contrast, GPCR 
oligomerization appears to be important for allosteric regulation 
and fine-tuning of signaling and receptor trafficking. It is fur-
thermore admitted that most if not all GPCRs can form oligom-
ers in intact cells. The detailed knowledge of the dimerization 

receptors has been documented in transfected cells but remain still 
controversial in vivo (Pfleger et al., 2004). Convincing evidence 
for GnRH receptor heteromerization has been gathered in the 
protochordate Ciona intestinalis, which expresses six GnRH iso-
forms (tGnRH-3 to -8) and four GnRH receptor subtypes (R1-4). 
Heteromerization between R1, which binds to tGnRH-6, and the 
orphan R4 has been demonstrated in Ciona ovaries in co-im-
munoprecipitation experiments (Sakai et al., 2009). Importantly, 
tGnRH-6-induced ERK1/2 activation of R1 was robustly poten-
tiated in the presence of R4 most likely originating from R1/R4 
heteromerization.

GPCR heteRomeRs in metaBolism
The increasing prevalence of obesity is responsible for the dra-
matic increase in the number of scientific and clinical studies on 
the control of energy homeostasis. Regulation of energy balance 
relies on a well-orchestrated communication between the CNS 
and peripheral organs. Many GPCRs, including cannabinoid, 
ghrelin, and melanocortin (MC) receptors, play a central role in 
the regulation of lipid metabolism and are therefore of major 
interest for drug development. In the current chapter, we will dis-
cuss some examples of GPCR heteromerization, which might be 
implicated in energy metabolism and related diseases as type 2 
diabetes and obesity.

The endocannabinoid system comprises the enzymatic 
machinery for endocannabinoid synthesis and degradation, and 
cannabinoid CB

1
 and CB

2 
receptors. The endocannabinoid sys-

tem controls energy balance and lipid metabolism centrally, in 
the hypothalamus and mesolimbic pathways, and peripherally, in 
adipocytes, liver, skeletal muscle, and pancreatic islet cells, acting 
through numerous anorexigenic and orexigenic pathways. Obese 
people display an increased endocannabinoid tone,  driving CB

1
 

in a feed-forward dysfunction. Several CB
1
 antagonists/inverse 

agonists were developed for the treatment of obesity. However, 
beside their efficiency in reducing food intake, these drugs were 
not devoid of side effects like psychiatric disorders and suicide 
(Bermudez-Silva et al., 2010). Orexins are orexigenic media-
tors selectively expressed in the hypothalamus, within neurons 
of the lateral hypothalamic area. Orexin A is involved in food 
intake in satiated rats but also in the regulation of drinking 
behavior. Co-expression of CB

1
 and the orexin OX

1 
receptor in 

CHO cells enhances the potency of orexin A to stimulate ERK 
kinase phosphorylation, and this effect was blocked by addition 
of SR-141716A, a CB

1 
antagonist (Hilairet et al., 2003). FRET 

assays indicate that CB
1
 and OX

1
 can form heteromers in vitro 

in CHO cells exogenously expressing these receptors. Heteromer 
formation was shown to modulate receptor distribution in vitro 
(Ellis et al., 2006).

Ghrelin plays an important role in energy homeostasis (Castaneda 
et al., 2010). It is synthesized by the stomach and is believed to exert 
the majority of its actions through the ghrelin receptor (GHSR), 
which is present in high density in both the hypothalamus and the 
pituitary gland. Neurotensin is a 13-amino acid neurohormone, 
located in the synaptic vesicles and released from the neuronal 
terminals in a calcium-dependent manner. It plays an important 
role in the physiology of pain-induction, central blood pressure 
control, and inflammation. There are three known neurotensin 
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