{frontiers in
ENDOCRINOLOGY

REVIEW ARTICLE
published: 05 October 2011
doi: 10.3389/fendo.2011.00038

e

Role of anticonvulsant and antiepileptogenic neurosteroids
in the pathophysiology and treatment of epilepsy

Doodipala Samba Reddy *

Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA

Edited by:
Kazuyoshi Tsutsui, Waseda University,
Japan

Reviewed by:

Paolo Magni, Universita degli Studi di
Milano, Italy

Gianluca Tosini, Morehouse School of
Medicine, USA

Mingde Wang, Umedé University,
Sweden

*Correspondence:

Doodlipala Samba Reddy, Department
of Neuroscience and Experimental
Therapeutics, College of Medicine,
Texas A&M Health Science Center,
228 Reynolds Medical Building,
College Station, TX 77843, USA.
e-mail: reddy@medicine.tamhsc.edu

INTRODUCTION

This review highlights the role of major endogenous neurosteroids in seizure disorders
and the promise of neurosteroid replacement therapy in epilepsy. Neurosteroids are
endogenous modulators of seizure susceptibility. Neurosteroids such as allopregnanolone
(3a-hydroxy-ba-pregnane-20-one) and allotetrahydrodeoxycorticosterone (3a,21-dihydroxy-
5a-pregnan-20-one) are positive modulators of GABA-A receptors. Aside from periph-
eral tissues, neurosteroids are synthesized within the brain, mostly in principal neurons.
Neurosteroids potentiate synaptic GABA-A receptor function and also activate 3-subunit-
containing extrasynaptic GABA-A receptors that mediate tonic currents and thus may
play an important role in neuronal network excitability and seizure susceptibility. Our
studies over the past decade have shown that neurosteroids are broad-spectrum anti-
convulsants and confer seizure protection in various animal models. They protect against
seizures induced by GABA-A receptor antagonists, 6-Hz model, pilocarpine-induced lim-
bic seizures, and seizures in kindled animals. Unlike benzodiazepines, tolerance does not
occur to their actions during chronic administration. Our recent studies provide compelling
evidence that neurosteroids may have antiepileptogenic properties. There is emerging
evidence that endogenous neurosteroids may play a key role in the pathophysiology
of catamenial epilepsy, stress—sensitive seizure conditions, temporal lobe epilepsy, and
alcohol-withdrawal seizures. It is suggested that neurosteroid replacement with natural or
synthetic neurosteroids may be useful in the treatment of epilepsy. Synthetic analogs of
neurosteroids that are devoid of hormonal side effects show promise in the treatment of
diverse seizure disorders. Agents that stimulate endogenous production of neurosteroids
may also be useful for treatment of epilepsy.
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are mainly synthesized in the gonads, adrenal gland, and feto-

Neurosteroids are steroids synthesized within the brain with
unconventional rapid effects on neuronal excitability. It is well
known that steroid hormones such as progesterone and deoxycor-
ticosterone can exert anticonvulsant actions (Selye, 1941; Clarke
et al., 1973). The anticonvulsant properties of progesterone and
deoxycorticosterone are predominantly due to their conversion
in the brain to neurosteroids allopregnanolone (3a-hydroxy-5a-
pregnane-20-one) and allotetrahydrodeoxycorticosterone (3a,21-
dihydroxy-5a-pregnan-20-one; THDOC), respectively (Reddy,
2003; Reddy et al., 2004; Figure 1). A variety of neurosteroids
are known to be synthesized in the brain (Baulieu, 1981; Kulka-
rni and Reddy, 1995). The most widely studied are allopreg-
nanolone, THDOC, and androstanediol. These neurosteroids are
produced via sequential A-ring reduction of the steroid hormones
by 5a-reductase and 3o-hydroxysteroid-oxidoreductase isoen-
zymes (Reddy, 2009a). The androgenic neurosteroid androstane-
diol (5a-androstan-3a,17B-diol; Figure 1) is synthesized from
testosterone (Reddy, 2004a,b). Other neurosteroids such as 7o-
hydroxypregnanolone have been reportedly synthesized in the
brain (Tsutsui et al., 2010). In the periphery, the steroid precursors

placental unit, but synthesis of these neurosteroids likely occurs
in the brain from cholesterol or from peripherally derived inter-
mediates. Since neurosteroids are highly lipophilic and can read-
ily cross the blood-brain barrier, neurosteroids synthesized in
peripheral tissues accumulate in the brain (Reddy and Rogawski,
2010a).

Recent evidence indicates that neurosteroids are present mainly
in principal neurons in many brain regions that are relevant to
focal epilepsies, including the hippocampus and neocortex (Agis-
Balboa et al., 2006; Saalmann et al., 2007; Do Rego et al., 2009). The
biosynthesis of neurosteroids is controlled by the translocator pro-
tein (18 kDa; TSPO), formerly called peripheral or mitochondrial
benzodiazepine receptor (Rupprecht et al., 2009, 2010). Activa-
tion of TSPO by endogenous signals and ligands facilitates the
intramitochondrial flux of cholesterol and thereby promotes neu-
rosteroid synthesis. It is suggested that TSPO ligands might be an
alternative approach for neurosteroid therapeutics (Nothdurfter
et al., 2011). Currently, synthetic analogs of endogenous neuros-
teroids are under clinical trial for treatment of epilepsy (Reddy
and Rogawski, 2010a).
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FIGURE 1 | Chemical structures of major endogenous neurosteroids.
THDOC differs from allopregnanolone by a 218-hydroxy! group, while
androstanediol differs from allopregnanolone by a 17p-hydroxyl group
instead of 17B-methyl-carbonyl group. Synthetic analogs of neurosteroids
are prepared by additional moieties at C3-position (e.g., ganaxolone), C2-
and C11-positions (alphaxolone), and C11-position (minaxolone).

This review describes the pathophysiological role of major
endogenous neurosteroids in seizure disorders and the promise
of neurosteroid replacement therapy in epilepsy. This review also
summarizes the current status of synthetic neurosteroids and
their therapeutic potentials. The main focus of the review is on
GABAergic neurosteroids with anticonvulsant activity. Endoge-
nous neurosteroids, such as pregnenolone, pregnenolone sulfate,
and dehydroepiandrosterone sulfate, which promote neuronal
excitability and seizures, are not discussed here because such
description is beyond the scope of this article. The paradoxical
effect of allopregnanolone are discussed elsewhere (Bickstrom
etal., 2011).

OVERVIEW OF NEUROSTEROID POTENTIATION OF GABA-A
RECEPTORS

Neurosteroids rapidly alter neuronal excitability through direct
interaction with GABA-A receptors (Harrison and Simmonds,
1984; Majewska et al., 1986; Harrison et al., 1987; Gee et al., 1988;
Hosie et al., 2007, 2009), which are the major receptors for the
inhibitory neurotransmitter GABA. Activation of the GABA-A
receptor by various ligands leads to an influx of chloride ions
and to a hyperpolarization of the membrane that dampens the
excitability. Allopregnanolone and other structurally related neu-
rosteroids act as positive allosteric modulators and direct acti-
vators of GABA-A receptors (Figure 2). At low concentrations,
neurosteroids potentiate GABA-A receptor currents, whereas at
higher concentrations, they directly activate the receptor (Harri-
son et al.,, 1987; Reddy and Rogawski, 2002). Like barbiturates,
neurosteroid enhancement of GABA-A receptors occurs through
increases in both the channel open frequency and channel open
duration (Twyman and Macdonald, 1992; Lambert et al., 2009;
Ramakrishnan and Hess, 2010).

The GABA-A receptor is a pentamer consisting of five subunits
that form a chloride channel. Sixteen subunits (a1-6, $1-3, y1-
3, 8,6,0, and 1 subunits) have been identified so far. The GABA
site is located at the interface between a and P subunits. Ben-
zodiazepines bind at the interface between o and y subunits
and they interact with subunit combinations ®1,2,3,582y2. The
effect of neurosteroids on GABA-A receptors occurs by binding to
discrete sites on the receptor—channel complex that are located
within the transmembrane domains of the a- and B-subunits

phasic inhibition

tonic inhibition

FIGURE 2 | Neurosteroid modulation of synaptic and extrasynaptic
GABA-A receptors. Postsynaptic GABA-A receptors, which are pentameric
chloride channels composed of 2a2By subunits, mediate the phasic portion
of GABAergic inhibition, while extrasynaptic GABA-A receptors, pentamers
composed of 2a2B8 subunits, primarily contribute to tonic inhibition in the
hippocampus. Neurosteroids activate both synaptic and extrasynaptic
receptors and enhance the phasic and tonic inhibition. Therefore, they may
promote effective inhibition of seizures. Two different strategies —
concomitant augmentation of both phasic and tonic inhibition and selective
augmentation of tonic inhibition — are being tested in epilepsy models.

(Hosie et al., 2006, 2007), which they access by lateral mem-
brane diffusion (Chisari et al., 2009, 2010). The binding sites for
neurosteroids are distinct from the recognition sites for GABA,
benzodiazepines, and barbiturates (Hosie et al., 2009). Andro-
genic neurosteroids such as androstanediol may interact with these
sites, and a recent study indicates that this agent is a positive
allosteric modulator of GABA-A receptors (Reddy and Jian, 2010).
In whole-cell recordings from acutely dissociated hippocampus
CAl pyramidal cells in mice, androstanediol (but not its 3f-
epimer) produced a concentration-dependent enhancement of
GABA-activated currents (ECsg, 5 wM). At 1 wM, androstanediol
produced a 50% potentiation of GABA responses. In the absence
of GABA, androstanediol has modest direct effects on GABA-A
receptor-mediated currents even at high concentrations, indicat-
ing that it has lower direct efficacy than allopregnanolone and
THDOC.

Although neurosteroids act on all GABA-A receptor isoforms,
they have large effects on extrasynaptic 8-subunit-containing
GABA-A receptors that mediate tonic currents (Belelli et al,
2002; Wohlfarth et al., 2002). The potentiation of 3-subunit-
containing receptors by THDOC and other neurosteroids is selec-
tive for channels with low-efficacy gating characteristics marked
by brief bursts and channel openings in conditions of both low
and high GABA concentrations, and neurosteroids can thereby
preferentially increase the efficacy of these receptors based on
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pharmacokinetics which are not yet fully understood (Bianchi
and Macdonald, 2003). Neurosteroids therefore markedly enhance
the current generated by 3-subunit-containing receptors even in
the presence of saturating GABA concentrations. Consequently,
GABA-A receptors that contain the 3-subunit are highly sensitive
to neurosteroid potentiation and mice lacking 3-subunits show
drastically reduced sensitivity to neurosteroids (Mihalek et al.,
1999; Spigelman et al., 2002). Tonic current causes a steady inhi-
bition of neurons and reduces their excitability. Neurosteroids
therefore could play a role in setting the level of excitability
by potentiation of tonic inhibition during seizures when ambi-
ent GABA rises (Stell et al., 2003). This phenomenon is being
investigated to characterize the developmental and physiological
implications of neurosteroid activation of tonic currents in the
hippocampus and other areas.

The GABA-A receptor mediates two types of GABAergic inhibi-
tion, now stratified into synaptic (phasic) or extrasynaptic (tonic)
inhibition (Figure 2). Although GABA activates synaptic (y2-
containing) GABA-A receptors with high efficacy, GABA activa-
tion of the extrasynaptic (3-containing) GABA-A receptors are
limited to low-efficacy activity characterized by minimal desensi-
tization and brief openings. Physiological tonic currents of GABA
receptors are dependent on the pentamer subunit composition
and fairly independent of physiological levels of ambient, exoge-
nous GABA (McCartney et al., 2007; Ransom et al., 2010). The
high sensitivity of 3-containing receptor channels to neurosteroid
modulation may be dependent on the §-subunit or the low-efficacy
channel function that it confers. There is evidence that neu-
rosteroids preferentially enhance low-efficacy GABA-A receptor
activity independent of subunit composition (Bianchi and Mac-
donald, 2003). Gaboxadol also modulates 8-subunit receptor iso-
forms at higher concentrations, acting as a superagonist, resulting
in an induced higher efficacy gating pattern than either GABA or
muscimol (Mortensen et al., 2010). Novel therapeutic approaches
are being developed based on the emerging information on neu-
rosteroid interaction with GABA-A receptors (Murashima and
Yoshii, 2010).

Some endogenous neurosteroids are known to interact with
GABA-A receptor and block its inhibitory function. Such neu-
rosteroids include pregnenolone, pregnenolone sulfate (PS),
dehydroepiandrosterone, and dehydroepiandrosterone sulfate
(DHEAS). PS inhibits the GABA-A receptor function, and is also
moderately potent allosteric agonist at NMDA receptors (Wu et al.,
1991; Majewska, 1992). PS and DHEAS are proconvulsant steroids
and can induce seizures when administered systemically or directly
into the brain (Reddy and Kulkarni, 1998; Kokate et al., 1999;
Williamson et al., 2004). The proconvulsant actions of PS are
evident at high micromolar concentrations, which are 100- to
500-fold higher than its levels in the brain. Thus, it is highly
unlikely that endogenous PS by itself can trigger seizures. However,
PS can decrease GABAergic inhibitory transmission at physio-
logical concentrations via a presynaptic action (Teschemacher
et al., 1997; Mtchedlishvili and Kapur, 2003). Allopregnanolone
blocks the seizure facilitating effects of PS and DHEAS, and
consequently, these sulfated neurosteroids could contribute to
seizure susceptibility when allopregnanolone and THDOC levels
are low.

ANTICONVULSANT ACTIVITY OF NEUROSTEROIDS

Allopregnanolone-like neurosteroids are powerful anticonvul-
sants. Exogenously administered neurosteroids, like other agents
that act as positive GABA-A receptor modulators, exhibit broad-
spectrum anticonvulsant effects in diverse rodent seizure models
(Reddy, 2010). Neurosteroids protect against seizures induced by
GABA-A receptor antagonists, including pentylenetetrazol and
bicuculline, and are effective against pilocarpine-induced lim-
bic seizures and seizures in kindled animals (Belelli et al., 1989;
Kokate et al., 1994; Frye, 1995; Wieland et al., 1995; Reddy et al.,
2004). Like other GABAergic agents, they may exacerbate gen-
eralized absence seizures (Snead, 1998; Citraro et al., 2006). As
shown in Table 1, the potencies of neurosteroids in models where
they confer seizure protection vary largely in accordance with their
activities as positive allosteric modulators of GABA-A receptors.
Thus, allopregnanolone is roughly equally potent as THDOC,
but androstanediol and androsterone are somewhat less potent
(Reddy, 2004a,b; Kaminski et al., 2005). Like other GABAergic
agents, neurosteroids are inactive or only weakly active against
seizures elicited by maximal electroshock. Neurosteroids are highly
active in the 6-Hz model, a better paradigm in which limbic-
like seizures are induced by electrical stimulation of lower fre-
quency and longer duration than in the maximal electroshock
test (Kaminski et al., 2004). Androstanediol, but not its 33-epimer,
produced a dose-dependent suppression of behavioral and electro-
graphic seizures in the mouse hippocampus kindling (Reddy and
Jian, 2010). The estimated concentrations of androstanediol pro-
ducing 50% seizure protection in the kindling model (~10 uM)

Table 1 | Antiseizure profile (EDsg values) of endogenous
neurosteroids in animal seizure models.

Seizure model Allopregnanolone THDOC Androstanediol
KINDLING MODELS

Amygdala kindling 14 (8-23) 15 (10-30) ND
Hippocampus 3.5 ND 50 (36-64)
kindling

ELECTROSHOCK MODELS

Maximal 29 (19-44) 48 (35-66) ND
electroshock

6-Hz stimulation 14 (10-19) ND ND

CHEMOCONVULSANT MODELS

Pentylenetetrazol 12 (10-15) 19 (77-122) 40 (27-60)
Bicuculline 12 (10-15) 12 (10-15) 44 (24-81)
Picrotoxin 10 (5-19) 10 (5-19) 39 (21-74)
N-methyl-D- >40** >40** >200**
aspartate

4-Aminopyridine >40** >40** >200%**
STATUS EPILEPTICUS MODELS

Pilocarpine 7 (4-13) 7 (4-13) 81 (45-133)
Kainic acid > 40** >40%* >200**

The potency of neurosteroids is expressed in terms of EDs,, which is the dose
in mg/kg producing seizure protection in 50% of animals. Values in parentheses
are 95% confidence limits. ND, not determined.

**Considered as inactive because of such high (sedative or anesthetic) doses.
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are within the range of concentrations that potentiate GABA-A
receptor function in CA1 pyramidal neurons.

In addition, neurosteroids are also highly effective in suppress-
ing seizures due to withdrawal of GABA-A receptor modulators
including neurosteroids and benzodiazepines, as well as other
types of agents such as ethanol and cocaine (Devaud et al., 1996;
Tsuda et al., 1997; Reddy and Rogawski, 2001). In contrast to ben-
zodiazepines, where utility in the chronic treatment of epilepsy is
limited by tolerance, anticonvulsant tolerance is not evident with
neurosteroids (Kokate et al., 1998; Reddy and Rogawski, 2000a).
Thus, neurosteroids have the potential to be used in the chronic
treatment of epilepsy. Unlike benzodiazepines, neurosteroids are
able to modulate all isoforms of GABA-A receptors, including
those that contain benzodiazepine-insensitive a4 and a6 subunits
or lack the obligatory y2 subunit required for benzodiazepine-
sensitivity. Thus, it is clear that neurosteroids can act on GABA-A
receptors where the proposed benzodiazepine tolerance mecha-
nisms have been invoked by chronic GABAergic drug therapy or
other endogenous conditions. Surprisingly, while chronic neu-
rosteroid exposure does not lead to anticonvulsant tolerance,
neurosteroid exposure does lead to tolerance for benzodiazepines
(Reddy and Rogawski, 2000a). Thus, it appears that the same plas-
tic changes that underlie benzodiazepine tolerance are brought
into play by chronic neurosteroid exposure. However, neuros-
teroids acting at distinct sites on GABA-A receptors and exhibiting
effects on the full range of GABA-A receptor isoforms, do not
exhibit anticonvulsant tolerance. Overall, neurosteroids are more
robust anticonvulsants than benzodiazepines.

ANTIEPILEPTOGENIC ACTIVITY OF NEUROSTEROIDS
In addition to anticonvulsant activity, there is emerging evidence
that endogenous neurosteroids play a role in regulating epilep-
togenesis (Edwards et al., 2001; Biagini et al., 2006, 2009, 2010;
Reddy et al., 2010), The term “epileptogenesis” is used to describe
the complex plastic changes in the brain that, following a pre-
cipitating event, convert a normal brain into a brain debilitated
by recurrent seizures (Pitkinen et al., 2009). Limbic epilepsy is
caused by diverse precipitating factors such as brain injury, stroke,
infections, or prolonged seizures. Using the kindling model, we
demonstrated that the development and persistence of limbic
epileptogenesis are impaired in mice lacking progesterone recep-
tors (Reddy and Mohan, 2011). To explore mechanisms underlying
the observed seizure resistance, we investigated the role of neuros-
teroids using finasteride, a 5a-reductase inhibitor that blocks the
synthesis of progesterone-derived neurosteroids. We determined
the rate of rapid kindling in both control animals and those which
had received injections of progesterone with or without concur-
rent finasteride treatment (Figure 3A). Progesterone produced a
significant delay in the rate of kindling and pretreatment with
finasteride blocked progesterone’s inhibition of kindling epilepto-
genesis. These findings are consistent with a contributory role of
neurosteroids in limbic epileptogenesis. Thus, it is possible that
inhibition of neurosteroids could incite mechanisms that may
promote epileptogenesis.

Following pilocarpine-induced status epilepticus (SE) in the
rat, the neurosteroidogenic enzyme P450scc is upregulated for sev-
eral weeks, suggesting that it may be associated with promotion of
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FIGURE 3 | Role of neurosteroids in the limbic epileptogenesis. (A)
Rapid kindling. Mice treated with the neurosteroid precursor progesterone
(P) displayed marked retardation of rapid hippocampus epileptogenesis, as
expressed by a slower rate of kindling development for stage 5 seizures.
P's inhibition of kindling epileptogenesis was blocked by finasteride. P
(25 mg/kg, sc) was given 30-min prior to stimulation sessions and
finasteride (50 mg/kg, ip) was injected 1 h before P treatment. *p < 0.01 vs.
vehicle control, #p < 0.01 vs. P treatment alone. Adapted from Reddy and
Mohan (2011). (B) Regular kindling. Rate of kindling (number of stimulations
required to elicit behavioral stage 5 seizures) was significantly delayed in
progesterone-treated animals. Progesterone (25 mg/kg, sc) was given
30-min prior to stimulation sessions. Adapted from Reddy et al. (2010).

neurosteroidogenesis (Biagini et al., 2009). Ordinarily, rats develop
spontaneous recurrent seizures following a latent period of sim-
ilar duration to the period during which P450scc is elevated.
Inhibiting neurosteroid synthesis with finasteride accelerated the
onset of spontaneous recurrent seizures (Biagini et al., 2006),
suggesting that endogenous neurosteroids play a role in restrain-
ing epileptogenesis or at least that they inhibit the expression of
seizures.

The development of epilepsy is linked to complex alterations
in neuroplastic mechanisms. Dysregulation of neurosteroid syn-
thesis may also play a role. This premise is being tested in various
epileptogenic models (Reddy and Mohan, 2011). We investigated
the role of the prototype endogenous neurosteroid allopreg-
nanolone in controlling limbic epileptogenesis. Treatment with
finasteride, a neurosteroid synthesis inhibitor, resulted in a sig-
nificant increase in epileptogenesis in the hippocampus kindling
model. Exogenous administration of allopregnanolone, at doses
that produce levels similar to gonadotropins, markedly inhibited
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epileptogenesis. Based on these pilot studies, it is suggested that
augmentation of neurosteroid synthesis may represent a unique
strategy for preventing or retarding epileptogenesis.

Exogenous treatment with neurosteroids or with progesterone
(P), which serves as a precursor for neurosteroid synthesis, has
also been reported to delay the occurrence of epileptogenesis
(Reddy et al., 2010). P targets multiple molecular and cellu-
lar mechanisms relevant to epileptogenesis including signaling
cascades of inflammation, apoptosis, neurogenesis, and synap-
tic plasticity (Roof and Hall, 2000; Patel, 2004; Vezzani, 2005;
Meffre et al., 2007; Stein and Sayeed, 2010). Therefore, P may
be a natural disease-modifying agent. However, the potential
disease-modifying effect of P in epileptogenic models is not widely
investigated. Recently, we examined the effects of P on the devel-
opment of hippocampus kindling in rodent models (Reddy et al.,
2010). P significantly suppressed the rate of development of
behavioral kindled seizure activity evoked by daily hippocam-
pus stimulation at doses that do not significantly affect seizure
expression and motor performance (Figure 3B), indicating a
disease-modifying effect of P on limbic epileptogenesis. There
was a significant increase in the rate of “rebound or withdrawal”
kindling during drug-free stimulation sessions following abrupt
discontinuation of P treatment. A washout period after termi-
nation of P treatment prevented such acceleration in kindling.
These studies suggest that P exerts disease-modifying effects in
the limbic epileptogenesis and it is likely that this effect of P
may occur partly through neurosteroid mechanisms. Thus, it is
likely that neurosteroids themselves or modulators of neurosteroid
disposition could potentially have disease-modifying therapeutic
activity.

ROLE OF ENDOGENOUS NEUROSTEROIDS IN EPILEPSY

Neurosteroids may play a key role in the physiological regulation
of seizure susceptibility in individuals with epilepsy. Endoge-
nous neurosteroids may affect seizures situations in catamenial
epilepsy, stress, temporal lobe epilepsy (TLE), and alcohol with-
drawal (Reddy, 2009a; Kim et al., 2010). However, it is noteworthy
that there is no evidence that alterations in neurosteroid levels
in the absence of preexisting epilepsy can induce epileptogen-
esis. Indeed, 5a-reductase inhibitors such as finasteride, which
are widely used clinically for the treatment of benign prostatic
hypertrophy and male pattern hair loss, effectively inhibit neuros-
teroidogenesis. Increased incidence of seizures is not evident in
patients taking finasteride. Nevertheless, it is possible that alter-
ations in neurosteroidogenesis may play a role as inciting factors
in the development and persistence of limbic epilepsy (Reddy
and Mohan, 2011). Our recent work provides important new evi-
dence that the availability of neurosteroids does indeed critically
influence the propensity for seizures (Reddy and Zeng, 2007). We
used epileptic female rats that had experienced SE. Spontaneous
seizure activity was monitored for up to 5months. The epilep-
tic animals exhibited about two seizures per day, each lasting
approximately a minute. Gonadotropin induced increase in neu-
rosteroids was associated with reduced seizure intensity. However,
when neurosteroids were withdrawn by using the neurosteroid
synthesis inhibitor finasteride, a significant (two-fold) increase in
seizure frequency was observed (Reddy, 2009a). These findings are

confirmed in a recent study that utilized ovariectomized epileptic
animals (Lawrence et al., 2010).

CATAMENIAL EPILEPSY

Catamenial epilepsy, the cyclical occurrence of seizure exacerba-
tions during particular phases of the menstrual cycle in women
with preexisting epilepsy, is a specific form of pharmacoresistant
epilepsy. There are about 1.5 million women of child-bearing age
with epilepsy in the United States; catamenial seizure exacerba-
tions affect up to 70% of these women (Herzog et al., 2004; Bazan
et al., 2005; Quigg et al., 2009; Reddy, 2009a; Kim et al., 2010;
Verrotti et al., 2010). Although there are several forms of cata-
menial epilepsy, neurosteroids have been implicated only in the
seizure exacerbations that occur in the most common situation,
which is when women with normal menstrual cycles experience
seizure exacerbations in the perimenstrual period. It is hypothe-
sized that withdrawal of progesterone-derived neurosteroids leads
to enhanced brain excitability predisposing to seizures. During the
menstrual cycle, circulating progesterone levels are low in the fol-
licular phase but rise in the mid-luteal phase for about 10-11 days,
before declining in the late luteal phase. Circulating allopreg-
nanolone levels parallel those of its parent progesterone (Tuveri
et al., 2008). In addition to neurosteroid fluctuations, plasticity
in GABA-A receptor subunits could play a role in the enhanced
seizure susceptibility in perimenstrual catamenial epilepsy. Animal
studies have shown that prolonged exposure to allopregnanolone
followed by withdrawal such as that occurs during menstrua-
tion causes a marked increase in expression of the a4-subunit, a
key subunit linked to enhanced neuronal excitability, seizure sus-
ceptibility, and benzodiazepine resistance (Gulinello et al., 2001;
Maguire et al., 2005; Shen et al., 2005; Smith and Gong, 2005;
Smith et al., 2007; Gangisetty and Reddy, 2010). Although a4
can coassemble with y2 to form synaptic GABA-A receptors, it
preferentially coassembles with § to form extrasynaptic GABA-
A receptors. Overall, these neuroendocrine changes can result
in reduced inhibition resulting in enhanced excitability, which,
among other effects, predisposes to catamenial seizures.

We have developed a rodent model of perimenstrual catame-
nial epilepsy (Reddy et al., 2001; Reddy and Zeng, 2007). Rodents
have a 4- to 5-day estrous cycle and studies of fluctuations in
seizure susceptibility in cycling female rodents have not led to
results that are relevant to the human menstrual cycle. In order
to provide a model that more closely mimics the human situa-
tion, a condition of elevated progesterone was created in rats by
gonadotropin treatment. This resulted in prolonged high circulat-
ing levels of estrogen and progesterone similar to those that occur
in the luteal phase of the menstrual cycle. Then, to simulate the
withdrawal of allopregnanolone that occurs at the time of men-
struation, the animals were treated with finasteride 11 days after
the initiation of gonadotropin treatment. Withdrawal of neuros-
teroids had led to decreased seizure threshold and increased seizure
activity (Reddy et al., 2001). We have conducted additional studies
using this paradigm in female rats with spontaneous recurrent
seizures (Reddy and Zeng, 2007). In epileptic animals, neuros-
teroid withdrawal was associated with a marked increase in seizure
frequency. In women with epilepsy, finasteride therapy had led to
an increase in seizure frequency and severity (Herzog and Frye,
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2003), suggesting that endogenous neurosteroids do modulate
seizure susceptibility.

The neurosteroid allopregnanolone is involved in the patho-
physiology of catamenial epilepsy. It is suggested that seizure
susceptibility decreases when neurosteroid levels are high (mid-
luteal phase), and increases during their withdrawal (perimen-
strual periods) in close association with specific changes in GABA-
A receptor subunits expression in the hippocampus. This premise
has been investigated using a mouse hippocampus kindling model
of catamenial epilepsy. Our results show that fully kindled mice
undergoing neurosteroid withdrawal have increased generalized
seizure frequency and intensity; enhanced seizure susceptibil-
ity; and, similar to the clinical catamenial seizure phenotype,
reduced benzodiazepine-sensitivity, and enhanced neurosteroid
potency (Gangisetty and Reddy, 2010; Reddy and Gould, 2011).
The increased susceptibility to seizures and alterations in anti-
seizure drug responses are associated with increased abundance of
the 8 and a4-subunits of GABA-A receptors in the hippocampus.
However, the molecular mechanisms underlying the upregula-
tion of a4-subunit expression remain unclear. The role of PRs
and the transcription factor early growth response factor-3 (Egr3)
in regulation of the GABA-A receptor a4-subunit expression in
the hippocampus was investigated in a mouse neurosteroid with-
drawal paradigm (Gangisetty and Reddy, 2010). Neurosteroid
withdrawal-induced a threefold increase in a4-subunit expression
in WT mice, but this upregulation was undiminished in PR knock-
out mice. The expression of the transcription factor early growth
response factor-3 (Egr3), which controls a4-subunit transcription,
was increased significantly following neurosteroid withdrawal in
WT and PR knockout mice. Neurosteroid withdrawal-induced a4-
subunit upregulation was completely suppressed by antisense Egr3
inhibition. These results support that neurosteroid withdrawal-
induced upregulation of GABA-A receptor a4-subunit expression
is mediated by the Egr3 via a PR-independent signaling pathway.

The neurosteroid withdrawal model of catamenial epilepsy
was used to investigate therapies for perimenstrual catamenial
epilepsy (Reddy and Rogawski, 2000b, 2001). A key result is that
conventional antiepileptic drugs, including benzodiazepines and
valproate, are less potent in protecting against seizures during
the period of enhanced seizure susceptibility following neuros-
teroid withdrawal. This pharmacoresistance appears to mimic
the situation in women with catamenial epilepsy where break-
through seizures occur despite treatment with antiepileptic drugs.
In contrast to the results with conventional antiepileptic drugs,
neurosteroids, including allopregnanolone, THDOC, and their
5B-isomers, were found to have enhanced activity in the catame-
nial epilepsy model (Reddy and Rogawski, 2001). This suggested
a “neurosteroid replacement” approach to treat catamenial seizure
exacerbations (Reddy and Rogawski, 2009). A neurosteroid could
be administered in a “pulse” prior to menstruation and then with-
drawn, or continuously administered throughout the month. The
neurosteroid would be administered at low doses to avoid sedative
side effects. Such low doses are expected to contribute little anti-
convulsant activity during most of the menstrual cycle. Patients
would still require treatment with conventional antiepileptic med-
ications. However, during the period of enhanced seizure sus-
ceptibility at the time of menstruation, the increased potency of

the neurosteroid would confer protection against perimenstrual
seizure exacerbations. It is noteworthy that while the anticon-
vulsant activity of neurosteroids increases in conjunction with
neurosteroid withdrawal, there is no corresponding increase in
side effects (Reddy and Rogawski, 2009). Therefore, side effects
would not be expected to be enhanced negating the potential of
the therapeutic approach.

Although neurosteroids seem to be the most direct approach
to the treatment of catamenial epilepsy, there is only limited anec-
dotal data is available to support their use (McAuley et al., 2001).
No neurosteroid is currently approved by the United States Food
and Drug Administration (FDA). In contrast, two open-label tri-
als have shown that adjunctive progesterone therapy produces
significant reductions in seizure occurrence (Herzog, 2009). It
is recommended that the hormone be administered during the
entire second half of the menstrual cycle and tapered gradually
as it is believed that abrupt discontinuation can result in rebound
seizure exacerbation. Synthetic analogs of neurosteroids may over-
come certain obstacles and side effects associated with natural
progesterone therapy (see below, Neurosteroid Therapy section).
Other therapeutic approaches may also be helpful for managing
catamenial seizures (Vilos et al., 2011).

STRESS-SENSITIVE SEIZURE CONDITIONS
Neurosteroids are released during physiological stress. Stress
results in the hypothalamic release of corticotropin-releasing hor-
mone, which liberates ACTH from the anterior pituitary. Along
with cortisol, ACTH also enhances the synthesis of adrenal deoxy-
corticosterone (Tan and Mulrow, 1975; Kater et al., 1989), which
is released into the circulation and can serve as a precursor for
synthesis of the neurosteroid THDOC (Figure 1). In contrast to
allopregnanolone, which is present in the brain even after adrena-
lectomy and gonadectomy, THDOC appears to be derived nearly
exclusively from adrenal sources (Purdy et al., 1990; Reddy, 2003).
Plasma and brain levels of THDOC and allopregnanolone rise
rapidly following acute stress (Purdy et al., 1991; Concas et al,,
1998; Reddy and Rogawski, 2002). Acute stressors such as swim-
ming, foot shock or carbon dioxide exposure elicit an increase in
allopregnanolone and THDOC concentrations in plasma and in
brain (Barbaccia et al., 1996, 1997; Vallee et al., 2000).
Stress-induced neurosteroids have been demonstrated to ele-
vate seizure threshold (Reddy and Rogawski, 2002). Stress-induced
seizure protection could be due to circulating neurosteroids syn-
thesized in peripheral tissues or to those produced locally in the
brain. However, the effect of swim stress-induced increases in
seizure threshold and THDOC levels in rats were abolished in
adrenalectomized animals, implicating adrenal-derived THDOC.
Despite stress-induced seizure protection in animals, patients, and
clinicians are not likely to recognize a reduction in seizure fre-
quency associated with stress. Indeed, stress has been reported
to trigger seizure activity in persons with epilepsy (Temkin and
Davis, 1984; Frucht et al., 2000). During stressful episodes adrenal
hormone levels are expected to fluctuate and it may simply be
the withdrawal of THDOC during such fluctuations that is asso-
ciated with seizure provocation. Alternatively, other unidentified
hormonal factors with proconvulsant activity may be responsible
for stress-induced increases in seizures. However, chronic stress of
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the type experienced by patients with epilepsy likely has different
endocrinological consequences than acute stress. The effects on
seizures of fluctuations in neurosteroids in chronic stress remain
to be studied.

TEMPORAL LOBE EPILEPSY

Neurosteroids may play a role in limbic epilepsy. Sexual and repro-
ductive dysfunction are common among persons with epilepsy
(Edwards et al., 2000). In particular, men with TLE often have
diminished libido and sexual potency that is associated with low
testosterone levels (Herzog et al., 1986; Brunet et al., 1995; Her-
zog, 2002). This hypogonadal state has been attributed to the
effects of certain hepatic enzyme-inducing antiepileptic drugs, or
alternatively — given the extensive connections between tempo-
ral lobe structures such as the amygdala and hypothalamic nuclei
that govern the production and secretion of gonadotropin releas-
ing hormone — to suppression of the hypothalamic—pituitary—
gonadal axis by limbic seizures. There is evidence that serum
androgens normalize after temporal lobe surgery which results
in successful seizure control but not in those that continue to
have seizures. This supports the view that seizures are responsi-
ble for the hypoandrogenic state (Bauer et al., 2000). Testosterone,
as noted previously, is a precursor for at least three neurosteroids
with anticonvulsant properties: 5a-androstanediol, androsterone,
and etiocholanolone (Reddy, 2004a,b; Kaminski et al., 2005; Reddy
and Jian, 2010). There is evidence that serum levels of at least two
of these steroids (androsterone and etiocholanolone) are reduced
in men with epilepsy compared with control subjects (Brunet
et al., 1995). It is conceivable that reduced levels of such anticon-
vulsant neurosteroids leads to enhanced propensity for seizures
and thus neurosteroid replacement might be a useful therapeutic
approach.

Certain biological factors in TLE may influence the sensitiv-
ity to endogenous neurosteroids and could have an impact on
the efficacy of exogenous neurosteroids used in epilepsy therapy.
Studies in a SE model of TLE have shown a striking reduction in 8-
subunit-containing GABA-A receptors in the dentate gyrus (Peng
etal.,, 2004; Zhang et al., 2007), suggesting that neurosteroid effects
on non-synaptic GABA-A receptors may be reduced. In addition,
in dentate gyrus granule cells neurosteroid modulation of synap-
tic currents is diminished and o4-subunit-containing receptors
are present at synapses (Sun et al., 2007). All of these changes
may exacerbate seizures in epileptic animals but may reduce the
efficacy of endogenous neurosteroids. The expression of neuros-
teroidogenic enzymes such as P450scc and 30-HSOR appears to
be elevated in the hippocampus in animals and human subjects
affected by TLE (Stoffel-Wagner et al., 2000, 2003; Biagini et al.,
2009). If local neurosteroidogenesis is enhanced, this may in part
counteract the epileptogenesis-induced changes.

ALCOHOL-WITHDRAWAL SEIZURES

Alcohol withdrawal is known to be associated with seizures. Sys-
temic administration of moderate doses (1-2.5 g/kg) of ethanol
causes increases in plasma and brain neurosteroids that may con-
tribute to many of the behavioral effects of ethanol in rodents
(Morrow et al., 2006). This effect of ethanol is believed to be due
to activation of the hypothalamic—pituitary—adrenal axis. As is the

case in the catamenial epilepsy model, chronic ethanol-induced
elevations in neurosteroids lead to an enhancement in the anti-
convulsant actions of the neurosteroids allopregnanolone and
THDOC (Devaud et al., 1996). These effects are associated with
increases in the sensitivity of GABA-A receptors to neurosteroids
(Morrow et al., 2006). Endogenous neurosteroids may protect
against ethanol withdrawal seizures. However, ethanol induction
of allopregnanolone is diminished in tolerant and dependent
animals. Reduced availability of allopregnanolone under such cir-
cumstances may be a factor that predisposes to alcohol-withdrawal
seizures. As is the case with catamenial epilepsy, neurosteroid
replacement could conceivably be useful in the treatment of
alcohol-withdrawal seizures, given that current pharmacological
approaches are not entirely satisfactory.

STATUS EPILEPTICUS

Novel therapies are desperately needed for refractory SE, an emer-
gency neurological condition characterized by persistent seizures
lasting more than 30 min, progressive internalization of synaptic
GABA-A receptors, and benzodiazepine resistance. The extrasy-
naptic 8-subunit-containing GABA-A receptors that generate
“tonic” inhibition do not internalize during SE, so that neu-
rosteroids, which are positive modulators of extrasynaptic and
synaptic GABA-A receptors with robust anticonvulsant activity,
could be more effective treatments for SE. Neurosteroids have
been tested in animal models of SE (Kokate et al., 1996; Reddy,
2009b). Our recent studies indicate that THDOC therapy can
effectively terminate electrographic and behavioral SE induced
chemically by lithium-pilocarpine in rats (Kuruba and Reddy,
2011). We found that with early and late administration after SE
onset, THDOC successfully aborted seizures with sustained sup-
pression of SE, a profile superior to the benzodiazepine diazepam.
In addition, THDOC therapy may confer significant neuroprotec-
tion by diminishing the neuronal cell death associated with SE.
Further studies are needed to clarify whether neurosteroids might
be valuable in the treatment of SE.

NEUROSTEROID THERAPY OF EPILEPSY

Despite intense research on neurosteroids, there is no
neurosteroid-based drug available for patients. Ganaxolone, the
synthetic 3B-methyl derivative of allopregnanolone, is the only
neurosteroid that has been evaluated for the treatment of epilepsy
in humans (Monaghan et al., 1999; Carter et al., 1997). Unlike allo-
pregnanolone and related natural neurosteroids that can undergo
back conversion by 30-HSOR isoenzymes to hormonally active
intermediates, the 3p-methyl substituent of ganaxolone elimi-
nates such metabolism and thereby avoids hormonal side effects.
Ganaxolone has similar pharmacological properties to the natural
neurosteroids such as allopregnanolone (Reddy and Woodward,
2004). It has protective activity in diverse rodent seizure mod-
els, including clonic seizures induced by the chemoconvulsants
pentylenetetrazol, bicuculline, flurothyl, aminophylline; limbic
seizures in the 6-Hz model; amygdala and cocaine-kindled
seizures; and corneal kindled seizures (Gasior et al., 2000; Lip-
tdkova et al., 2000; Reddy and Rogawski, 2000a, 2010b; Kaminski
et al., 2003, 2004). During prolonged daily treatment, tolerance
does not develop with the anticonvulsant activity of ganaxolone
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(Kokate et al., 1998; Reddy and Rogawski, 2000a). In our recent
study in female amygdala kindled mice, ganaxolone elicited strong
suppression of behavioral and electrographic seizures with EDs5
of 6.6 mg/kg (Reddy and Rogawski, 2010b). Ganaxolone treatment
was associated with significant reduction in the afterdischarge
duration. As expected, there was a substantial suppression of
behavioral and electrographic seizures in mice treated with clon-
azepam. While clonazepam was more potent than ganaxolone, the
overall maximal efficacy of both drugs was similar. These stud-
ies provide strong evidence that the synthetic neurosteroid analog
ganaxolone is highly effective antiseizure agent in the amygdala
kindling model, which is a clinically relevant model of complex
partial epilepsy.

CLINICAL STUDIES

Ganaxolone has been tested in various clinical trials to assess effi-
cacy in the treatment of epilepsy (Reddy and Woodward, 2004;
Rogawski et al., 2010). More than 900 subjects have received the
drug at doses up to 1875 mg/day in adults and up to 54 mg/kg/day
in children in phase 1 normal volunteer studies, epilepsy trials,
and also clinical trials for migraine. Overall, the drug is safe
and well tolerated. The most common side effect is reversible
dose-dependent sedation. One epilepsy trial used the inpatient
presurgical study design in adults with partial seizures (Laxer et al.,
2000). A second study was an open-label, add-on trial in pediatric
patients with a history of infantile spasms (Kerrigan et al., 2000).
A third study was an open-label non-randomized, dose-escalation
add-on trial in highly refractory pediatric and adolescent patients;
three patients in this latter study were followed in an extension
phase over 3.5years (Pieribone et al., 2007). As discussed pre-
viously, there is limited anecdotal information supporting the
efficacy of ganaxolone in the treatment of catamenial seizure
exacerbations (McAuley et al., 2001). Recently, a double-blind,
randomized, placebo controlled study was completed in adults
with partial seizures (Rogawski et al., 2010). A separate trial was
completed in children with infantile spasms. In this study, there
was no clear statistically significant treatment effect although some
subjects did appear to demonstrate a treatment-related reduction
in spasm clusters. The adult trial included 147 subjects with par-
tial onset seizures with or without secondary generalization who
were refractory to conventional antiepileptic drugs. Ganaxolone
treatment produced an 18% decrease in mean weekly seizure
frequency, compared with a 2% increase for placebo over the
10-week treatment period. Results from the open-label extension
phase of the study indicated that ganaxolone maintains its efficacy
over time.

ADVANTAGES OF NEUROSTEROID THERAPY

An ideal new drug for epilepsy should have a rapid or interme-
diate onset of action that is effective against a broad range of
convulsive and con-convulsive seizures. It should also be effective
in SE even when given late after seizure onset, should exhibit no
tolerance, exhibit no pharmacokinetic or teratogenic effects, be
relatively safe, and readily available for clinical development. Neu-
rosteroids partly meet or exceed these expectations, and possess
several advantages: (i) Neurosteroids can be effective for broad
seizure types, even in diazepam-refractory seizures because they
can activate most GABA-A receptor isoforms; (ii) Unlike benzo-
diazepines, neurosteroids lack tolerance upon repeated or chronic
treatment which has been proven in clinical trials; (iii) They show
arapid onset and intermediate duration of action; (iv) Well estab-
lished mechanism of action at GABA-A receptors; (v) Maximal
efficacy is expected even in resistant seizures, due to their positive
and direct (non-allosteric) actions in promoting GABAergic inhi-
bition at high dosage (vi); They promote tonic inhibition that does
not rely on interneurons that may be damaged in some patients
with TLE; and (vii) They are under clinical trials for epilepsy
indications.

CONCLUSION

Neurosteroids that enhance the GABAergic neurotransmission
are potent anticonvulsants and may regulate various neuronal
excitability networks. Neurosteroids are believed to play a role in
the regulation of seizure susceptibility in the setting of preexisting
epilepsy. Menstrual and stress related fluctuations in seizures may
be related to alterations in brain neurosteroids. Additionally, men
with TLE who have a suppressed hypothalamic—pituitary—gonadal
axis may have a reduction in testosterone-derived neurosteroids
that could worsen seizures. New information on the role of neu-
rosteroids in limbic epileptogenesis is emerging. Treatment with
synthetic neurosteroids may be beneficial to patients with partial
seizures. Further studies are required to determine whether “neu-
rosteroid replacement” is a useful approach for epileptic seizures
related to endogenous neurosteroid fluctuations, such as in cata-
menial epilepsy and stress. Novel agents that increase the brain
synthesis of neurosteroids, such as TSPO ligands, may find utility
in the treatment of epilepsy.
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