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The ability of a given genotype to produce different phenotypes in response to different
environments is termed “plasticity,” and is part of the organism’s “adaptability” to envi-
ronmental cues. The expressions of suites of genes, particularly during development or
life history transitions, probably underlie the fundamental plasticity of an organism. Plas-
ticity in developmental programming has evolved in order to provide the best chances
of survival and reproductive success to organisms under changing environments. Environ-
mental conditions that are experienced in early life can profoundly influence human biology,
child growth and maturation, and long-term health and longevity. Developmental origins of
health and disease and life history transitions are purported to use placental, nutritional,
and endocrine cues for setting long-term biological, mental, and behavioral strategies for
child growth and maturation in response to local ecological and/or social conditions. The
window of developmental plasticity extends from conception to early childhood, and even
beyond to the transition from juvenility to adolescence, and could be transmitted transgen-
erationally. It involves epigenetic responses to environmental changes, which exert their
effects during life history phase transitions.
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Trait variability, irrespective of whether it is physiological, mor-
phological, behavioral, molecular, or cellular, is the leading edge of
evolution. When facing the challenge of developing an individual
that best fits its environment, nature demonstrates an interest-
ing combination of five different adaptive processes that influence
human phenotype, and each process operates on a different time
scale (Table 1; Muller, 2007; Hochberg et al., 2011a). The first
adaptive process involves changes in gene sequence and frequency
in a population or species; for this type of adaptation, time is an
important constraint – adaptive a genotype occurs over several
hundred thousand years. The second process is the modification
of homozygosity in a population, and this process occurs over sev-
eral hundred years and numerous generations. The third process
refers to plasticity, and this process occurs over the total life span
of the individual, and may be carried forward for three to four
generations. The fourth process is short-term acclimatization that
can last several months or years. The fifth adaptive mechanism
involves cultural adaptation, which also tends to be of moderate
pace in the hundreds of years.

The ability of a given genotype to produce different phenotypes
in response to different environments is termed “plasticity,” and is
part of the organism’s “adaptability” to environmental cues (Bate-
son et al., 2004). The expressions of suites of genes, particularly
during development or life history transitions, probably underlie
the fundamental plasticity of an organism (Crews et al., 2007).

Abbreviations: BMI, body mass index; DICT, delayed infancy–childhood transition;
GH, growth hormone; GH–IGF1, growth hormone – insulin-like growth factor 1;
GHR, GH receptor; HPA, hypothalamic–pituitary–adrenal; ICT, infancy–childhood
transition; IGF, insulin-like growth factor; IUGR, intrauterine growth restriction;
SDS, SD score; SGA, small-for-gestational age; T1D, type 1 diabetes mellitus; T2D,
type 2 diabetes mellitus.

It was recently appreciated that the life history evolutionary
theory is a powerful tool for understanding child growth and
development from an evolutionary perspective (Hochberg, 2009).
By applying this theory to developmental data, adaptive growth-
and metabolic-related strategies for transition from one life his-
tory phase to the next and the timing of such transitions (inherent
adaptive plasticity) have evolved.

The environmental conditions that are experienced in early life
can profoundly influence human biology and long-term health.
Early life nutrition and stress are among the best documented
examples of such conditions because they influence the adult risk
of developing metabolic diseases, such as type 2 diabetes melli-
tus (T2D), and cardiovascular diseases (Barker, 1995). Individuals
who are born small-for-gestational age (SGA) have an increased
risk of cardiovascular morbidity and mortality when they are
adults (Barker and Osmond, 1986; Barker et al., 1989; Barker,
1995, 2006). This epidemiological evidence is now supported by
an extensive experimental literature in animals (Gluckman et al.,
2008). Evidence on the importance of prenatal and early postnatal
growth for later morbidity suggests the existence of a link between
developmental responses to early environments and adult biology.
These associations are grounded in functional relationships, and
are broadly consistent with life history evolution theory.

PLASTICITY IN DEVELOPMENTAL PROGRAMMING
Environments change continuously, and a species adapts its phe-
notype to the prevailing environment, even when the environmen-
tal change is disruptive. A species is considered to be well adapted
and fit in evolutionary terms when it can survive to reproduce,
and display relative phenotypic consistency across many genera-
tions. Phenotype stability is most likely to occur when the species
has adapted to a normative range of environments which remains
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Table 1 |The five levels of stable evolutionary adaptation, their

mechanism and time scale.

Mechanism Time scale

Changes of gene frequency in a

population or species

100,000s years (deep time)

Modification of population

homozygosity

100s of years

Culture (anthropology) 100s of years

Plasticity Total life cycle of the individual +3–4

generations

Acclimatization Months or years

relatively stable on generational time-scales. Yet, organisms exist
within an environment that can change rapidly, and those species
with a relatively fixed phenotype may not be able to respond
sufficiently quickly in order to survive an unexpected environ-
mental change. Adaptive plasticity enables a species to respond
to an environmental change in order to survive and reproduce,
and may manifest itself as polyphenism (alternative phenotypes in
different environments, such as in metamorphosis) or as a contin-
uous variation in traits. However, not all developmental responses
to environmental cues have an adaptive basis. When the cue is
severe or novel, the outcome may be disruptive, and may result in
teratogenesis, disease, or death (Gluckman and Hanson, 2007a).

The predictability of environmental changes is also an impor-
tant determinant of the degree of adaptive flexibility of a species
(Hochberg et al., 2011a). In some instances, the environmental
change is highly predictable, and an adapted species exists as a
limited range of subtle, but distinct and definable, phenotypes.
Adaptive plasticity of an organism is associated with immediate
adaptive responses (forecasting or predicting), which are con-
cerned with its immediate survival with no consideration for the
long-term consequences (Gluckman and Hanson, 2007a). These
adaptive responses adjust the developmental phenotype, and com-
prise a set of processes that can be triggered by a wide range of
environmental cues in order to promote lifetime fitness.

Recognition of an environmental cue often occurs during sensi-
tive periods in the lifespan of a species, namely the prenatal period
and/or during transitions between life history phases (Hochberg,
2009; Hochberg et al., 2011a). Recognition of an environmental
cue also enables the organism to adapt or acclimatize to an envi-
ronment change, and creates future trajectories in its development.
The resultant adaptive advantage depends upon the fidelity of the
cue about the future state of the environment. High fidelity cues
enable the organism to optimize its adaptation or fit to the antici-
pated environment. Low fidelity cues carry a fitness disadvantage,
although the impact will depend upon the extent of mismatch
between the predicted and actual future environment.

Two types of adaptive responses or plasticity exist (Gluckman
and Hanson, 2007a). The first types are the anticipatory or predic-
tive adaptive responses where the developing organism forecasts
the future environment, and then adjusts its phenotypic trajec-
tory accordingly. The second types are the immediate adaptive
responses which promote short-term maternal or fetal survival
with some advantages in later life (developmental plasticity). Since

these two adaptive responses come with a significant cost, individ-
ual members of a species make a cost–benefit analysis in order to
determine the true value of an adaptive response. Within the adap-
tive responses, the organism may engage in a trade-off between
phenotypic changes in order to ensure its short-term survival at
the expense of a long-term advantage. Hence, trade-offs occur
because energy needs to be allocated in order to meet the different
metabolic and physiological demands of a developing organism.
Therefore, trade-offs can often manifest themselves as longevity
as an alternative to reduced survival of the juveniles. Such is
the consequence of embryonic fetal development when it occurs
in a deprived intrauterine environment as a result of a limited
transplacental nutrient supply. In response, the fetus protects the
development of its heart and brain at the expense of other organs,
and somatic growth is retarded. Intrauterine growth restriction
(IUGR) is an example of an immediate cryptically maladaptive
response to the environment (Gluckman and Hanson, 2005).

PLASTICITY IN PHASE TRANSITIONS OF HUMAN LIFE
HISTORY
The secular trends in child growth and puberty are dazzling exam-
ples of such adaptation (Arcaleni, 2006). European men are now
13 cm taller than they were 150 years ago. This range of plas-
ticity in growth over approximately six generations is not long
enough to result from changes in the DNA sequence. Over the
same six generations, the age of menarche in Western countries has
decreased by 4 years. This reduction has a theoretical fitness advan-
tage on the fecundity span in an environment that is rich in energy
resources, and demonstrates plasticity in the maturation of the
hypothalamic–pituitary–gonadal (HPG) axis. As a consequence
of constantly changing life conditions and environment, today’s
children may be stunted in growth or be tall, adapt their body com-
position and energy metabolism, and modulate their longevity,
fertility, and fecundity. The signals of energy balance that modulate
this plasticity are both intrinsic (internal) and extrinsic (environ-
mental; Hochberg et al., 2011a). The internal signals include leptin,
the growth hormone – insulin-like growth factor 1 (GH–IGF1)
axis, ghrelin, thyroid hormones, insulin, and the cortisone–cortisol
shuttle (11β-hydroxysteroid dehydrogenases), whereas the envi-
ronmental signals include pre-and postnatal nutrition, stressors,
endocrine disrupting chemicals (EDCs), and light (Gluckman and
Hanson, 2005).

Human growth and development is an orchestrated process
of well-recognized and predictable events with five overlapping,
yet distinct, pre-adult life history phases: the prenatal, infantile,
childhood, juvenile, and pubertal growth phases (Figure 1). The
transition periods between these phases are sensitive windows of
developmental plasticity, and there is now some evidence that the
features of transition from one phase to the next are transmitted
transgenerationally (Stein et al., 2004). With decreasing sensitivity,
the transitions between phases are periods of adaptive plasticity,
and the multifactorial regulation of growth during each phase mir-
rors the interplay between genetic, hormonal, environmental, and
psychosocial factors.

In response to environmental cues, especially those that relate
to energy resources, a life history phase can be added or deleted
(such as the added childhood phase in hominids), and can
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FIGURE 1 | Growth during pre-adult life history stages. The 50th
percentile of first derivatives for both boys (solid line) and girls (dashed line)
were calculated from the US CDC (2000) data. The upper part indicates the
four pre-adult life history stages: infancy (I), childhood (C), juvenility (J), and
adolescence (A). The three transition points are marked by a circle, and
designated as ICT, infancy–childhood transition; CJT, childhood–juvenility
transition; JAT, juvenility–adolescence transition.

have its duration, intensity, and onset time altered (Hochberg
and Albertsson-Wikland, 2008; Hochberg, 2009; Hochberg et al.,
2011a). Thus, the timing of infancy–childhood transition (ICT)
adaptively adjusts an individual’s size to the prevailing envi-
ronment in response to environmental cues (Hochberg and
Albertsson-Wikland, 2008; Gawlik et al., 2011). We have previously
reported that the ICT is a major determinant of final adult height,
and a delayed ICT is the most common cause of idiopathic short
stature (Hochberg and Albertsson-Wikland, 2008). The transition
from childhood to juvenility is entrusted with the programming
of body composition (Hochberg, 2008, 2010). The transition from
juvenility to adolescent-related puberty and the growth spurt is a
function of maturation of the HPG axis. Poor quality of life during
this transition delays fecundity and increases longevity (Pembrey
et al., 2006). Hence, a series of control mechanisms must exist in
order to enable (a) the GH–IGF1 axis to dominate as the child
transits into childhood, (b) adrenarche at the onset of juvenil-
ity, and (c) an abrupt increase in sex hormones at initiation of
puberty.

As already noted, an organism distributes its energy resources
during its life by timed allocations toward growth, maintenance,
avoiding death, reproduction, and raising offspring to indepen-
dence in order to enhance its reproductive fitness (Bogin et al.,
2007; Muller, 2007). Whereas the environment at any one geo-
graphical location may vary slowly, nutritional conditions may
change rapidly. Evolution has provided organisms with the mech-
anisms to adapt to such extremes. Humans can also use socio-
cultural adjustments to fill the gaps when the changes occur faster
than the evolutionary time scale. This can be seen when one exam-
ines the evolution of hominid life history from Australopithecus
afarensis to Homo sapiens. In humans, the duration of infancy
has become shortened, and that of childhood has been prolonged,
and these two phases are followed by a relative short juvenility and
late adolescence in order to increase fitness (Pratt et al., 1994;
Bogin et al., 2007; Hochberg, 2008). The overall result of this
strategy is increased body size and longevity, and reproduction
at a later age, as compared to other primates. This strategy has
been very successful for humans, who can thrive and propagate in

extremely diverse environments that encompass the entire range
of geographic latitudes and altitudes.

An important environmental cue for infants and young chil-
dren is the care giving behaviors of their parents, which can be used
as a predictive indicator of the security of their environment. The
resultant attachment patterns are transmitted transgenerationally
(Belsky and Fearon, 2002; Del Giudice, 2009). The degree of secu-
rity that is experienced during childhood sets development on
alternative pathways, and adaptively shapes the individual’s future
reproductive strategy. A secure attachment will result in a repro-
ductive strategy that is based on late maturation, a commitment to
a long-term relationship, and a large investment in parenting. In
terms of evolutionary developmental biology (evo-devo), which
studies the developmental mechanisms that control body shape
and form and the alterations in gene expression and function that
lead to changes in body shape and pattern (Goodman and Cough-
lin, 2000), the expected response to a secure environment will
include investment in large body size (Liu et al., 1998, 2000). This
example of transgenerational phenotypic plasticity contrasts that
of an insecure attachment and a small parental investment that
involves a large number of children: the response is a compromise
in body size, early reproduction, and short-term mating.

Child growth and body composition display a vast range
of adaptive plasticity. Short-term plasticity in the various child
growth phases and transitions suggests that epigenetic mecha-
nisms determine the extent of adaptive plasticity during growth in
response to environmental cues. In the light of these new findings,
this issue considers the utility of life history theory, and the links
between epigenetics, developmental programming, and plasticity
in early growth and nutrition. Current research in child health
strives to identify mechanisms that underlie plasticity in develop-
mental programming and life history transitions. Developmental
programming and life history transitions are purported to use
nutritional or endocrine cues for setting long-term biological
strategies in response to local ecological and/or social conditions
(Bateson et al., 2004; Gluckman and Hanson, 2007b; Kuzawa,
2007). Rapid changes in nutrition during one’s lifetime can then
lead to “mismatch” and metabolic disease (Gluckman and Han-
son, 2007b). It has been further proposed that intergenerational
influences on nutrition and growth stabilize the nutritional signals
that are received in utero in order to increase the reliability of an
intrauterine cue as a predictive signal (Kuzawa, 2007). It is now
also known that the effects of hormones, stress, and drugs during
embryogenesis can not only influence the subsequent behavioral
phenotype of the individual, but can also modify the individual’s
response to adult experiences (Crews et al., 2007).

PLASTICITY IN HUMAN GROWTH
Postnatal growth in body weight and stature can be assessed by
three measures: growth velocity, attained body size, and the timing
or “tempo” of growth, which is a measure of how rapidly an indi-
vidual achieves its growth potential. Human growth rates differ
markedly between individuals, particularly during the most rapid
phases of growth, which occur during infancy and adolescence
(Parent et al., 2003; Ong et al., 2011).

Human growth demonstrates both “elasticity” and “plasticity”
(or long-term programming) during the different growth periods.
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The concepts of growth elasticity and plasticity arose from the
results of studies in experimental animals that date back to the
sixties in which the influence of nutrition on growth was inves-
tigated. The results of these studies demonstrated that there are
critical time windows in which the outcome of a programmed
growth trajectory can be changed. McCance and Widdowson were
the first to report this phenomenon when they showed that the
exact timing of undernourishment in the growth phase can exert
either a permanent or transient effect on final body size (McCance,
1962; McCance and Widdowson, 1974). When rats are transiently
undernourished (food-restricted) in very early postnatal life, they
remained smaller throughout later life than control rats which are
not undernourished. In contrast, rats which are transiently under-
nourished during later growth phases show catch-up growth after
the period of under-nutrition and attain the same adult weights
as the control rats.

While human growth may be impacted by severe acute or
chronic diseases, there is growing awareness that growth rates, and
in particular the tempo of growth, may have marked influences on
the subsequent risks for morbidity and mortality, and hence repro-
ductive fitness. Birth weight is strongly correlated with perinatal
mortality, and is the single strongest predictor of infant survival.
Neonates who are born at term and weigh between 1500 and 2500 g
(<10th percentile) have a 5- to 30-fold increase in perinatal mor-
bidity and mortality when compared with neonates whose birth
weights lie between 10th and 90th percentiles. The strength of the
correlation between birth weight and perinatal mortality depends
on gestational age [the lower the birth weight, the higher the rate
of neonatal mortality for the estimated gestational age (Wilcox
and Skjaerven, 1992)], and also on factors that are unrelated to
gestational age. This low birth weight association with neonatal
mortality is echoed in adult life with the development of later
disease and mortality (Godfrey and Barker, 2001).

In postnatal life, there is growing evidence that the“natural vari-
ations” in body size and growth rate may have major relevance,
not only on adult height, but also more importantly on infant
and childhood survival and reproductive fitness. Pygmies are an
“extreme” example of the interplay between postnatal growth and
development, survival, and reproductive fitness. Their character-
istic small adult size does not appear to have evolved through any
positive selection for short stature, but rather as the result of a life
history trade-off between the fertility benefits of large body size
against the costs of late growth cessation in a setting of extremely
high childhood and early adult mortality (Migliano et al., 2007).

In Western settings, rapid weight gain during early postnatal
life is associated with increased risks for disease. For example, Ong
et al. (2011) showed that children who showed catch-up growth
between birth and 2 years were fatter, and have more central fat dis-
tribution at 5 years, when compared to children with normal early
growth. Ekelund et al. (2007) examined the independent associ-
ations between weight gain during infancy (0–6 months) or early
childhood (3–6 years) with components of the metabolic syn-
drome in young adults in a prospective cohort study in 128 indi-
viduals from birth to 17 years. They concluded that rapid weight
gain during infancy (0–6 months), but not during early childhood
(3–6 years), predicted the clustered metabolic risk at age 17 years.
We have recently shown in a sample of 22 natural-fertility societies

that the age at menarche correlated negatively with their average
adult body mass, and the average adult body weight positively
correlated with reproductive fitness (Hochberg et al., 2011b).

Infant feeding type and feeding patterns can also influence
growth trajectories and disease risk. Compared to formula-
feeding, breast feeding is associated with slower infant weight gain
and lower later obesity risk. The results of several meta-analyses
suggest that breast feeding has a protective effect, especially in SGA
and preterm infants (Owen et al., 2005). Experimental evidence
from several randomized control trials of nasogastric feeding of
breast milk and various nutrient formulae for 4 weeks showed
long-term differences on adiposity levels and the later propen-
sity to cardiovascular disease (Singhal et al., 2002a,b). Precocious
puberty that is associated with rapid weight gain and growth, par-
ticularly during infancy also has implications for future life events.
Ong et al. (2007) have shown that an early age of menarche confers
increased risk for disease, such as obesity, T2D, and hyperten-
sion, and death from cardiovascular disease and cancer in later life
(Lakshman et al., 2009).

Finally, the mechanisms that signal and regulate early catch-up
growth in the postnatal period may mediate or modify the associa-
tions between small size at birth and risks for disease in adulthood.
The combination of low birth weight and a subsequent high body
mass index (BMI) is related to the increased incidence of T2D in
later life. Using longitudinal data that were collected from 8760
individuals who were born in Helsinki between 1934 and 1944,
Eriksson et al. (2003) reported that the large differences in the inci-
dence of T2D were associated with growth rates in utero, weight
gain in infancy, and the age at adiposity rebound. These observa-
tions have implications for the early origins of both obesity and
cardiovascular disease in that programmable windows of human
obesity may exist during the periods of greatest weight velocity.
However, current evidence has yet failed to agree on the specific
programmable windows during postnatal growth and develop-
ment for later disease risks (Singhal et al., 2002b; Eriksson et al.,
2003; Owen et al., 2005).

FUTURE DIRECTIONS
The end-target of translational research is the patient with the goal
to improve medical care. Traditionally, translational research –
growth included – has followed medical reasoning, viewing organ-
isms as machines whose design has been optimized by engineers
to provide good health. This article takes the evolutionary rea-
soning: why those mechanisms are the way they are? Organisms
are viewed here as packages of compromises (trade-offs) between
traits shaped by natural selection to maximize reproduction.

Wide knowledge gaps still exist in our current understanding of
the phenotypic plasticity and the putative epigenetic machinery,
despite the increasing use of numerous experimental systems. As a
result, we still do not know whether some of the epigenetic mech-
anisms that have been identified thus far using these experimental
systems are operative in humans and other eutherians.

Hereditary, environmental, and stochastic factors determine
the accumulation of epigenetic variation over time, but their
relative contribution to the phenotypic outcome in terms of
child growth and maturation is not known because few data are
available.
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That the environment can influence growth and developmental
trajectories during pre-adult life history stages is well established,
and later life outcomes have been much sought after. Yet, the mech-
anistic events that influence the transition from one life history
stage to the next,growth and puberty are incompletely understood.
Growth and puberty are regulated by insulin, growth hormone,
the IGFs, and the sex hormones. These hormones drive the rate
of growth and development, but it is unclear what determines the
timing and degree of the different phases of developmental events
and the quantity of growth. At the target tissues for these hor-
mones, we need to first identify gene expression changes that occur
in each tissue. Epigenetic events, including the cell type-specificity

and tissue-specificity of chromatin regulation are great challenges
for future human studies.

Since no other animal has a similar pre-adult life history to that
of humans, an obvious question is whether the findings from any
experimental animal can be extrapolated to humans. The mecha-
nisms by which cues about nutrient availability in the uterus and
postnatal environment are transmitted to the offspring and by
which different stable phenotypes are induced are still unknown.
The genetic control of the regulation of placental supply and fetal
demand for maternal nutrients is not fully understood, and many
of the detrimental events that occur in the fetus could be possibly
due to epigenetic misprogramming.
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