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G protein-coupled receptors (GPCRs) remain the best studied class of cell surface recep-
tors and the most tractable family of proteins for novel small molecule drug discovery.
Despite this, a considerable number of GPCRs remain poorly characterized and in a signif-
icant number of cases, endogenous ligand(s) that activate them remain undefined or are
of questionable physiological relevance. GPR35 was initially discovered over a decade ago
but has remained an “orphan” receptor. Recent publications have highlighted novel ligands,
both endogenously produced and synthetic, which demonstrate significant potency at this
receptor. Furthermore, evidence is accumulating which highlights potential roles for GPR35
in disease and therefore, efforts to characterize GPR35 more fully and develop it as a novel
therapeutic target in conditions that range from diabetes and hypertension to asthma are
increasing. Recently identified ligands have shown marked species selective properties,
indicating major challenges for future drug development. As we begin to understand these
issues, the continuing efforts to identify novel agonist and antagonist ligands for GPR35
will help to decipher its true physiological relevance; translating multiple assay systems
in vitro, to animal disease systems in vivo and finally to man.
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INTRODUCTION
Since the discovery of GPR35 as an “orphan” GPCR in 1998,
limited information on this receptor has appeared. In part, this
reflects, until recently, the lack of available ligands that regulate this
receptor. This has begun to change with the identification of both
potential endogenous agonists and the screening of small scale
chemical libraries to identify synthetic ligands with agonist action
at GPR35. These advances, in concert with genetic links between
GPR35 and disease, have stimulated research into the pharma-
cology and pathophysiology of GPR35. Evidence now suggests
possible links between GPR35 and a range of pathological condi-
tions including inflammation, asthma, hypertension, and diabetes;
consequently highlighting GPR35 as a novel potential therapeutic
target (Milligan, 2011).

GPR35 was initially discovered as an open reading frame (ORF),
situated on chromosome 2q37.3 in human (O’Dowd et al., 1998)
which produces two alternatively spliced variants: GPR35a and
GPR35b. Human GPR35a encodes an ORF of 309 amino acids,
while GPR35b contains an N-terminal extension of 31 amino acids
(Okumura et al., 2004). GPR35b was found to be highly expressed
in gastric cancer tissue, and suggested to have transforming capa-
bilities (Okumura et al., 2004). However, the exact relevance of
the N-terminal extension has yet to be elucidated, with GPR35a

Abbreviations: BRET, bioluminescence resonance energy transfer; CAD, coronary
artery disease; ERK1/2, extracellular signal-regulated kinase 1/2; eYFP, enhanced
yellow fluorescent protein; GPCR, G protein-coupled receptor; [35S]GTPγS,
[35S]guanosine-5′-O-(3-thio)triphosphate; GWAS, genome wide association study,
IBD, inflammatory bowel disease; ORF, open reading frame; SNP, single nucleotide
polymorphism; TNF-α, tumor necrosis factor-α.

and GPR35b generating similar pharmacological responses in vitro
(Guo et al., 2008).

Efforts to characterize novel G protein-coupled receptors
(GPCRs) such as GPR35 have been assisted by sequence and
phylogenetic analysis; these place GPR35 in the rhodopsin-like
family of GPCRs. GPR35 shares closest homology with GPR55,
the lysophosphatidic acid receptors LPAR4, LPAR5, and LPAR6,
and the nicotinic acid receptor HM74 (Fredriksson et al., 2003;
Vassilatis et al., 2003). GPR55 was suggested initially as an atyp-
ical cannabinoid receptor; based on relatedness of sequence to
GPR35 it has been used in ligand screens alongside GPR35 in a
bid to identify or to eliminate common ligands (Heynen-Genel
et al., 2010). However, to date these receptors appear to share no
overlap in terms of ligand interaction or function (Oka et al., 2010;
Brown et al., 2011). Despite this, the endogenous agonist of LPAR4,
lysophosphatidic acid, has been shown to display agonist action at
GPR35 (Oka et al., 2010).

GPR35 EXPRESSION PATTERN
In addition to identification of GPR35, O’Dowd et al. (1998) also
reported GPR35 transcripts in endogenous tissue, with signifi-
cant expression in the rat small intestine. Subsequent studies have
shown a high level of human GPR35 in the pancreas and the small
intestine (Wang et al., 2006; Leonard et al., 2007); with significant
expression in the human colon, spleen, and immune cells (mono-
cytes,neutrophils,T cells, and dendritic cells); and with lower levels
of GPR35 reported in the stomach, skeletal muscle, and adipose
tissue, kidney, liver, and thymus (Taniguchi et al., 2006; Wang et al.,
2006). In mouse, extremely high levels of GPR35 were detected in
the spleen, with similar expression levels to human detected in the
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small intestine, colon, stomach, thymus, and adipose tissue (Wang
et al., 2006). In rat there is high expression of GPR35 in the spleen
and colon, dorsal root ganglion, and uterus (Taniguchi et al., 2006;
Ohshiro et al., 2008); and moderate expression in cerebrum, heart,
liver, bladder, and spinal cord has been reported (Taniguchi et al.,
2006; Ohshiro et al., 2008; Cosi et al., 2010).

GPR35 POLYMORPHISMS
Correlation between single nucleotide polymorphisms (SNPs) and
disease incidence can hint at links between a gene and disease
and may promote interest in the development of novel thera-
peutics. The coding and intergenic region surrounding GPR35
is substantially polymorphic, with various publications to date
reporting around 70 SNPs, six of which have been associated with
disease. The first paper to document GPR35 SNPs employed a
genome wide association study (GWAS) and focused on genetic
variation associated with type 2 diabetes (Horikawa et al., 2000).
Whilst sequencing chromosome 2q37.3 in a diabetic Mexican–
American population, 19 polymorphisms were identified within
GPR35, with an additional 40 located in the intergenic regions
situated 5′ and 3′ to GPR35; 4 of which were found to show
some association with type 2 diabetes (Horikawa et al., 2000).
The majority of SNPs identified by Horikawa and colleagues, were
also identified in a GWAS aiming to resolve terminal deletions on
chromosome 2q37 associated with Albright hereditary osteodys-
trophy and mild mental retardation. This study found that patients
lacked one copy (either maternal or paternal) of GPR35 (Shrimp-
ton et al., 2004). However, it should be noted that chromosomal
deletions at 2q37 were not mapped specifically to GPR35, but to
a 3 Mb region containing at least 30 other genes which may also
contribute to the Albright phenotype. Additionally, a computer-
ized GWAS reported implications for GPR35 in the pathology of
atherosclerotic plaque formation, with a non-synonymous SNP
(Ser294Arg) located in the predicted intracellular C-terminal tail,
significantly associated with the burden of coronary artery cal-
cification (quantified by computed tomography), a measure of
atherosclerotic plaque development and coronary artery disease
(CAD) risk in a patient cohort (Sun et al., 2008). These authors
postulated that Ser294Arg may have significant implications for
receptor–protein interactions (Sun et al., 2008) because this varia-
tion might alter the phosphorylation pattern of GPR35. However,
this hypothesis is yet to be tested directly. Lastly, a GWAS for early
on-set inflammatory bowel disease (IBD) linked an SNP within
GPR35 (rs4676410) to ulcerative colitis (Imielinski et al., 2009).
However, as with the four SNPs associated with type 2 diabetes,
the authors did not comment specifically on the potential contri-
bution of GPR35. Interestingly, however, a clinical study of CAD
risk factors highlighted a significant statistical link between the
incidence of CAD and irritable bowel syndrome (Yarur et al.,
2011). These findings, along with the therapeutically relevant tis-
sue expression pattern of GPR35, suggest potential roles for GPR35
in diabetes, cardiovascular disease, and IBD.

METHODS USED TO IDENTIFY GPR35 LIGANDS
In order to better characterize GPR35, a number of studies have
screened commercially available chemical libraries in a bid to
identify potential ligands which may act at GPR35. A number

of techniques commonly used to explore the pharmacology and
ligand binding of orphan GPCRs have been employed in GPR35
screening and are discussed below.

β-ARRESTIN-2 RECRUITMENT
Measurement of β-arrestin-2 recruitment to an agonist ligand–
receptor complex is a useful and efficient method of gathering
substantial data regarding ligand efficacy and potency for many
GPCRs. Publications have reported using various β-arrestin-2
based assays and GPR35 generally produces strong signal to back-
ground in such assays. For example, Jenkins et al. (2010) screened
the Prestwick Chemical Library to identify ligands with agonism at
GPCR using a bioluminescence resonance transfer (BRET) assay.
In this approach human and rat GPR35 were modified by intro-
ducing both an N-terminal epitope-tag and C-terminal in-frame
fusion of enhanced yellow fluorescent protein (eYFP). These were
then co-transfected into HEK293 cells with Renilla luciferase-
tagged β-arrestin-2. Following addition of the luciferase substrate
coelenterazine-h, agonist activation of GPR35 resulted in inter-
action between GPR35 and β-arrestin-2 and substantial BRET
signal that was dependent on agonist concentration. An alterna-
tive GPR35-β-arrestin-2 assay to explore GPR35 pharmacology
was recently reported using the “Tango™” system. This method
utilizes a protease-tagged β-arrestin-2 which cleaves GPR35 at
a modified c-terminal encoding a β-lactamase transcription site.
β-lactamase then becomes the reporter gene for which FRET tech-
nology can measure a fluorescent signal (Deng et al., 2011). Two
further variants of the β-arrestin-2 interaction technology have
also been used to identify and characterize GPR35 agonists. The
first of these is based on high content analysis of the translocation
of a GFP-tagged form of β-arrestin-2 (Zhao et al., 2010), whilst
the “PathHunter®” assay kit produced by DiscoveRx has also been
employed to measure both ligand potency and species selectivity of
zaprinast and kynurenic acid at human and rat orthologs of GPR35
(Jenkins et al., 2011). This assay is based on a complementation
system of fragments of β-galactosidase linked to either GPR35 or
β-arrestin-2. Importantly, the nature of β-arrestin-2 recruitment
to the cell membrane upon ligand activation contributes to both
desensitization and internalization of the receptor protein com-
plex, therefore, the signals generated from this assay are essentially
independent of G-protein activation (Hamdan et al., 2005; DeWire
et al., 2007). This may be a limitation in assessing certain aspects of
receptor function; however, publications have primarily used this
method to identify initial ligand hits and subsequently employed
downstream signaling assays to provide secondary confirmation
of ligand receptor interactions (Zhao et al., 2010; Jenkins et al.,
2011).

GUANINE NUCLEOTIDE BINDING ASSAYS
[35S]guanosine-5′-O-(3-thio)triphosphate ([35S]GTPγS) assays
measure the guanine nucleotide exchange process which occurs
on Gα subunits upon GPCR activation and by using an analog of
GTP which is resistant to the GTPase activity of the Gα subunit,
trap the active complex. [35S]GTPγS assays are popular as they
allow monitoring of GPCR activation at an early stage of the sig-
nal transduction pathway and can be performed in cell membrane
preparations. [35S]GTPγS binding assays have been most widely
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used in the measurement of GPCRs that couple to the Gαi/o family
of G-proteins – a result of higher Gαi/o expression in cell mem-
branes and a higher guanine nucleotide exchange rate compared
with other G-proteins. Additionally, GPCR–G-protein fusions and
immunoprecipitation of [35S]GTPγS labeled Gα subunits have
enabled measurement of activation of Gαq, Gα12/13, or Gαs via
modifications of the standard [35S]GTPγS assay (Milligan, 2003).
Both the standard [35S]GTPγS binding assay and the immuno-
precipitation [35S]GTPγS assay have been used to demonstrate
GPR35 activation by kynurenic acid (Wang et al., 2006) or lig-
ands from the Prestwick Chemical Library (Jenkins et al., 2010;
Figure 1).

CALCIUM MOBILIZATION ASSAYS
Further downstream, GPCR activation can be monitored by mea-
suring ligand induced changes in second messenger levels and
pathways. These include assays which detect modulation of intra-
cellular cAMP, inositol phosphates, and Ca2+ levels. Calcium
mobilization assays are among the most widely used functional
assays for GPCR screening. Historically, Ca2+ assays have been
used to measure Gαq mediated calcium release from the endo-
plasmic reticulum; measured by the addition of a Ca2+ sensitive
dye which alters fluorescence upon binding of Ca2+. More recently,
this assay has been adapted to allow measurement of Gαs, Gαi/o,
and Gα12/13 responses through the Ca2+ pathway, via the use of
G-protein chimeras and promiscuous G-proteins (Kostenis et al.,
2005; Milligan and Kostenis, 2006). Such Gαq chimeras are gener-
ated by substitution of, usually, the last five, but sometimes more,
amino acids of the Gαq carboxyl terminus with the corresponding
residues of Gαs, Gαi/o, or Gα12/13, to create G-proteins that alter

FIGURE 1 | G-protein-dependent pathways either used endogenously

by GPR35 (G12/13, Gi/o) or subverted (Gq/11) to allow screening of

potential agonists of GPR35 via chimeric and/or promiscuous

G-proteins.

their GPCR-coupling specificity but that still link to phospholipase
C-mediated regulation of intracellular Ca2+ levels. Expression of
so called “promiscuous” G-proteins (Gα15 and Gα16; Kostenis
et al., 2005) which interact with a broad range of GPCRs can also
result in activation of the Ca2+ pathway. Such Ca2+ mobilization
assays have been particularly useful in searches for ligands which
act upon“orphan”GPCRs, for which there has often been no infor-
mation available regarding the subsets of G-proteins or the signal
pathways usually regulated upon receptor activation. Indeed, two
of the earliest studies to identify GPR35 agonists used calcium
mobilization assays to show agonist activated GPR35 mediated
changes in [Ca2+]i via addition of zaprinast (Taniguchi et al.,
2006), and kynurenic acid (Wang et al., 2006).

YEAST-BASED ASSAYS
The chimeric G-protein approach has also been applied to yeast
model systems, most usually via manipulation of the mating
response pathway in Saccharomyces cerevisiae. Deletion of the sin-
gle GPCR in haploid yeast can allow heterologous expression and
measurement of functional mammalian GPCRs without interfer-
ence from other receptors and signaling pathways (Dowell and
Brown, 2009). Chimeric yeast transplants are generated in much
the same way as with the Gαq chimeras: by altering the last five
C-terminal amino acids of the endogenous Gα to those of a mam-
malian G-protein of interest. Such a yeast assay has been used to
confirm GPR35 activity and Gα13 G-protein coupling of Prestwick
Chemical Library hits identified initially using β-arrestin-2 assays
(Jenkins et al., 2010). However, caution must be applied when ana-
lyzing data obtained from assays employing chimeric G-proteins;
as the chimeras only contain a small fragment of the original G-
protein: independent assays must be employed to confirm findings
using full length, unmodified G-proteins.

ERK1/2 MAP KINASE PHOSPHORYLATION
One of the more popular signaling pathways to be measured fol-
lowing GPCR activation is the extracellular signal-regulated kinase
1/2 (ERK1/2) mitogen-activated kinase pathway. This reflects that
most GPCRs generate signals that intersect with and alter the activ-
ity of proteins within this cascade. GPCRs can influence ERK1/2
signaling through a variety of means including modulation of pro-
tein kinase A (via Gαs), protein kinase C (via Gαq and Gαo), the
Gαi subunit βγ dimers, and β-arrestins (Luttrell, 2003; Tohgo et al.,
2003). Thus, ERK1/2 assays incorporate multiple G-protein signals
that converge within the same cell, generating an experimental
system that can measure GPCR activation without prior knowl-
edge of G-protein coupling. Phospho-ERK1/2 immunoblotting
has been used to demonstrate ligand activation of GPR35, whereby
an upstream kinase phosphorylates specific threonine and tyrosine
residues, which can be measured using phospho-specific anti-
bodies that recognize these modifications. For example, 2-oleoyl
lysophosphatidic acid (Oka et al., 2010) and tyrophostin-51 (Deng
et al., 2011) were identified as GPR35 agonists using such assays.
Furthermore, ERK1/2 activation assays have also been used to
illustrate GPCR–G-protein coupling specificity: by use of per-
tussis toxin, which abolishes Gαi/o mediated responses, pamoic
acid, and zaprinast were shown to activate human GPR35 in a
Gαi/o-dependent manner (Zhao et al., 2010).
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RECEPTOR INTERNALIZATION
Receptor internalization studies have also been used to visual-
ize and quantify the process of endocytosis which often ensues
in response to occupancy of a GPCR with high efficacy lig-
ands (Marchese et al., 2008). By modifying GPR35 to encode
an external N-terminal epitope-tag, it is possible to carry out
fluorescence imaging via immunostaining whilst simultaneously
performing “on-cell” quantification analysis. Studies which have
benefited from these techniques include those which have iden-
tified kynurenic acid as an endogenous ligand at GPR35 (Wang
et al., 2006), pamoic acid (Zhao et al., 2010), and most recently
tyrophostin-51 (Deng et al., 2011). These assays all demon-
strated receptor internalization in response to appropriate ligand
activation at GPR35.

ENDOGENOUS GPR35 LIGANDS
KYNURENIC ACID
To explore the mechanisms by which GPR35 mediates signal-
ing endogenously, successful ligand identification is imperative.
The tryptophan metabolite kynurenic acid (4-oxo-1H-quinoline-
2-carboxylic acid; Table 1) was the first reported agonist ligand
for GPR35 that is generated endogenously and is present in many
tissues including the brain, pancreas, colon, kidney, lung, intestine,
spleen, and muscle. In addition to acting as a potential GPR35 ago-
nist kynurenic acid also acts as a glycine and allosteric site antago-
nist of the glutamate N -methyl-d-aspartate (NMDA)-receptor ion
channel complex; and as a non-competitive antagonist at the α7
nicotinic acetylcholine receptor (Hilmas et al., 2001; Stone, 2001;
Prescott et al., 2006). The ability of kynurenic acid to activate and
internalize human, rat, and mouse orthologs of GPR35 at micro-
molar concentrations was initially demonstrated by Wang et al.
(2006). Using a Ca2+/aequorin assay, this group also demonstrated
that kynurenic acid could increase intracellular calcium levels
whilst coupling to the chimeric G-proteins Gqo5, Gqi9, and also the
pertussis toxin-sensitive Gi/o pathway by employing a [35S]GTPγS
binding assay (Wang et al., 2006). However, it may be important
to consider the concentrations of kynurenic acid required to acti-
vate GPR35 in vitro and compare these with endogenous levels
in vivo. Although plasma kynurenic acid levels are often reported
in nanomolar concentrations in humans, kynurenic acid can be
increased to micromolar concentrations in inflammatory states.
Interestingly, a recent publication demonstrated that kynurenic
acid levels are elevated during inflammation in colon cancer
patients (Walczak et al., 2011). Furthermore, levels of kynurenic
acid have also been reported to increase in the kidney, lung, intes-
tine, spleen, and muscles in rats suffering chronic renal failure
(Pawlak et al., 2002), in spontaneously hypertensive rats (Mizutani
et al., 2002) and in the urine of type 2 diabetic primates (Patter-
son et al., 2011). Additionally, it is argued that the measurement
of endogenous concentrations can be underestimated by dilu-
tion factors occurring during the measurement process, whereby
concentrations may be misjudged at the receptor complex, and
may actually be potentially more potent than recorded (Wang
et al., 2006). A subsequent publication assessing endogenous con-
centrations in rodent small intestine also reported endogenous
kynurenic acid at micromolar levels (Kuc et al., 2008); suggesting
that kynurenic acid could feasibly be an endogenous agonist at

rodent GPR35. Meanwhile, evidence relating to the activation of
GPR35 by kynurenic acid in humans remains inconsistent across
the literature. These discrepancies may be a result of variation in
the techniques which are employed to quantify the ligand potency.
For example, Oka et al. (2010) were unable to generate a response
at human GPR35 to kynurenic acid when measuring intracellular
[Ca2+], nor were they able to demonstrate GPR35 internalization
following transfection of a fluorescently tagged form of human
GPR35. Further contrasting data has emerged from Jenkins et al.
(2011) who reported via a BRET-based β-arrestin-2 interaction
assay that although kynurenic acid can activate human GPR35,
potency is low and at least 100 fold lower than at the rat ortholog.

LYSOPHOSPHATIDIC ACID
Although Oka et al. (2010) were unable to record a response at
GPR35 via kynurenic acid, they did observe that lysophosphatidic
acid (2-hydroxy-3-phosphonooxypropyl) (Z)-octadec-9-enoate),
particularly 2-oleoyl LPA, acted as an agonist at GPR35. LPA is a
simple bioactive phospholipid, present in biological fluids such as
serum and plasma, with notable tissue levels in the brain (Sug-
iura et al., 1999; Noguchi et al., 2009). LPA has many cellular
effects, including cellular proliferation, prevention of apoptosis,
cell migration, cytokine and chemokine secretion, platelet aggre-
gation, smooth muscle contraction, and neurite retraction (Aoki
et al., 2008). A number of GPCRs are reported to be responsive to
LPA including LPA1 (EDG2), LPA2 (EDG4), LPA3 (EDG7), LPA4

(GPR23), LPA5 (GPR92), LPA6 (P2Y5), and GPR82. Oka et al.
(2010) identified LPA as a GPR35 agonist whilst screening endoge-
nous and structurally related GPR55 ligands in HEK293 cells stably
expressing GPR35. While the GPR55 ligands were unable to induce
[Ca2+]i mobilization, the structurally related analogs 2-oleoyl
lysophosphatidic acid (LPA), 2-arachidonoyl LPA, 1-oleoyl LPA,
and 1-palmtoyl LPA did demonstrate an ability to mobilize [Ca2+]i

in these cells. In addition, a number of in vitro assays including
ERK1/2 phosphorylation, GTP-bound RhoA protein quantifica-
tion and internalization assays were also employed. Overall these
provide a robust data set, which could shift the focus of the true
functional endogenous ligand from kynurenic acid to LPA, at least
at the human receptor. Interestingly, LPA has been associated with
peripheral nociception in mouse (Renback et al., 1999), the reg-
ulation of blood pressure and atherosclerotic plaque formation
(Smyth et al., 2008), and cancer cell invasion (Mills and Moolenaar,
2003).

SYNTHETIC GPR35 LIGANDS
ZAPRINAST
Synthetic ligands have proved invaluable in the characterization
of GPR35, with moderately potent agonists, and more recently,
antagonists, becoming available to facilitate receptor characteriza-
tion efforts and a small number of in vivo research efforts (Table 1).
The synthetic chemical zaprinast (5-(2-propoxyphenyl)-1H-
[1,2,3]triazolo[4,5-d]pyrimidin-7(4H)-one) is currently the stan-
dard GPR35 agonist. Zaprinast was initially shown to allow GPR35
coupling to the Gi/o and G16 pathways using a calcium mobi-
lization assay, in a manner that is distinct from the well-known
effects of this ligand as an inhibitor of cyclic GMP phospho-
diesterases (Taniguchi et al., 2006). Jenkins et al. (2010) have
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Table 1 | GPR35 ligands, their chemical structures and reported potency values.

Compound name Chemical structure Experimental

system

Human GPR35

(pEC50/pIC50)

Rat GPR35

(EC50/IC50)

Reference

Agonists

Cromolyn β-arrestin-2 interaction assay 5.12 5.36 Jenkins et al.

(2010)

Dicumarol β-arrestin-2 interaction assay 5.90 5.70 Jenkins et al.

(2010)

Kynurenic acid Ca2+ mobilization assay (using

Gαqi5 chimera)

4.41 5.15 Wang et al. (2006)

Luteolin β-arrestin-2 interaction assay 4.87 5.01 Jenkins et al.,

2010

2-oleoyl LPA Intracellular Ca2+ measurement No potency

figures reported

Not tested Oka et al. (2010)

Niflumic acid β-arrestin-2 interaction assay 4.84 >3 Jenkins et al.,

2010

NPPB Ca2+ mobilization assay (using

Gαqi5 chimera)

4.91 4.80 Taniguchi et al.

(2008)

Pamoic acid β-arrestin-2–GFP translocation assay 7.10 Not tested Zhao et al. (2010)

Pamoate β-arrestin-2 interaction assay 7.29 >3 Jenkins et al.

(2010)

Quercetin β-arrestin-2 interaction assay 5.35 5.20 Jenkins et al.

(2010)

Tyrphostin-51 Tango™β-arrestin-2 translocation

assay

7.7 Not tested Deng et al. (2011)

Zaprinast Ca2+ mobilization assay (using

Gαqi5 chimera)

6.08 7.80 Taniguchi et al.

(2006)

β-arrestin-2 interaction assay 5.59 7.17 Jenkins et al.

(2010)

(Continued)
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Table 1 | Continued

Compound name Chemical structure Experimental

system

Human GPR35

(pEC50/pIC50)

Rat GPR35

(EC50/IC50)

Reference

Antagonists

CID-1542103 (ML144) β-arrestin-2–GFP translocation assay 5.65 Not tested Heynen-Genel

et al. (2010)

CID-2745687 β-arrestin-2–GFP translocation assay 6.89 Not tested Zhao et al. (2010)

CID-2286812 (ML145) β-arrestin-2–GFP translocation assay 7.70 Not tested Heynen-Genel

et al. (2010)

since demonstrated that zaprinast activates both human and
rat orthologs of GPR35 at micromolar concentrations but, like
kynurenic acid, zaprinast is significantly less potent at human than
rat GPR35 with reported pEC50 values in BRET-based β-arrestin-2
assays of 5.4 and 7.1, respectively. Zaprinast is better known as an
inhibitor of cyclic GMP phosphodiesterases, specifically PDE5 and
PDE6. This creates difficulties in disentangling the separate effects
of this ligand which reflect activation of GPR35, from effects that
are produced via elevated levels of cyclic GMP. However, given
its robust potency at both species orthologs within multiple assay
systems in vitro, zaprinast can be utilized as an excellent reference
compound in the identification process of other possible ligands.

PAMOIC ACID AND OTHER PRESTWICK CHEMICAL LIBRARY® HITS
The majority of other currently described GPR35 synthetic ligands
(Table 1) have been identified via screens of the Prestwick Chem-
ical Library®, which contains 1120 small molecule drugs with
known bioavailability and safety characteristics. This approach
identified pamoic acid (4-[(3-carboxy-2-hydroxynaphthalen-1-
yl)methyl]-3-hydroxynaphthalene-2-carboxylic acid) as a potent
activator of human GPR35 (Jenkins et al., 2010; Zhao et al., 2010).
Interestingly, pamoate is a compound previously considered by
the Food and Drug Administration as an inactive “salt” compo-
nent, used to prolong the life of formulations in a wide range of
drugs which are currently available on the market (Neubig, 2010).
Pamoic acid was elegantly shown to activate human GPR35 using
a wide array of in vitro techniques, including ERK1/2 phosphory-
lation, β-arrestin-2 recruitment and fluorescence internalization
assays. Importantly, pamoic acid is significantly more potent than
kynurenic acid and zaprinast (Jenkins et al., 2010; Zhao et al.,
2010). However, although Zhao et al. (2010) have also reported
pamoic acid to be a useful agonist for mouse GPR35, Jenkins et al.
(2010) noted that pamoic acid displayed very weak potency at rat
GPR35 and demonstrated it to be a partial agonist when com-
pared to zaprinast at human GPR35 in both G-protein-dependent
and independent assays. Jenkins et al. (2010) also identified the

anti-asthma medicine cromolyn disodium, the flavonoids lute-
olin and quercetin, the anti-coagulant dicumarol, and the anti-
inflammatory agent niflumic acid as GPR35 agonists (Jenkins et al.,
2010). Interestingly, as with the ligands noted above a number
of these compounds also showed marked species selectivity. So,
although cromolyn disodium and dicumarol activated human and
rat receptors with similar potency, niflumic acid was highly selec-
tive for human GPR35 whilst zaprinast and luteolin were selective
at rat GPR35 (Jenkins et al., 2010).

ANTAGONISTS OF GPR35
To date, the only GPR35 antagonist studied significantly is
CID2745687 (methyl-5-[(tert-butylcarbamothioylhydrazinylide
ne)methyl]-1-(2,4-difluorophenyl)pyrazole-4-carboxylate; Zhao
et al., 2010; Table 1). This is a nanomolar, potentially competi-
tive antagonist of human GPR35 and also reported to inhibit the
effects of both pamoic acid and zaprinast at mouse GPR35 (Zhao
et al.,2010). Two further structural classes including,ML145 (CID-
2286812) and ML144 (CID-1542103) as representative examples,
have been reported as GPR35 antagonists (Table 1) via a high
content screen of nearly 300,000 compounds with ML145 in par-
ticular being reported as a high affinity (20 nM) ligand with good
selectivity over GPR55 (Heynen-Genel et al., 2010). The availabil-
ity of such ligands offers potential to further increase knowledge
of the pharmacology and functional roles of GPR35.

IMPLICATIONS OF SPECIES SELECTIVITY OF GPR35
AGONISTS
From the information relating to reported variation in ligand
potencies at multiple species orthologs of GPR35 it is apparent
that species selectivity and possible ligand bias may exist (Milligan,
2011). This may have significant implications for the development
of GPR35 as a therapeutic target in disease. It will be vital to
improve understanding of the basis of ligand selectivity and to
document this fully in order to promote translation of informa-
tion from multiple in vivo animal models to man. To date, little is
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known on these issues or even if the various reported ligands bind
to the same region of GPR35. Homology modeling and ligand
docking studies can provide insight. Based on models of human
and rat GPR35 Jenkins et al. (2011) hypothesized that the carboxy-
late moiety of kynurenic acid might form an ionic interaction with
the arginine located in transmembrane domain III of GPR35 at
position 3.36, because a number of other GPCRs with acidic lig-
ands, including the lactate receptor GPR81, also have an arginine
residue at this position. Following alteration of this arginine to
alanine in both rat and human GPR35, both kynurenic acid and
zaprinast lost function (Jenkins et al., 2011). The same was also
true with mutation of the tyrosine residue located at position 3.32,
one turn of the alpha helix higher than the arginine residue (Jenk-
ins et al., 2011). These results highlight these amino acids as key
residues of the binding pocket. Much further work is required to
both define the nature and extent of the binding pocket and to
explain ligand species selectivity. With the application of further
mutagenesis and analysis of the effects of a wider range of ligands
at such mutants, such studies will truly begin to dissect the nature
of species selectivity at GPR35. Further investigation may also be
required to assess whether selective ligands also lead to distinct sig-
naling pathways, thus inducing a potential signal bias (Milligan,
2011). The G-protein coupling profile of GPR35 has been reported
to span Gi/o, and Gα12/13 families but no coherent attempt has yet
been made to assess if ligands activate these pathways differentially
(Milligan, 2011).

THERAPEUTIC POTENTIAL FOR GPR35
CARDIOVASCULAR DISEASE
Two recent publications have suggested a role for GPR35 in
hypertension and the pathology of both heart failure and ath-
erosclerosis. Firstly, a Ser294Arg SNP within GPR35, discussed
previously, was shown to have significant association with coro-
nary artery calcification in a patient cohort (Sun et al., 2008).
In addition, a link between GPR35, heart failure and hyperten-
sion has been implied (Min et al., 2010). This study explored
12 heart failure patient samples (significantly ranging in sever-
ity) and two healthy “controls.” A selection of genes up-regulated
in the heart failure patients was identified via global expression
microarray analysis. These investigators then went on to correlate
highly expressed genes with traditional heart failure biomark-
ers such as plasma brain natriuretic peptide, ejection fraction,
and pulmonary arterial pressure; thereby facilitating a degree of
adjustment for disease severity. Within the up-regulated genes
was GPR35. Subsequently, adenovirus-mediated over-expression
of GPR35 in primary neonatal cardiomyocytes resulted in hyper-
trophy and, most interestingly, these studies also demonstrated
a significant 37.5 mmHg increase in blood pressure in a trans-
genic strain of GPR35 knock-out mice over wild type littermates
(Min et al., 2010). It is also clear that Gα13 plays significant regula-
tory roles in embryonic development, cell migration, proliferation,
and contraction (Suzuki et al., 2009), thus establishing Gα13 as
an important mediator in pathways relating to the pathology of
CVD. Thus,evidence that GPR35 couples selectively to Gα13 (Jenk-
ins et al., 2011) may provide a further link to hypertension and
CVD. Ruppel et al. (2005) demonstrated a loss of vascular devel-
opment and fatality in transgenic mouse neonates via generation

of embryonic vascular endothelial cell specific transgenic knock-
outs of Gα13. Additionally, neonatal fatality and abnormal vascular
development can be rescued in transgenic models with a Gα13

“floxed” allele, in which Gα13 is flanked by loxP recombination
sites, elegantly demonstrating that transgenically targeting vascu-
lar endothelial cells is not harmful in itself and therefore, abnormal
vascular development can be entirely attributable to the knock
down of Gα13 (Ruppel et al., 2005). These reports are consis-
tent with previous studies which have demonstrated both vascular
defects and embryonic lethality in response to Gα13 deficiency
(Offermanns et al., 1997) and others which associate Gα13 with
the regulation of morphogenesis and capillary assembly via Rho
GTPases in angiogenesis (Connolly et al., 2002).

Subsequent activation of the Rho A pathway following acti-
vation of Gα13 has been reported in a number of studies. Most
recently, evidence has emerged regarding the role of subsequent
effectors of the Rho A pathway, for example the Rho associated
kinases ROCK1/2 and c-Jun NH2 terminal kinase, have been
implicated in mediating angiogenesis and cardiac hypertrophic
responses via the Rho pathway, respectively (Maruyama et al.,
2002; Bryan et al., 2010). In relation to GPR35, it may be worth-
while to employ techniques to assess JNK activation in neonatal
cardiomyocytes given the indirect, yet measurable relation to Gα13

reported here and the hypertrophic response previously reported
by Min et al. (2010) may have significant implications relating to
GPR35. Although activation of Gα13 is promising regarding CVD
pathology, it is important to note that GPR35 also couples to Gαi/o

which has been demonstrated to be up-regulated in the on-set of
hypertension in spontaneous hypertensive rats (Anand-Srivastava
et al., 1991; Li and Anand-Srivastava, 2002). Therefore, it might be
relevant to suggest that multiple G-protein pathways contribute
toward the hypertensive phenotype associated with GPR35.

ANTI-NOCICEPTION
GPR35 has also been suggested as a potential therapeutic target in
the treatment of pain. Rat dorsal root ganglion neurons endoge-
nously expressing GPR35 were found to inhibit adenylate cyclase
in a pertussis toxin-sensitive manner in response to kynurenic acid
and zaprinast, and to co-localize with TRPV1 receptors (Ohshiro
et al., 2008). Neurons expressing TRPV1 are involved in nocicep-
tion, mediation of hyper-analgesia, neurogenic inflammation and
neuropathic pain. Therefore, Ohshiro et al. (2008) hypothesized
that GPR35 may also be involved in nociceptive signaling. This
initial hypothesis has since been supported in a number of in vivo
studies using various GPR35 agonist compounds. Subcutaneous
injection of zaprinast or kynurenic acid prior to acetic acid admin-
istration significantly reduced the number of writhes in Swiss male
mice (Cosi et al., 2010). Interestingly, the co-administration of
kynurenic acid and zaprinast did not induce an additive effect
on anti-nociception, suggesting that the two ligands were act-
ing via the same pathway (Cosi et al., 2010). However, since
kynurenic acid is associated with anti-nociception via antago-
nism of NMDA receptors (Chen et al., 2009), and zaprinast is
also an effective cGMP phosphodiesterase inhibitor, it may be that
these anti-nociceptive effects are not solely attributable to acti-
vation of GPR35. Nevertheless, zaprinast has also been shown
to induce anti-nociceptive properties in a manner distinct from
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phosphodiesterase inhibition via the formalin test in rats (Yoon
et al., 2006). Additionally, pamoic acid has been demonstrated to
induce a dose-dependent anti-nociceptive response in mice (Zhao
et al., 2010).

INFLAMMATION
A number of studies have linked GPR35 to inflammatory reg-
ulation, either by the presence of the receptor at the surface
of immune-specific cells, or by agonist activation leading to
changes in immune response. One of the earliest studies aiming
to identify GPR35 agonists showed that treatment with kynurenic
acid induced an anti-inflammatory response in GPR35 express-
ing human peripheral blood mononuclear cells via a reduction
in lipopolysaccharide-induced tumor necrosis factor-α (TNF-α)
secretion in a dose-dependent manner (Wang et al., 2006). TNF-α
is a cytokine which acts as part of the innate immune response,
principally produced by macrophages in response to infection,
trauma, and ischemia. Moreover, large scale gene expression stud-
ies have also demonstrated significant up-regulation of GPR35 in
macrophages upon response to the polycyclic aromatic hydrocar-
bon benzo[a]pyrene, an environmental contaminant associated
with carcinogenic and inflammatory responses (Sparfel et al.,
2010); and lipopolysaccharide, which caused up-regulation of
GPR35 in inflammatory macrophages but not non-inflammatory
macrophages (Lattin et al., 2008).

Further links between GPR35 and pro-inflammatory effects
have been demonstrated via treatment of human invariant natural
killer like T (iNKT) cells with kynurenic acid or zaprinast (Fallarini
et al., 2010). Activated iNKT cells, which are involved in the mat-
uration of dendric cells, can counter-regulate autoimmunity by
secreting cytokines IL-4, IL-5 and TGFβ; or exacerbate autoimmu-
nity through secretion of the pro-inflammatory cytokine, INFγ.
In this study iNKT cells stimulated with super-agonist α-Gal-Cer
(a chemically synthesized α-galactosylceramide) and kynurenic
acid or zaprinast, reduced IL-4 release in a pertussis toxin, dose–
responsive manner, without significantly reducing levels of INFγ

(Fallarini et al., 2010). Although this study did not speculate on the
outcome of GPR35 activation on iNKT cells, previous data show
that stimulation of iNKT cells with synthetic glycolipids prevent
spontaneous type 1 diabetes in non-obese diabetic mice (Naumov
et al., 2001; Sharif et al., 2001), with repeated administration of
α-Gal-Cer suppressing type 1 diabetes by promoting differentia-
tion and recruiting tolerogenic dendritic cells in draining lymph
nodes (Gillessen et al., 2003). However, an inability to produce IL-
4 and an iNKT T helper type 1 bias has also been associated with
human type 1 diabetes (Wilson et al., 1998; Kent et al., 2005). It will
be interesting to determine the role of GPR35 in iNKT cells, and
whether modulation of GPR35 has an affect on the development
or protection from type 1 diabetes.

Lastly, one of the most prominent studies to associate GPR35
with immune regulation shows that treatment of monocytes and
neutrophils with kynurenic acid can cause β2 integrin mediated
firm arrest to intracellular adhesion molecule 1-expressing mono-
layers of human umbilical vein endothelial cells (Barth et al., 2009).
Kynurenic acid triggered adhesion of monocytic cells was dimin-
ished by pertussis toxin treatment, and reduced by small hairpin-
RNA delivery targeting GPR35, thereby implicating GPR35 as a

direct mediator of leukocyte adhesion (Barth et al., 2009). Taken
together, these data associate GPR35 with immune regulation;
although the concentrations of kynurenic acid used in these studies
were substantially lower than consistent with the known potency
of this ligand at GPR35. Clearly there is a need for further in vivo
analysis to fully understand the role of GPR35 in immunity.

METABOLIC SYNDROME
In 2007, a patent application regarding “GPR35 and modula-
tors thereof as treatment for metabolic-related disorders” was the
first to implicate GPR35 in the pathology of metabolic disor-
ders (Leonard et al., 2007). A variety of compounds with agonist
action at GPR35 including “compound 1” [(Z)-5-(3-ethoxy-4-
hydoxy-5-nitro-benzylidene)-thiazolidine-2,4-dione] and “com-
pound 16” [(Z)-5-(4-hydoxy-3-nitro-5-propoxy-benzylidene)-
thiazolidine-2,4-dione] were able to reduce blood glucose levels
in oral glucose tolerance tests, stimulate glucose uptake in dif-
ferentiated 3T3-L1 adipocytes, and reduce free fatty acid plasma
levels in both fasted wild type (C57bl/6) and diabetic (db/db)
mice (Leonard et al., 2007). Additionally, and rather interestingly,
GPR35 was identified in the pancreas of db/db mice but not obese
(ob/ob) diabetic mice using quantitative polymerase chain reac-
tion, whereas expression levels in adipose, liver, spleen, and colon
remained similar between these two transgenic lines. Altogether,
these data suggests GPR35 may play a role in glucose uptake,
storage, and transport. However, as these findings are yet to be
confirmed in subsequent studies, further analysis will be required
to probe the role of GPR35 in the mediation of glucose homeostasis
and diabetes.

CONCLUSION
Although GPR35 was identified 13 years ago, initial progress has
been slow to elucidate the function and pharmacology of this
“orphan” receptor. This is largely due to a lack of potent ligands
and species selectivity between orthologs. Nonetheless, a number
of groups have begun to elucidate the pharmacology, function,
and therapeutic potential of GPR35. As a result, a number of
endogenous and synthetic ligands have been identified which act
upon GPR35. Additionally, the first antagonist compounds have
been described, and this should greatly enhance receptor charac-
terization in the future. Furthermore, GPR35 has demonstrated
a therapeutically relevant tissue expression profile, with signifi-
cant expression in the immune and gastrointestinal tissue. GWAS
have also identified polymorphisms which link to disease; both
in the coding and intergenic regions surrounding GPR35. Tak-
ing these findings together, it is becoming apparent that GPR35
may play a significant role in inflammatory pain, asthma, diabetes,
hypertension, cardiovascular disease and irritable bowl disease.
Future studies will focus on characterization of the receptor bind-
ing pocket, elucidation of receptor specific and potent ligands, and
in vivo research to determine the extent of GPR35 regulation and
its subsequent contribution to disease.
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